
Adaptive Task Allocation in Multi-Agent
Systems Based on Swarm Intelligence

Wonki Lee

The Graduate School

Yonsei University

School of Electrical and Electronic Engineering

Adaptive Task Allocation in Multi-Agent
Systems Based on Swarm Intelligence

A Dissertation Thesis

Submitted to the School of Electrical and Electronic Engineering

and the Graduate School of Yonsei University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Wonki Lee

February 2018

This certifies that the dissertation of
Wonki Lee is approved.

Dissertation Supervisor: DaeEun Kim

Jin Bae Park

Euntai Kim

Seong-Lyun Kim

Dongseok Sun

The Graduate School

Yonsei University

February 2018

Acknowledgements

This thesis work would not have been possible without the support of many people.

It is a pleasure to thank to all of those who supported me in all the respects during the

completion of my thesis project. I am heartily thankful to my supervisor, Prof. DaeEun

Kim, whose encouragement, guidance, and support from the initial to the final level enabled

me to develop an understanding of the subject. I like to show my gratitude to Prof. Jin Bae

Park, Prof. Euntai Kim, Prof. Seong-Lynu Kim and Dr. Dongseok Sun for critical reading

and comments on my thesis. All the group members at the Biological Cybernetics Lab.

have helped and inspired me. Finally, I thank my parents and my family for supporting me

throughout all my studies. This thesis would not have been possible without their love and

care.

Contents

List of Figures iv

List of Tables xiv

Abstracts xiv

1 Introduction 1
1.1 Why bio-inspired task allocation . 2

1.2 Motivation and objective . 2

1.3 Organization of dissertation . 3

2 Background 7
2.1 Swarm intelligence . 8

2.1.1 Swarm intelligence in nature . 9

2.1.2 Applications of swarm intelligence 9

2.1.3 Characteristics of swarm intelligence 11

2.2 Swarm robotics . 12

2.2.1 Description of collective behaviors 12

2.2.2 Design methods . 14

2.2.3 Analysis methods . 15

2.3 Task allocation problem . 16

2.3.1 Task allocation in nature . 17

2.3.2 Mechanisms of task allocation . 21

2.3.3 Applications to task allocation . 25

2.4 Summary of Chapter 2 . 30

i

3 Basic for task allocation 31
3.1 Description of foraging task . 32

3.1.1 Simulation environment . 33

3.1.2 Robot behaviors . 34

3.2 Task allocation with fixed response threshold 37

3.2.1 Task selection method . 37

3.2.2 Simulation results . 40

3.2.3 Drawback of specialization in foraging task 50

3.3 Task allocation with variable response threshold 52

3.3.1 Task selection method . 53

3.3.2 Simulation results . 54

3.4 Summary of Chapter 3 . 57

4 Task allocation for parallel tasks 59
4.1 Methods . 60

4.1.1 Modeling . 61

4.1.2 Task selection method . 62

4.1.3 History based information estimation 64

4.2 Analysis . 67

4.2.1 Convergence to equilibrium state 67

4.2.2 Convergence of threshold update 69

4.3 Simulation results . 71

4.3.1 Robot behaviors . 71

4.3.2 Results with fixed task demands 71

4.3.3 Results with changes in task demands 76

4.3.4 Results with changes in number of agents 77

4.4 Application to Factory Domain Applications 77

4.4.1 Task description . 78

4.4.2 Modified task selection method 79

4.4.3 Comparison with other conventional methods 82

4.5 Summary of Chapter 4 . 95

5 Task allocation for sequential tasks 97
5.1 Methods . 98

5.1.1 Description of foraging task . 98

ii

5.1.2 Task selection method . 99

5.1.3 Convergence analysis . 102

5.2 Simulation environment . 105

5.2.1 Environment . 106

5.2.2 Robot behaviors . 108

5.3 Simulation results . 109

5.3.1 Result of task allocation . 109

5.3.2 Result with changes of arena size 115

5.3.3 Result with changes of moving speed 116

5.3.4 Result with time delay for changing task 117

5.3.5 Result with changes in number of agents 118

5.3.6 Results with multiple tasks . 119

5.4 Discussion . 124

5.4.1 Task description . 124

5.4.2 Robot behaviors . 125

5.4.3 Task selection mechanism . 128

5.4.4 Results with various environmental conditions 129

5.4.5 Analysis . 137

5.5 Summary of Chapter 5 . 146

6 Conclusions 148
6.1 Contribution . 148

6.2 Further work . 150

iii

List of Figures

2.1 General two taxonomies for swarm intelligence: (a) type of collective be-

haviors; and (b) design and analysis methods (Modified from [26]). 13

2.2 Various ways of task partitioning for performing a foraging task with a

group; indirect and direct object transfer methods are shown with no task

partitioning method. Top shows the two subtasks with indirect transfer us-

ing a cache site. Middle shows the two subtasks that object are transferred

directly between different groups. Bottom shows that tasks are performed

without task partitioning. 19

2.3 Components known to affect the decision to perform a task. 22

2.4 Diagram of task allocation explained with response threshold model. The

control of task allocation can be explained with (a) fixed threshold values

or (b) variable threshold values. 25

3.1 Snapshot of simulation environment: (a) snapshot of an initial state that

all robots are assigned to clear red-colored objects; and (b) snapshot of a

desired state that the proper number of robots are assigned to each task

according to its proportion. The large red-colored and green-colored circles

are robots and small red-colored and green-colored circles are objects to be

collected by robots. The vision range of a robot is fan-shaped as shown above. 33

3.2 Flowchart of robot behaviors. 35

3.3 Response threshold values of robots for two tasks. 39

3.4 Number of foraged: (a) red and (b) green pucks and occurrences of task

switching in foraging for (c) red and (d) green pucks. 41

3.5 Number of foraged pucks and task changes of an individual robot. 42

iv

3.6 Ratio of robots foraging for red pucks in a group: (a) individual trend of

each algorithm; and (b) overlapping trends of all algorithms. 42

3.7 Result of an optimal method using a stochastic approach: (a) ratio of red

robots in a group; (b) number of foraged red pucks; and (c) number of task

changes in foraging for red pucks. 44

3.8 Performance evaluation with varying ratios of red pucks: (a) number of all

foraged pucks; and (b) number of wandering steps; and (c) number of task

changes. 44

3.9 Performance of the History1 and History2 methods with various lengths

of the puck history. The various colors indicate varying sizes of the puck

history from (L=1) to (L=40): (a) ratio of red robots in a group in History1

(left) and History2 (right); (b) number of foraged red pucks in History1

(left) and History2 (right); and (c) number of task changes for red pucks in

History1 (left) and History2 (right). 45

3.10 Comparison results of History1 (L=10), History1 (L=20) and History2 (L=10):

(a) ratio of red robots in a group; (b) number of red color changes. The num-

bers in parentheses refer to the length of the puck history. 46

3.11 Results of weighted History1 (L=10): (a) ratio of red robots in a group; (b)

number of foraged red pucks; and (c) number of red color changes. 47

3.12 Comparison of the results of the number of task changes with a variation in

the vision sampling period from two to ten time steps: (a) task changes for

red pucks; and (b) task changes for green pucks. 48

3.13 Results of foraging tasks when the foraged pucks were not reproduced: (a)

number of foraged red pucks; (b) number of task switches in foraging for

red pucks; (c) ratio of robots foraging for red pucks; and (d) ratio of foraged

red pucks. 49

3.14 Randomly distributed pattern for response threshold values for two foraging

tasks: (a) response threshold value in a random pattern; (b) ratio of robots

for red pucks in a group; (c) number of foraged red pucks; and (d) number

of task switches for red pucks. 50

v

3.15 Ratio of robots foraging for red pucks in a group and the ratio of red pucks

to all foraged pucks: (a) robots foraging for red pucks (front 60◦); (b) ratio

of red pucks (front 60◦); (c) robots foraging for red pucks (front 20◦); (d)

ratio of red pucks (front 20◦); (e) robots for red pucks (front 20◦, triple

pucks); and (f) ratio of red pucks (front 20◦, triple pucks). 52

3.16 Ratio of robots foraging for red pucks in a group, and the number of task

switches for red pucks: (a) robots for red pucks in a group; and (b) number

of task switches for red pucks. 53

3.17 Example of diagram used for task allocation. Four tasks are ordered in

a sequence proportionally to its demands and the threshold values of ten

agents are spaced. Agents belonging to range that is split into segments

relative the task demands is assigned to the corresponding task. 53

3.18 Changes of thresholds with α = 0.1 and δ = 0.001 from the different initial

distribution: (a) initial thresholds are almost equal; and (b) initial threshold

are randomly distributed over the range. 55

3.19 Proportion of agents assigned to each task with changes in task demand: (a)

proportion of agents performing each task with δ = 0.01; and (b) proportion

of agents performing each task 2 with δ = 0.001 (left-task 1, right-task 2). . 56

3.20 Proportion of agents assigned to a specific task when some agents are re-

moved from the arena during task: (a) proportion of agents performing task

1; and (b) changes of threshold values. 57

3.21 Proportion of agents assigned performing multiple tasks: (a) proportion of

agent assigned to task 1; (b) proportion of agent assigned to task 2; (c)

proportion of agent assigned to task 3; and (d) proportion of agent assigned

to task 4. 58

4.1 Task probability curves for varying n and θ values: (a) task probability for

different values of n; and (b) Task probability for different values of θ. n

represents the slope of curve and θ produces difference responses, given the

same stimulus s. 63

4.2 State transition of robot behaviors. 72

vi

4.3 Proportion of robots assigned to two different tasks; clearing red-colored

objects (red task) and green-colored objects (green task): (a) the propor-

tion of robots performing the red task; and (b) the proportion of robots

performing the green task, while task demands are set to 10%, 30%, 50%,

70% and 90% for the red task and 90%, 70%, 50%, 30%, and 10% for the

green task, respectively. 72

4.4 Thresholds change for two tasks in robots: (up) initial state and (down) final

state; (a) the red task threshold; and (b) the green task threshold. 73

4.5 Various cases of specialized tendency: (a) strongly specialized to green

task; (b) red task; (c) Softly specialized to both tasks; and (d) strongly

specialized to red task changes to softly specialized to red task to increase

the probability to green task and decrease the probability of red task. 74

4.6 Proportion of robots assigned to red task: (a) all information is given to

robots due to unlimited sensor range; and (b) constant task transition rate is

applied in task transition model. 75

4.7 Proportion of robots assigned to red task in a group with changes in task

demands: (a) constant task transition rates; and (b) estimated information. . 76

4.8 Proportion of robots assigned to three tasks with changes in task demands:

(a) red task; (b) green task; and (c) blue task. 77

4.9 Proportion of robots assigned to red task: (a) with constant transition rate;

and (b) with local estimation. The demands of the two tasks were initially

given as same with 50% and 50%. At time step 1,000, all agents assigned

to red task were removed from the swarm. 78

4.10 Paradigm of dynamic scheduling model in truck painting problem. 79

4.11 Schematic diagram of a task queue. This agent is currently processing a

task of type B, and a task of type A is waiting in its queue. The agent last

processed a task of type B, and it has four tasks of type B and one task of

type A in its task history queue. 80

vii

4.12 Distribution of assigned truck colors (a) and results for the first experiment

(b)-(d); (a) Approximately 50% of the trucks require one specific color

(color 1), and the other 50% require colors randomly chosen from among

the other 13 colors; (b), (c), and (d) show results from the Market, ABA, and

R-Wasps algorithms, respectively, and each figure comprises the total num-

ber of state changes among all agents, throughputs for each agent, average

length of occupied queues, and cycle times, that is the average consumed

time between the previously processed truck and the currently processed

truck. The various colors in the throughputs figures represent the sum of

tasks processed by each agent. 83

4.13 Results of the pheromone memory algorithm for the first experiment: (a)

History(1) algorithm; (b) History(2) algorithm; and (c) History(3) algorithm. 85

4.14 Comparison of results with a new environmental setup; the process time is

changed to 6-minute, and the setup time is changed to 3-minute. 86

4.15 Comparison of results when the number of assigned tasks is changed from

14 to 7 with the same number of agents: (a) 5 minutes process time, and 1

minute setup time; and (b) 6 minutes process time, and 3 minutes setup time. 87

4.16 Comparison results of uniform task distribution experiments with 14 tasks:

(a) 5 minutes process time, 1 minute setup time; and (b) 6 minutes process

time, 3 minutes setup time. 89

4.17 Comparison results of uniform task distribution experiments with 7 tasks:

(a) 5 minutes process time, 1 minute setup time; and (b) 6 minutes process

time, 3 minutes setup time. 90

4.18 Comparison of results with 5 uniform distribution tasks: (a) 5 minutes pro-

cess time, 1 minute setup time; and (b) 6 minutes process time, 3 minutes

setup time. 91

4.19 Comparison of results depending on the length of the task history (7 tasks

for 7 agents, 5-minute process time, 1-minute setup time): (a) non-uniform

task distribution; and (b) uniform task distribution. 92

4.20 Comparison of results depending on the number of tasks in History(2) (7

agents, 5-minute process time, 1-minute setup time): (a) non-uniform task

distribution; and (b) uniform task distribution. 93

viii

4.21 Comparison of results depending on the process time in History(2) (14 tasks

for 7 agents, 5-minute process time, 1-minute setup time): (a) non-uniform

task distribution; and (b) uniform task distribution. 93

5.1 Simplified state diagram for robots performing the foraging task. Solid line

belongs to the harvesting subtask and dashed line belongs to the storing sub-

task. The behavior of each robot is determined by the subtask it is currently

performing. 99

5.2 Task performing probability curves for various values of (a) θil(t) and (b)

τ with a given range of task demand dil(t). τ represents the slope of curve

and θil(t) produces different response value given the same value of dil(t).

This is also true of τ , except at the point where all curves intersect. 100

5.3 Snapshot of simulation experiments: (a) snapshot of the initial state that all

robots are assigned to harvesting task; and (b) snapshot of a desired state

that the proper number of robots are assigned to each subtask, harvesting

and storing tasks, according to its task demand. A swarm of robots are allo-

cated to two subtasks, harvesting and storing tasks that are sequentially in-

terdependent. Robots working on the harvesting task are represented by red

color circles and robots working on the storing task are represented by blue

color circles. Unladen robots that move around to pick up empty objects are

shown with circles and robots that transfer objects to their destination are

shown with color-filled circles, respectively. 106

5.4 Various results of an original simulation: (a) change of the number of robots

working on storing task; (b) change of the number of objects remaining

in the transfer area; (c) progress of the proportion of robots assigned to

harvesting task; and (d) progress of the proportion of robots assigned to

storing task. Since all robots are assigned to harvesting task initially, they

all start with harvesting task. Then the swarm is split properly by switching

a proper number of robots from harvesting task to storing task. 110

5.5 Change of (a) threshold from initial threshold (θmin) to final threshold, (b)

the total number of task changes of an overall group, and (c) objects stored

in nest. 112

ix

5.6 Comparison of the results with threshold and without threshold for task

transition function: (a) the number of objects in the transfer area; (b) the

number of robots for the storing task; (c) the total number of task changes

for the overall group; and (d) the total number of food objects stored in the

nest. 113

5.7 Results using only the number of objects for threshold regulation, but hold-

ing information of the desired target distribution: (a) the number of robots

assigned to the storing task; and (b) the total number of task changes. 114

5.8 Comparison of the results with different foraging area size: (a) number of

objects remaining in the transfer area; (b) number of robots assigned to stor-

ing task; (c) proportion of robots assigned to harvesting task; (d) proportion

of robots assigned to storing task; (e) task changes of an overall group; and

(f) objects stored in nest. The radius of harvesting area is changed from 5

m to 15 m. 116

5.9 Comparison of the results with different moving speed of robots perform-

ing storing task: (a) number of objects remaining in the transfer area; (b)

number of robots assigned to storing task; (c) proportion of robots assigned

to harvesting task; (d) proportion of robots assigned to storing task; (e) task

changes of an overall group; and (f) objects stored in nest. 117

5.10 Comparison of the results with time delay and without delay for task change:

(a) number of objects remaining in the transfer area; (b) number of robots

assigned to storing task; (c) proportion of robots assigned to harvesting task;

(d) proportion of robots assigned to storing task; (e) task changes of an over-

all group; and (f) objects stored in nest. 118

5.11 Results with sudden changes in the number of robots: (a) number of objects

remaining in the transfer area; (b) number of robots assigned to the storing

task; (c) proportion of robots assigned to the harvesting task; (d) proportion

of robots assigned to the storing task, (e) task changes of an overall group;

and (f) objects stored in nest. 119

5.12 Results with multiple tasks: (a) arena composed of three tasks, harvesting,

transfer and storing: (b) proportion of robots assigned to the storing task;

(c) proportion of robots assigned to the transferring task; and (d) proportion

of robots assigned to harvesting task. 120

x

5.13 One example of thresholds distributions for three tasks after simulation:

(a) thresholds of robots assigned to harvesting task; (b) thresholds of robots

assigned to transferring task; and (c) thresholds of robots assigned to storing

task. 122

5.14 Results with following changes in harvesting area size: (a) proportion of

robots assigned to the harvesting task; (b) proportion of robots assigned to

the transferring task; and c) proportion of robots assigned to the storing task.

The radius of the harvesting area is changed from 15 m to 30 m. 123

5.15 Results with changes in the number of robots: (a) proportion of robots as-

signed to the harvesting task; (b) proportion of robots assigned to the trans-

ferring task; and c) proportion of robots assigned to the storing task. 123

5.16 Results with changes in the number of robots: (a) number of robots assigned

to the storing task; and (b) number of objects remaining in the transfer area. 124

5.17 Snapshot of simulation experiment: (a) one food source; and (b) four food

sources. The nest is represented by an empty circle at the center of a given

area and four food sources (squares) are located at each corner in a rect-

angular arena. Small circles and triangles represent robots with different

moving speeds. The speed of robots with circular marks is twice as fast as

robots with triangular marks. The empty figures of robots are unladen and

color-filled figures are laden robots carrying items. 125

5.18 Representation of robot behaviors using task partitioning based on the dif-

ference in moving speeds; the thick solid lines indicate a task partitioning

strategy that an object is transferred from the slower to the faster individual. 128

5.19 Results of collected objects using 12 robots with task partitioning strategies

and a non-partitioning strategy (blue solid line: ascending-order BBs, green

dash line: descending-order BBs, red dash-dot line: no-transfer); one food

source is available: (a) the radius of the nest entrance is 40 cm for a wide

entrance; and (b) the radius of the nest entrance is 20 cm for a narrow en-

trance (the curves show the average performance with 95% confidence in-

tervals by assuming t-distribution) . 131

5.20 Performance results with four food resources (blue solid: ascending-order

BBs, green dash: descending-order BBs) and non-partitioning group (red

dash-dot); the radius of the nest is 20 cm (narrow entrance): (a) 12 robots;

(b) 20 robots; (c) 40 robot; and (d) 60 robots 132

xi

5.21 Performance results with four food resources (blue solid: ascending-order

BBs, green dash: descending-order BBs) and non-partitioning group (red

dash-dot); the radius of the nest is 20 cm (narrow entrance): (a) 12 robots;

(b) 20 robots; (c) 40 robot; and (d) 60 robots. 134

5.22 Performance results for collected objects depending on number of robots:

(a) a single food source; and (b) four food sources. Object transfer time

is set to 50 time units, and left and right plots represent narrow and wide

entrances of the nest, respectively (the curves show the average performance

with 95% confidence intervals (t-distribution)). 136

5.23 Distribution of collision occurrences with a single food source and 60 robots;

the object transfer time is set to 50 time units: (a) radius of nest entrance

is 20 cm (narrow nest entrance); and (b) radius of nest entrance is 40 cm

(wide nest entrance) (left: no-transfer method, middle: descending-order

BBs, right: ascending-order BBs). 138

5.24 Distribution of collision occurrences with four food sources and 60 robots;

the object transfer time is set to 50 time units: (a) radius of nest entrance

is 20 cm (narrow nest entrance); and (b) radius of nest entrance is 40 cm

(wide nest entrance) (left: no-transfer method, middle: descending-order

BBs, right: ascending-order BBs). 139

5.25 Cumulative collision occurrences along the trail: (a) non-partitioning group;

(b) descending-order BBs; and (c) ascending-order BBs. 60 robots are

tested for four food sources, and the nest entrance has a radius of 20 cm. . . 139

5.26 Location of object transfer occurrences with 60 robots: (a) one food source;

and (b) four food sources. The object transfer delay is set to 50 time units

and the nest entrance has a radius of 20 (left: descending-order BBs, right:

ascending-order BBs). 140

5.27 Distribution of slow and fast agents with ascending-order BBs; the object

transfer delay is set to 50 time units and the nest entrance has a radius of 20

with four food sources: (a) slow robots; and (b) fast robots. 141

5.28 Number of collected objects in relation to the distance between the nest and

the food source: (a) a single food source; and (b) four food sources; the nest

has a radius of 20 cm, there are 60 robots, and the object-transfer delay is

set to 50 time units. 142

xii

5.29 Proportion (%) of time spent in three behavior components with (a) one

food source and (b) four food sources; the nest has a radius of 20 cm, there

are 60 robots, and the object-transfer delay is set to 50 time units. 143

5.30 Comparison results for the non-partitioning method, ascending-order BBs,

descending-order BBs and no-order BBs: (a) one food source; and (b) four

food sources. Sixty robots were tested and the object transfer time is set to

50 time units. Robots have two-level speeds (left) or five-level speeds (right). 144

xiii

List of Tables

4.1 Overall comparison for the number of task changes. 76

4.2 Comparison results from the original experimental environments. 84

4.3 Overall comparison of results when the number of uniformly distributed

tasks is 7 with (a) 5-minute process time and 1-minute setup time and (b)

6-minute process time and 3-minute setup time. 88

5.1 ANOVA table for the results (T:Task partitioning strategy, S:Size of nest

entrance, and F:Food transfer delay) . 132

5.2 ANOVA table for the results (T:Task partitioning strategy, N:Number of

robots, and F:Food transfer delay) . 135

xiv

ABSTRACT

Adaptive Task Allocation in Multi-Agent
Systems Based on Swarm Intelligence

Wonki Lee

School of Electrical and Electronic Engineering

The Graduate School

Yonsei University

In nature, it is well known that social insects, such as honeybees, termites, and ants, use

task-partitioning strategies for their survival. Many interactions between many different in-

dividuals can be assumed as a complex network but lead to an efficient colony-level per-

formance. They create an effective division of labor using just a few basic behavioral rules

for individual agents with limited abilities. Each agent performs a single task among mul-

tiple possible tasks depending on the current needs of the swarm system and different tasks

are performed simultaneously by specialized individuals at different locations and with lit-

tle interruption. This tendency to specialize is effective managing the division of labor in

multi-agent systems, especially when there is a coat associated with switching tasks.

In this dissertation, the concept of swarm intelligence inspired by the division of labor

in several social insect species has been applied to solve scheduling problems in multi-agent

systems. These tasks may handle dynamic environments and require not only convergence

xv

to the desired level of performance but also coverage, robustness and fault tolerance. In

particular, we suggest a task allocation algorithm to regulate the fraction of agents relative

to the fraction of task demands and re-assignment in multi-agent systems. For one possi-

ble solution, we present a biologically inspired approach based on the response threshold

model, in which the tendency of an individual to select a single task among candidate tasks

is determined depending on task need and the corresponding response threshold value. Ob-

taining a suitable division of labor in the response threshold model is mainly related to the

suitable thresholds.

Here, we introduce various task allocation methods that each agent updates its response

threshold using information obtained from the surrounding environment, such as what ob-

jects have been observed recently and what tasks have been done by neighboring agents

observed in the local surrounding area. It relies neither on a centralized mechanism nor on

communication aids between robots and can therefore be employed easily in a swarm of

robots. Repeated threshold regulations create an agent specialization for particular tasks by

lowering the threshold values of tasks, and this tendency induces division of labor within

the group. Task changes of individual agents lead to the swarm-level emergence toward a

desired division of labor. We also analyzed the mathematical convergence of task distribu-

tion among a swarm of agents.

Various experimental results using demonstrate the method’s ability to adapt the swarm

to environmental changes such as changes in swarm membership or task demands. As

demonstrated in the experiments, the system approximately converges to the desired task

distribution, and this provides insight into how swarm intelligence self-organizes even when

using local information. The method’s tendency to specialize also minimizes the number

of task changes needed to produce the desired task distribution over agents. In addition, we

analyze the effect of task allocation strategies as a self-organized method for decomposing

a task into sequential subtasks. Using data from various experimental cases, we show that

if there is a transfer bottleneck at a central location, task partitioning can sometimes be

an effective strategy for reducing the traffic jam and improving the overall performance of

the group. Our results support the hypothesis that social insects use various task allocation

strategies to increase their probability for the colony survival.

Key words : task allocation, multi-agent system, swarm intelligence, response thresh-
old model, mathematical convergence, specialized tendency

xvi

Chapter 1

Introduction

In recent years, there has been increased interest in developing a method to perform various

tasks with multi-agent systems, which is generally composed of a set of agents that share the

same set of behavioral rules and perform tasks in different places. Such systems have many

related applications, including cooperation in handling of parts or transport, the exploration

of unknown areas, search and rescue, and surveillance operations. These tasks may need

to be performed in dynamic environments and require not only convergence to the desired

level of performance but also coverage, robustness, and fault tolerance.

Among many tasks performed with multi-agent systems, distributed task assignment

problems have received significant attention. It is an interesting and important process

used when performing complex tasks. The basic problem is that a group of agents should

select a specific task to ensure an optimal distribution among multiple tasks. Many methods

for solving these problems have been studied, including game theory-based negotiation

algorithms [11, 46], dynamic target assignment problems [37, 202], quantized consensus

over a network [105, 61], or stochastic policies for task allocation [19, 153]. We present a

biologically inspired approach to dynamic task allocation and re-assignment in multi-agent

systems. One of the advantages of bio-inspired systems is their ability to respond to an

external stimulation in a simple and immediate manner. Due to the specialized characteristic

to perform a specific task among tasks, this system can overcome the limitation of a single

agent because multiple agents carry out various tasks simultaneously at several locations.

The method uses the response threshold model to determine the tendency of an individual

1

to select a single task among multiple candidate tasks depending on the response threshold.

1.1 Why bio-inspired task allocation

Colonies can be characterized by cooperation, communication between individuals and the

ability to solve complex problems. One interesting characteristic often found in insect

colonies is division of labor. Colonies adapt themselves to dynamically changing environ-

ments. Individual workers perform different types of jobs at different places. However, they

need to meet new demands and/or respond to changes in demand levels [88]. Colony-level

flexibility in responding to external and internal perturbations is a crucial characteristic for

a colony’s survival [186, 103, 194]. It is well known that social insects can coordinate their

behaviors to accomplish desired tasks beyond the capability of a single individual. There

are many examples of division of labor based on task partitioning: ants can collectively

carry large prey, termites can build large and complex mounds, and bees can build delicate

honeycombs [186, 187, 197, 183, 64, 211, 191, 182].

Many social insects show an effective division of labor using just a few basic behav-

ioral rules for individual agents with limited abilities. Each agent performs a single task

among multiple tasks depending on the current needs of the swarm system and different

tasks are performed simultaneously specialized individuals who perform their own tasks at

different locations and with little interruption. This specialized tendency is effective for

managing the division of labor, because there is often a cost associated with switching task

[28, 119, 130]. The tendency toward division of labor in several insect societies is found in

colonies adaptable to dynamically changing environments. Many social insects use various

task partitioning strategies to deal with tasks required for colony survival such as foraging

and garbage disposal. Foraging and nest defense in ants [51] and foraging and nursing in

honeybees [218, 29] are all examples of labor division.

1.2 Motivation and objective

In this dissertation, the concept of swarm intelligence inspired by the division of labor in

several social insect species, has been applied to solve scheduling problems in multi-agent

systems [200, 160, 77, 144, 234, 109, 130]. The behavior of an individual agent may have

little effect in a given environment and the same behavior might not have the same effect

2

when it is performed at a different place or time. However, repetitive and continuous task

selections can lead to the desired level of performance in the overall system level. It also has

the strength of being free from the risk of an individual failure. Sometimes, this tendency

leads to much simpler and adaptive systems than the other theoretical control algorithms.

Hence studying the behavioral mechanisms of animals and applying algorithms derived

from this behavior computationally is a potentially future line of inquiry.

Among various interesting tasks, we consider a task allocation algorithm for regulating

the proportion of agents performing tasks relative to the proportion of task demands. This

relies neither on a centralized mechanism nor on communication aids between robots. For

various task allocation methods, each agent updates its response threshold using information

obtained from the surrounding environment such as the associated task demand and the

task states of neighboring agents. Thus, the task transition rate from one task to another is

regulated adaptively depending on the environment and can ultimately produce convergence

to a stable task distribution. The result provides a hint of how swarm intelligence self-

organizes even using local information.

We also analyzed the mathematical convergence of task distribution among a swarm

of agents. Interaction rules are automatically generated by maximizing the performance

evaluation function of the overall system. We used the foraging task. Tasks involving

multiple robots can be observed in many real-world scenarios, including rescue, mining,

and exploration [36, 199, 30, 85]. The foraging task is effective for demonstrating the

performances in multi-agent systems. From the various results with swarm robotics, we

demonstrate that the method is effective and robust in a dynamically changing environment.

There are many examples of such foraging tasks using multi-robot systems, and various task

allocation methods using an adaptive process have been proposed [100, 198, 84, 178, 3].

1.3 Organization of dissertation

The organization of this dissertation is as follows. This chapter outlines our rationale for

choosing a bio-inspired model for task allocation. Chapter 2 describes the background for

this research, including various task allocations that occur in nature and their applications

to multi-agent systems. Many kinds of bio-inspired tasks have been tested using swarm

robotics and task partitioning has proven to be one of the most challenging.

Chapter 3 explains the basic concept of task allocation based on a response threshold

3

model. The individual decision to switch among multiple tasks depends on the response

threshold, which makes different response to the same task demand. In this model, each

agent responds by performing a given task if the demand of that task exceeds its own cor-

responding response threshold. Different responses to the same task demand are generated

by the different response thresholds, determining the preference of an individual assigned

to a given task whether to perform that task. Obtaining a suitable division of labor in the re-

sponse threshold model is mainly achieved by setting suitable thresholds, and two kinds of

approaches using fixed and variable thresholds are tested. The thresholds are either constant

(in the fixed threshold model) or change during task performance (in the variable threshold

model).

We handle dynamic task allocation in the object foraging task, in which multiple robots

are tasked with collecting various objects in parallel during a given time span. All agents

can perform several tasks, and individual agents determine whether to perform a specific

task depending on the environmental stimulus and on each individual’s response threshold

for each task. We tested the swarm robots using the foraging task in order to find an efficient

strategy as well as to understand the foraging behavior of social insects.

In chapter 4, we examine an improved task allocation algorithm for parallel multi-

purposed agents. Here, we introduce a task selection mechanism in which the response

threshold is updated based on what objects have been observed recently and what tasks

have been performed by an individual’s neighboring agents observed in the local surround-

ing area. The robot’s individual perception is regulated by the relative difference between

the proportion of each task and the proportion of robots performing the corresponding task.

We also analyzed the convergence of task distribution. Task distribution can be described

in terms of task transition rate. Swarm-level task distribution can be controlled by changing

the tasks of individual agents. Such local task changes lead to the swarm-level emergence

of an efficient division of labor. Especially for our foraging task, the system will approx-

imately converge to the desired task distribution as demonstrated in the experiments. We

suggest a task allocation algorithm for regulating the fraction of agents proportionally to the

fraction of task demands.

Our proposed algorithm shows its capability to adapt the swarm to environmental changes

such as changes in swarm membership or task demands. It also produces the desired task

distribution across agents and minimizes the number of task changes due to the tendency

to specialize. The tendency to perform a specific task is computed using the task demand

and the corresponding response threshold. A lower task threshold or a higher task demand

4

leads to a higher tendency to perform the task and this tendency leads to the specialization

of a given task. Repeated threshold regulations create an agent specialization for particular

tasks by lowering the threshold values of tasks, and this tendency induces division of labor

within a group.

For application to the factory-domain problem, an agent-based schedule algorithm as

applied to a truck-painting job assignment in a vehicle factory is studied. In a real manu-

facturing system, many parallel machines can process several tasks, but it is beneficial to

minimize machine state changes because each change incurs additional time and material

costs. Thus, the objective of scheduling algorithms is to minimize the total number of task

changes in the system while maintaining the desired performance level (as measured by, for

instance, throughput). Every task is assigned through a bidding process among agents, and

the repeated task assignment patterns induce each agent to tend to specialize in a specific

task. It affects to reduce the number of task changes. Various experimental results show

that our approach is comparable with that of other conventional methods.

In chapter 5, we present a self-organized method for decomposing a task into sequen-

tially interdependent subtasks and allocating the individuals in a swarm to perform subtasks

in parallel, using a response threshold model in which the robot’s individual perception is

regulated by the relative difference between the number of tasks not completed and the num-

ber of robots performing the corresponding subtask. Instant information is used to decide

the task. We use a foraging task in which a group of agents are tasked with collecting food

pellets and bringing them to the central nest. Harvesting agents transport pellets from the

resource area to a common storage location called the cache area (transfer area), and stor-

ing agents transport them from the common storage to the central nest. This approach has

the effect of reducing interference among the individual agents because they become more

segregated and improved transport efficiency allows for better overall swarm performance.

We also show the method’s capability to adapt to dynamic changes in the environment and

to converge to the desired task distribution even in case of multiple stage sequential tasks.

In addition, we analyze the effect of the various task transfer strategies using data from

various experimental cases by changing the size of the nest entrance, the number of food

sources, and the number of foraging robots. Our specific hypotheses are as follows: what

is the important factors that influence foraging performance?; and which task partitioning

strategies will be helpful depends on the environmental conditions? From the experimental

results, we show that if there is a transfer bottleneck at a central location, task transfer can

sometimes be an effective strategy for reducing the traffic jam and improving the overall

5

foraging performance of the group. In particular, task transfer sequenced from the slowest

agents to the fastest agents can especially improve performance in an environment with

multiple food resources, several routes converging to the nest, and a narrow nest entrance.

Finally, Chapter 6 presents conclusions about the proposed models. In this chapter, the

whole dissertation is also summarized, and potential future lines of inquiry are discussed.

6

Chapter 2

Background

Multi-agent systems can be used to perform various dynamic tasks. This area of research

generally has focused on a large group of relatively simple agents that can solve a complex

problem. Each member of a group should determine the current task that is most commen-

surate with its current surrounding labor states. Generally, there are two issues involved in

performing tasks: the cooperation and the division of labor among agents in a group. Co-

operation involves performing a complex task as a group of agents instead of improving the

ability of a single individual, while the division of labor involves efficiently managing tasks

that are costly and time intensive. One possible approach for solving these types of prob-

lems is to establish a dynamic task allocation mechanism using adaptive processing that in-

dependently adapts all agents in a group to a dynamically changing environment. The basic

requirements for achieving this are to maintain the specialized individuals and to process

tasks in parallel.

In recent studies, agent-based approaches using swarm intelligence inspired by several

social insect species, have garnered attention as a potential solution to the multi-agent sys-

tems problem. This concept is useful for designing a task allocation model in a multi-agent

system. A single individual has limited hardware capacity and only a few behavioral rules.

However, the overall system can effectively perform more difficult tasks because this model

has the advantage of concurrency and fault tolerance. It enables both the simultaneous per-

formance of tasks in several locations and flexibility with regard to individual failure in a

large-scale system.

7

In this chapter, an overview of task partitioning in biology and its application to multi-

agent systems, particularly swarm robotics is given in detail.

2.1 Swarm intelligence

Swarm intelligence refers to a subset of artificial intelligence that studies self-organizing,

decentralized collective behaviors exhibited by multi-agent systems composed of several

locally interacting agents. It is the direct result of self-organization, in which the interac-

tions of low-level components create a global-level dynamic structure that may be regarded

as intelligence [22]. These lower-level interactions are guided by a simple set of rules that

individuals of the colony follow without any knowledge of its global effects, and without

the help of a leader or external control. Individuals in the colony only have local-level infor-

mation about their environment. Using direct and/or indirect methods of communication,

local-level interactions affect the global organization of the colony.

Generally, it is believed that self-organization is induced by four elements: positive

feedback, negative feedback, randomness, and interaction. Positive feedback is defined as

the first rule of self-organization. It is basically a set of simple rules that help to generate the

complex group structure. Recruitment of honey bees to a promising flower patch is one ex-

ample. Positive feedback can help the overall system converge to one of its possible stable

states, although it can also potentially destabilize the system. The second element is neg-

ative feedback, which reduces the effects of positive feedback and helps to create a coun-

terbalancing mechanism by biasing the system toward stable states and dampening some

fluctuations. The number of limited foragers is an example of negative feedback. Random-

ness is the third element in self-organization. It adds an uncertainty factor to the system and

enables the colonies to discover new solutions to their most challenging problems. Lastly,

there are multiple interactions between individuals. There should be a minimum number of

individuals who are capable of interacting with each other to turn their independent local-

level activities into one interconnected living organism. As a result of combinations of these

elements, a decentralized structure is created. In this structure there is no central control,

even though there might seem to be one. This creates dynamic and efficient structures that

help the colony to survive despite many challenges.

The main inspiration for multi-agent systems comes from the observation of social ani-

mals. The behaviors of ants, bees, birds, and fish provide examples of how simple individ-

8

uals can become successful when they act as groups. The interest in social animals stems

from the fact that they exhibit a sort of swarm intelligence. The behaviors of groups of

social animals are robust, flexible, and scalable. By taking inspiration from social animals,

various systematic applications of scientific and technical knowledge can be studied.

2.1.1 Swarm intelligence in nature

The most striking cases of swarm intelligence are exhibiting complex and collective behav-

iors without any centralized decision-making process [31]. For example, many species of

ants live in organized in societies. Some agents of the colony are assigned to explore the en-

vironment: they look for food and collectively select the best resource to bring to their nest

[15]. Other agents are capable of collectively building complex nests, creating tunnels and

chambers for food and dumping garbage. Other examples of complex behaviors in social

insects are exhibited by honey bees. For instance, they are capable (as are ants) of regulat-

ing the temperature of their hive by altering their own individual temperature [206]. These

decisions are made using purely distributed approaches, without centralized coordination or

explicit negotiation. All individuals select a suitable task locally, with no clear picture of

what is going on at the level of the colony.

Many other species exhibit another type of collective behaviors: coordinated motion.

Examples of coordinated motion can be observed in birds and in fish. They aggregate

and move together in large groups that behave as if they were single organisms. They

can also change shape by expanding or contracting [112]. This coordinated motion can be

also observed in other animals. Mammals such as sheep perform coordinated motion by a

few individuals with ability to recognize food resources [175, 136]; and crowds of human

pedestrians have been shown to exhibit global patterns such as lane formations [164]. In

these behaviors, there is no external guidance nor leader agent, although some individuals

might have better information and transfer this information to the rest of the group in direct

or indirect ways [45].

2.1.2 Applications of swarm intelligence

Inspired by various collective behaviors found in nature, artificially engineered systems

have been proposed for solving real-world problems. The performance of swarm intelli-

gence is not as impressive as that shown by computational intelligence methods. However,

9

the applications are growing rapidly. Some potential applications of swarm intelligence are

discussed below. Optimization involves maximizing or minimizing a real function. System-

atically choosing input values within an allowed range and computing the value of the func-

tion be achieved solved by searching with multiple software agents in parallel. Examples of

such systems include ant colony optimization [52] and particle swarm optimization [106].

Both algorithms are inspired by naturally evolved swarm intelligence systems, specifically

ant colonies and bird flocks. Another example is swarm robotics systems, presented in more

details in Section 2.2.

Routing is a distributed algorithm in telecommunication networks. In routing, each

node decides to which node each packet should be sent. Ant Net [52] was inspired by the

behavior of ants and showed improved performance compared to other algorithms. Another

application area is vehicle routing. Routing of hundreds of vehicles has been implemented

using technology inspired by swarm intelligence [71, 148].

Clustering is a problem related to data analysis that consists in grouping data in order

to have similar to each other items together in the same cluster and different from each

other items in different clusters. Ant-based clustering algorithms [82], also inspired by the

behavior of social ants.

The military is one of the most promising areas for the application of swarm intelli-

gence, allowing for various missions to be carried out at low cost and with robustness by, for

instance, developing a swarm of small unmanned aerial vehicles. Surveillance unmanned

aerial vehicles (UAVs) could keep watch over a convoy, landing for refueling on one of the

trucks. Working together as one team, they could perform surveillance around the convoy.

Another application is implementing behavior like cooperative hunting. A swarm of UAVs

could search for targets while trying to avoid detection. By optimizing flying patterns by

combining shared sensing information, they are capable of searching larger area than an

uncooperative group. Swarm intelligence based control algorithms can introduce fault tol-

erance to improve coverage of unfamiliar and difficult terrain.

Scheduling is the optimizing jobs in a manufacturing process. It is used to allocate plant

and machinery resources, plan human resources, plan production processes and purchase

materials. In some applications, swarm intelligence has been shown improved performance

over conventional methods. The application of swarm intelligence based scheduling for

truck painting in a factory context is analyzed in more details in Section 3.4 of Chapter 3.

10

2.1.3 Characteristics of swarm intelligence

Swarm intelligence systems have characteristics that make them preferable to centralized

systems. Scalability is the potential of a swarm to show the expected the level of perfor-

mance for increasing swarm sizes. It is promoted by the intrinsic tendency of swarm intel-

ligence systems to be generally based on local interactions among the components of the

system. The number of interactions per system does not change relative to swarm size, and

no consideration of variation in swarm size is needed.

Parallelism refers to the capability to perform multiple tasks in parallel at the same

place or in different places. For instance, colonies of leaf-cutting ants [9] perform different

activities in parallel: cutting leaves, collecting leaf pieces, and then storing them. Multiple

individuals perform different tasks at the same time, improving the overall performance

[42]. More examples found in nature are explained in Section 2.3.1.

Robustness is the ability of the swarm intelligence system to perform tasks well even

in the presence of environmental disturbances. Systems that display this tendency tend to

share numerous traits in common, including decentralization due to the absence of central

decision mechanisms; multiplicity of sensing, which induces an increase in the overall sig-

nal to-noise ratio; and redundancy, in which many individuals repeat the same behaviors

continuously for the same functionality. Incapacitation of one or a few systems is mini-

mized, enabling tasks to be continued.

Flexibility is the ability of the system to respond to changes in the environment. For

instance, ant colonies change the path to a food source after finding one path that is the

shorter than the one used previously [87].

Easy implementation is the ability easily communicating to a broad audience of poten-

tial users. In easy implementation, there is no need for a heavy math or statistical back-

ground. The tuning parameters are few and easy to understand and adjust. In some cases,

this can be a part of the optimization options of a larger project. In addition, low mainte-

nance costs due to built-in adaptability in response to changing operating conditions result

in low total-cost-of-ownership. To obtain these properties in artificial systems, the design

of the interactions among system components is important.

Swarm intelligence systems have many attractive characteristics, but there are some al-

gorithmic drawbacks. The first drawback is that these systems usually suffer from prema-

ture convergence when problems with multiple optima are being optimized. There is no

guarantee that the solution found will be a global optimum. The second drawback is that

the performance of these systems is very sensitive to parameter settings. Tuning the proper

11

inertia is not an easy task and is problem-dependent. Beyond these specific technical issues,

swarm intelligence systems also lack a solid mathematical foundation for analysis (espe-

cially for realistic algorithm convergence conditions) and a generic methodology for pa-

rameter tuning. In addition, there are a few potentially serious issues, such as the nature of

predictability in distributed bottom-up approaches, the efficiency of the emergent behavior,

and the dissipative nature of self-organization.

2.2 Swarm robotics

Swarm robotics is the study of how a large number of relatively simple physically embodied

agents can be designed such that a desired collective behavior emerges from the local inter-

actions among agents and between the agents and the environment [189]. Swarm robotics

involves a large number of autonomous robots. Each individual robot lacks global informa-

tion, and there is no assistance via centralized control. Individual rely on locally obtained

sensing and communication among robots, and the desired collective behavior is obtained

through self-organization based on robot-to-robot and robot-environment interactions. Fig-

ure 2.1 shows two general taxonomies according to what collective behaviors are studied

and according to what design or analysis methods are used for swarm intelligence systems.

Some collective behaviors studied in swarm robotics are reviewed in the following sections.

2.2.1 Description of collective behaviors

Collective behaviors are studied using swarm robotics to solve many complex problems.

They can be divided into three main categories [26]; spatially-organizing behaviors, which

organize and distribute robots and objects in space; navigation behaviors, which organize

and coordinate the movement of the swarm; and collective decision-making and task allo-

cation, which allow the swarm to agree on a common decision or divide the swarm into

two or more groups based on their individual decisions. A few representative examples for

each category aggregation, coordinated motion, pattern formation, collective exploration,

and collective decision-making/task allocation are reviewed below.

Aggregation is a behavior inspired by behavior models of animal (such as bees, fish,

cockroaches, penguins, even in bacteria [31]) that allows all robots to meet at the same

location. It is the simplest collective behavior and a necessary precondition for other col-

12

Consensus achievement

Collective transport

Coordinated motion

Collective exploration

Self−assembly and morphogenesis

Chain formation

Object clustering and assembling

Aggregation

Pattern formation

Task allocation

organizing

behaviors

Spatially

behaviors

Collective
decision
making

Navigation

Other collective behaviors

behaviors

Collective

(a)

Automatic design methods

Behavior−based design methods

Analysis

methods

Design

methods

Methods

Macroscopic models

Microscopic models

(b)

Figure 2.1: General two taxonomies for swarm intelligence: (a) type of collective behaviors;
and (b) design and analysis methods (Modified from [26]).

lective behaviors such as coordinated motion and pattern formation. This is mainly imple-

mented by means of probabilistic finite-state machines. The most challenging problem is

aggregation at a random location when no information, cues, or landmarks are available. In

these cases, artificial evolution [168] or probabilistic finite-state machines [158] are used to

decide where to aggregate.

Coordinated motion can also be observed in nature. Groups of up to thousands of an-

imals such as shoals of fish [86] or flocks of birds [167] move together like a single crea-

ture [44]. Basically, a swarm of underwater or flying robots moving together can increase

energy efficiency. Additionally, coordinating the movement of multiple robots can lead to

improved performance compared to a single robot. Doing so could increase the sensing

range and improve performance in data acquisition or search and rescue task. This could be

a critical factor in determining success or failure in dangerous applications such as military

missions.

13

Pattern formation is used to organize robots in a regular and repetitive pattern. Pattern

formation is inspired by biological processes such as crystal formation [117] or the forma-

tion of chromatic patterns in animals [156]. This behavior is necessary for coordinated mo-

tion, and it commonly uses a virtual physics-based design.

Collective exploration, inspired by the behavior of social insects such as bees and ants,

is used to explore an environment efficiently and to find resources, Robots form an inter-

connected static or dynamic network covering areas of interest in an environment, and this

is implemented by means of communication methods, and finite-state machines [57].

Collective decision making and task allocation concerns the ability of robots to make

choices. The choices of individuals influence the choices of other individuals, and two

types of decision making are available: consensus to the same decision, as inspired by

cockroaches [4]; and task allocation to two or multiple tasks, inspired by social insects such

as bees and ants [31]. Probabilistic finite-state machines [67] and statistical-physics [161]

are used for consensus decision-making [33], while the probabilistic finite-state machines

[142, 28], are mostly used for task allocation. Task allocation is the main collective behavior

considered in this dissertation and more details are explained in Section 2.3.

2.2.2 Design methods

The implementation of collective behaviors in swarm robotics still suffers from a lacks of

rigorous design methods. After designing a desired macroscopic objective, the derivation

of microscopic behaviors for individual robots and of interaction rules among robots is

not obvious. As categorized in [26], two main design methods for swarm robotics are

summarized: behavior-based design methods and automatic design methods.

The behavior-based design method is an iterative process. Microscopic behavior is

implemented and modified until the desired goal is obtained. One behavior-based design

method uses finite-state machines [158], which can be probabilistic or deterministic. For

behavioral models of social insects such as ants or cockroaches, the state transitions are

controlled by probabilities. In other cases, such as morphogenesis [170], the state transi-

tions are not controlled by probabilities. Virtual-physics based design is another behavior-

based design method. Each robot is assumed to be a virtual particle governed by the virtual

influential forces of other robots or the environment. In swarm robotics, virtual forces can

be used to coordinate robots into desired formations [204] or to guide them robots toward a

target destination [107, 184, 127].

14

In automatic design methods, microscopic behaviors and interaction rules are automat-

ically generated by maximizing the performance evaluation function of the overall system.

Two design approaches, reinforcement learning [96] and evolutionary computation algo-

rithms [73] are mainly used. To apply reinforcement learning, robots are required to modify

their behaviors from positive and negative feedbacks through trial-and-error interactions.

However, performance is typically measured by each robot’s individual sensors, and it is

hard to evaluate the overall performance of each interaction. Evaluating performance at the

swarm level is important to obtain desired levels of performance [26], this limits the direct

applicability of reinforcement learning method to swarm robotics. Only a few studies have

been performed on swarm robotics [152, 173]. In evolutionary robotics, an evolutionary

computation algorithm [73] is used to optimize the fitness function. Both swarm perfor-

mance and individually evaluated performance can be used in evolutionary robotics [220],

and more studies have been done on this method [13, 165, 6, 205]. However, evolutionary

robotics typically uses artificial neural networks [17], and these are difficult to understand

and reverse engineer.

2.2.3 Analysis methods

Modeling is useful to predict whether the designed methods will be effective for imple-

menting the desired collective behaviors. However, a unique theoretical method for model-

ing swarm robotics does not yet exist. Two different levels of modeling is available: micro-

scopic and macroscopic. On the one hand, microscopic modeling focuses on the individ-

ual robot and on interactions among individual robots. It is difficult to apply mathematical

methods, so microscopic modeling is performed using numerical simulations.

On the other hand, macroscopic modeling focuses on the swarm as a single system.

Deterministic and stochastic modeling methods can also be used. Deterministic modeling

is typically based on control theory, which assumes that each robot is connected via either

static or dynamic graph topology based on interactions. It is used to prove convergence,

i.e., whether the swarm will eventually (i.e., asymptotically) reach the desired macroscopic

state, such as aggregation [68], foraging [143, 126], and task allocation[89, 134]. Control

rules to achieve the desired properties can be also derived with some assumptions [89].

Other deterministic model is based on ordinary differential and difference equations [161,

172] and on partial differential equations [19]. Stochastic modelings are also based on

stochastic difference or differential equations. One of the stochastic models used to define a

15

macroscopic model in swarm robotics is based on rate and master equations [150]. Similar

approaches have been applied to many behaviors, including foraging [137], clustering [150],

and stick-pulling [149].

2.3 Task allocation problem

Social insects perform a multitude of tasks such as feeding the brood, nest maintenance,

defense, and foraging, and divide this labor among hundreds, thousands, or even millions

of workers. Similarly, engineers envision swarms of autonomous agents jointly performing

complex and multiple tasks. In order to accomplish this, the following questions must be

answered: What factors enable a multi-agent system to display division of labor? What task

allocation mechanisms do social insects apply, and what mechanism should robotic swarms

use? Similarly, coordination of numerous robots operating in noisy and varying environ-

ments usually rules out centralized control algorithms. For these reasons, decentralized and

self-organized task allocation methods in biological and engineered societies have received

increased attention in the recent years. This dissertation studies design methods for task

allocation problems concerning individual task selection in multi-agent systems, focusing

on the following three questions:

1. What kind of decision rules does an individual agent follow in performing tasks? One

way is to find phenomenological rules that describe the behavior patterns of individuals.

2. How does the individual obtain external information about task needs? Each agent should

obtain information from local stimulus within its sensing range, through interactions with

other workers, or through both. Task selection of an individual agent is a response to the

estimated environmental information.

3. What internal mechanisms control the behavioral rules for task selection? Both genetic

factors and the effects of interactions with other workers should be considered as important

factors.

Individual agents can change their preference tasks while performing a task depending on

how much they have specialized in one or a few tasks and on changes in task needs. Re-

peated task selection changes colony-level patterns, including the sizes of task groups and

distribution of task allocation. The methods we want to discuss attempt to explain task al-

location patterns from individual workers to the colony level.

16

2.3.1 Task allocation in nature

Task allocation is one of challenging subjects in multi-agent systems. This subject has been

studied in both biology and swarm robotics. In nature, an individual agent generally has

very limited perception and knowledge of the environment, and also there is no centralized

control that guides the cooperation behavior among a swarm of agents. Despite the limited

abilities, a swarm of agents in nature show an effective task allocation by interacting with

each other and sometimes perform a high level of tasks beyond the capability of a single

agent. This concept can achieve effective task allocations based on the specialization ten-

dency, i.e., different tasks are simultaneously performed at different places by specialized

individuals [187]. Examples of labor division include nest defense and foraging in ants [51]

and nursing [29] and nectar and pollen collection [218] in honeybees.

It is well known that several social insects use task partitioning for a colony’s survival

[186, 197, 64, 191]. A single individual performs one of multiple tasks. While this behavior

might have a very limited effect on the colony-level, interactions among individuals in a

group can lead to an efficient self-organized system for regulation of work [197, 191]. The

colony-level flexibility responding to the dynamically changing environment is an essential

feature and task partitioning as an adaptive strategy plays a great role for the colony.

A typical example of task partitioning strategies can be found in the honeybee Apis

mellifera. For the foraging task, the honeybee is partitioned into two groups; one group

works on a resource-collecting task and the other is assigned to a resource-storing task. The

former group of honeybees moves around to find nectar, picks it up, returns to their nest

and passes it to the latter group. Then the latter group of honeybees stores the nectar in a

cell of their hive. It is also known that honeybees use this kind of task partitioning strategy

when they collect other materials such as propolis, water or pollen [197, 64, 191]. Another

example is found in the termite Hodotermes mossambicus. There are two groups of termites

cooperating to perform foraging effectively. The one group cuts grass and leaves into pieces,

and drops them to the ground. Then, the other group collects the fallen leaves and takes

them to their nest [139, 7]. Recently, it is reported that simple regulatory mechanisms based

on a common stomach can lead to the optimized regulation of protein forging and protein

allocation in honeybee colonies with responses to environmental changes in colony-level

[193].

Usually, in insect societies, task partitioning is often involved with two genetic factors;

age-dependent (temporal polyethism) and different body shape (worker polymorphism)

[225, 208, 91]. For worker polymorphism, workers within a colony have morphological

17

differences. For example, there is a large amount of body size variation in bumble bee

workers. The largest workers may be ten times than the smallest workers and the size is

correlated with task types; larger workers tend to forage, while smaller workers tend to per-

form brood care and nest thermoregulation [43]. Temporal polyethism can be observed in

honey bee colonies. There is a correlation between the age of workers and tasks they per-

form. Younger workers perform brood care and nest maintenance inside the hive and older

workers forage for food and perform defense tasks outside the hive [223, 225].

Individuals can be specialized in two types, a strong or soft manner. Genetic factors

certainly play a role in some types of strong specialization, such as age-dependent special-

ization and different body shapes. Strongly specialized individual performs only one or few

activities. However, unpredictable real-time events of the environment and the variability

within the colony require additional mechanisms for ensuring dynamic task allocation. So,

the softly specialized individual performs several activities, but tends to perform the activity

that is most needed by the group at every instant.

However, this tendency can be changed flexibly by the distribution of age in colony

members. For example, in a colony that the proportion of young honey bees is high, the age

in which a bee starts a foraging task is lower than in a normal colony and the presence of

older bees delays or inhibits the development of physiological age of other younger bees in

the colony. It is shown that worker interactions among bees drive mechanisms of hormonal

regulation resulting in a social inhibition [91]. This fact is used in other studies of task

allocation based on social inhibition [20, 21].

Task allocation can also be considered as labor division, task assignment, or task parti-

tioning. The work involves decomposing a task into a sequence of several subtasks to allow

a group of agents to perform each of the subtasks in parallel at different locations [186].

Depending on the needs of the swarm system, this subject involves with decomposing a

task into sequentially interdependent subtasks and allocating a group of agents to perform

different subtasks in parallel. The posterior subtasks should be processed after completing

the prior subtasks in order to achieve the overall task. To increase the overall performance

in a swarm level, a task partitioning method is needed for balancing the task demands of

subtasks by regulating adaptively the number of agents assigned to each subtask.

Such subtasks are common in natural and artificial systems. Many kinds of sequential

subtasks can be observed in social insects and there are many examples of division of labor

based on task partitioning [187, 183, 182, 62, 3, 230]. The tendency for division of labor is

found in the colonies adaptable to dynamically changing environments. Various task parti-

18

Storage

AreaArea

Foraging

No

Transfer

Transfer

Area

Direct

Indirect

Figure 2.2: Various ways of task partitioning for performing a foraging task with a group;
indirect and direct object transfer methods are shown with no task partitioning method. Top
shows the two subtasks with indirect transfer using a cache site. Middle shows the two
subtasks that object are transferred directly between different groups. Bottom shows that
tasks are performed without task partitioning.

tioning strategies are employed to handle their tasks required for a colony’s survival. The

tasks such as garbage disposal and forage are performed based on just a few basic behavioral

rules. Depending on the current need in the colony-level, the individual worker performs

one specific task among multiple candidate tasks. Tasks are simultaneously performed at

different locations. This tendency usually has an advantage to manage the division of la-

bor effectively. Their self-organization and self-regulation strategies may provide a hint of

solving task allocation in multi-agent systems.

Many social insects handle complex tasks consisting of sequential subtasks. Various

forms of task partitioning strategies observed in nature are shown in Fig. 2.2. In a direct

transfer method, an item is transferred directly between workers for transferring liquid such

as nectar and water in a colony of social insects. Atta cephalotes (for leaves), Messor (for

seeds), and Polybia (for wood pulp to build their nest) all use the direct transfer to pass their

materials to other workers [183, 185, 145, 7, 188]. It can be also used for the exchange of

regurgitated food between adults and larvae.

The direct transfer method is also used for exchange of regurgitated food between adults

and larvae and for transferring liquid such as nectar and water. A typical example of direct

transfer method can be found in the honeybee, Apis mellifera, that is partitioned into two

groups for the foraging task. One group performs collecting resource and the other performs

storing food. The former group of honeybees moves around until they find nectar and

19

returns to their nest and passes it to the latter group of agents. Then the latter group of

honeybees stores the nectar into their hive. This kind of direct transfer method among two

groups is also observed when they collect other materials such as propolis, water or pollen

[197, 64, 191, 3]. This kind of task partitioning that the material is exchanged from the

collectors to transporters is bucket brigade (BBs).

In contrast, task partitioning using an indirect transfer method can also be observed in

nature. An indirect transfer in foraging can also be observed in nature. There is no physical

contact between individuals. Each worker delivers goods to or takes goods from a fixed

or temporally changing transfer location. There is no physical contact between workers.

Workers deliver goods to or take goods from a cache location. The cache is a temporally

changing location or fixed chamber with a pile of materials such as food or garbage which

should be transferred into the nest or out of the nest. The location of a cache can be either

fixed or unfixed, and the unfixed cache can be produced somewhere on the way between the

source and destination of the materials.

An example of a transfer area is a chamber with a pile of materials such as food or

garbage which should be transferred into the nest or out of the nest. This transfer location

can be located somewhere on the way between the source of materials and the nest. An

example with an indirect transfer method can be found in the termite, Hodotermes mossam-

bicus. One group cuts grass and leaves into pieces, and drops them to the ground. Then the

other group collects the fallen leaves and takes them to their nest [139, 7]. This strategy can

also be found in waste disposal processing. They make a garbage heap in their nest and this

area is used as a cache for transfer. Some workers bring a piece of garbage and drop it near

the garbage heap. Then another workers in the heap area throw the garbage out of the nest

[83].

There have been many studies to explore the indirect transfer method [100, 81, 101, 3].

Using the common stomach as an information center, Metapolybia wasps regulate their

partitioned work for building the nest [104, 101]. The colonies maintain the interactions

among workers to ensure the steady construction of the nest. With the common stomach,

highly requirable tasks are performed and those in low demand are ignored [102].

Atta cephalotes, known as leaf-cutting ants, use various task partitioning strategy to

handle their materials such as food and garbage [83]. When an ant finds a food source, it

selects one of two strategies. The first strategy is to just return to the nest, carrying food

by itself; this means that the ant has no task partitioning strategy. In the second strategy,

the forager ant directly passes the food he is carrying to another or drops it in the middle of

20

the pheromone trail so that other moving ants can bring it to the nest. These strategies are

also applied to waste disposal processing. They make a garbage heap in their nest and this

area is used as a cache for transfer. Workers belonging to a part of the fungus farm bring

a piece of garbage and drop it near the garbage heap. Then, another worker in the heap

area throws the garbage out of the nest. This cache prevents the spreading of parasites and

disease from the garbage and segregates contaminated areas from clean areas. Direct and

indirect transfer can actually happen in the same species is modeled [192]. They explained

task partitioning in ant that individual ants can adjust their foraging behavior by engaging

in or by abandoning from stinging or transporting due to a common stomach system.

The above described process of task partitioning can be divided into task partitioning

with a single transfer or with multiple transfers. The typical example of single transfer task

partitioning is a nectar transfer with honeybees. Collector bees take honey from the nec-

tar source and hand it over directly to the resource-storing honeybees. No more additional

transfers are needed in this process. Task partitioning with multiple stages is more complex

than a single transfer. An example of multiple transfers is found in the ant Atta sexdens for

leaf fragment transfers [66]. There are three types of tasks among ants: arboreal cutters,

cache exploiters, and carriers. Arboreal cutters move up a tree to cut leaves and drop all of

the leaf fragments to the ground. The pile of fallen leaves acts as a cache for task partition-

ing. Cache exploiters then find the pile caches, cut the leaves into pieces and take them to

the foraging trail. Finally, carrier ants take the pieces and transport them to the nest. Sim-

ilarly, the foraging behavior of Atta cephalotes is another good example of multiple-stage

task partitioning. They use both indirect and direct transfer with multiple stages [66].

2.3.2 Mechanisms of task allocation

The overall pattern of the division of labor often consists of multiple components, each

stemming from a different source. Consequently, the observed level of specialization is

caused by a mix of environmental, genetic, learning, and social factors. We shall now de-

scribe them shortly, together with support from empirical evidence from biology and en-

gineering. The factors known to affect the decision of an individual agent to perform a

given task are summarized in Figure. 2.3. The external factors outside the individual are

the stimulus based on task needs and the interactions among agents within a limited range.

The internal factors within the individual are the response threshold, which determines the

response to perform a specific task and is basically based on genetic factors and the results

21

Gens

Mates Stimulus

Task needsLocation

Experience

Response threshold

Decision to
Yes

No
Internal

External

perform task

Figure 2.3: Components known to affect the decision to perform a task.

of experience. Performance of a task increases an individual’s intrinsic probability of per-

forming that task again. Interactions among agents may also affect an individual’s internal

state. External factors can affect internal factors. Performance of a task affects not only the

stimulus perceived by other agents but also the individual’s preference with regard to that

task. Task allocation is ultimately the result of both the internal state of the individual and

the external state as determined by interactions with the environment.

Many different kinds of adaptive behaviors in nature can been observed, and it is known

that several insect societies show an adaptive task allocation based on specialization char-

acteristics; each agent has performing tendencies for all tasks and each task is performed by

specialized individuals that have higher tendency than others and perform task priorly and

frequently [196, 75, 65, 215, 203].

To explain the concept of specialization, one study performed biological experiments

about the relation between caste ratios and division of labor in the ant [224]. Generally,

workers are divided into two factions. The small minors fulfill most of the quotidian tasks

such as cleaning or brood care, and the larger majors are responsible for seed milling, ab-

dominal food storage, and defense. By reducing the proportion of majors to minors, majors

started to participate in the tasks usually performed by minors.

This dynamic task allocation can be explained based on stimulus-threshold relation by

assuming that specialists of Type A have low thresholds for the stimulus associated with

Task A and high thresholds for Task B, whereas specialists of Type B have low thresholds for

the stimulus associated with Task B and high thresholds for Task A. As soon as the number

of specialists of Type B decreases, the stimulus associated with that task will increase until

22

it exceeds the corresponding threshold for Type A specialists. Consequently, some Type A

specialists will perform Task B until the corresponding stimulus falls below their threshold.

This tendency allows their colonies to adapt to a dynamically changing environment for

colony survival. In most cases, cooperating among specialized agents can obtain better

performance in completing a task than a single agent and adaptive division of labors for

global behaviors can be obtained by simple rules.

Individuals can have a specialized tendency as a strong or soft type. The member with

the strong specialization performs only one or a few activities among all of the tasks required

to be completed for the colony survival. However, unpredictable changes in the environment

and the fluctuating proportion of members result in a supplementary mechanism within a

group for maintaining an adaptive division of labor task allocation. Therefore, the members

with the soft specialization are required to perform several activities. They usually perform

the urgent task required by the group at each moment. For example, if the number of

specialists of Task A decreases, the demand for Task A increases, and accordingly, some

specialists of Task B perform Task A, which they would normally not do [224].

In order to explain mechanisms of division of labor in social insects, several models

have been proposed [214, 24, 55]. Among many models, we focus on the response thresh-

old model [23, 212]. The response threshold model used in the insect-inspired model ap-

proach is composed of four components, stimulus of task, response threshold to task, task

probability function, and threshold updating algorithm. The probability for performing each

task is decided according to stimulus of task and threshold value for task, and the thresh-

old values are regulated based on the current performing task to have a specialized ten-

dency. Task demand decreases as the individual performs the task and individuals with

higher thresholds are unlikely to perform the task because individuals with lower thresholds

most probably handle the demand. This model is based on observations of the collective

behavior in a colony of insects, particularly the work performed by bees and ants, and a

simple mathematical model using response thresholds for the regulation of division of labor

was proposed [224, 25, 212].

An individual agent responds to perform a task based on the task intensity and the corre-

sponding response threshold value that determines the tendency of an individual to respond

to perform task. Different responses to the same task intensity are generated according to the

different response threshold and this characteristic determines the tendency of an individual

agent to perform tasks or not. Due to their apparent simplicity, response threshold models

have been extensively used by engineers as task allocation algorithms for groups of artificial

23

agents. This model can explain various task allocation phenomena in colonies; foraging and

nest defense in ants [51], foraging and nursing [29], and nectar and pollen collection in hon-

eybees [218]. These characteristics have been a source of inspiration for many researchers

in application areas and various works are done base on this model [147, 38, 110, 98].

Task allocations based on the response thresholds have been extensively studied since

their divisions of labor are realized by simple rules. In this model, obtaining an appropriate

distribution of thresholds are important to obtain a desired division of labor. Each individual

responds a task only if the external stimuli denoting the need for its performance exceeds

its internal threshold for the task. With this respect there are, however, two issues. First,

there is a question of how to find appropriate values of the thresholds. Usually, the values

of thresholds are fixed and differ between the workers, thus reflecting the genetic, morpho-

logical or age variation [212]. However, the randomized thresholds may impair the overall

performance [130].

To overcome this problem, an improved version that dynamically adapts thresholds has

been studied [41], where a computational model of how wasp colonies coordinate individ-

ual activities and allocates tasks is studied. This model regulates thresholds based on the

self-reinforce-learning model [210] to obtain optimal thresholds. The response thresholds

change due to individual experience. After performance, threshold is updated by decreasing

threshold of performing task and increasing threshold of other tasks not performed. Based

on these repeated behaviors, each agent comes to have a specialization tendency for a spe-

cific task and this tendency induces more effective division of labor in a group. The re-

sponse threshold model is optimized with learning algorithms [115], or by means of evolu-

tionary simulations [34] and artificial neural networks [141]. This model has been success-

fully applied to explain colony reaction to perturbations [219] and division of labor patterns

observed in honeybees [16], and ants [23]. The diagram of task allocation explained with

the fixed and variable thresholds values are shown in Figure 2.4. The lower the threshold,

the higher will be the response of an individual for performing task for a given same task

intensity.

The second problem is that response threshold models originally assumed that tasks

stimuli are commonly available to all members in a group, which is possible only when the

needs of the society may be efficiently communicated and aggregated by the members. This

is the case of multi-agent systems with adequate communication capabilities, like teams of

robots with a central unit overseeing their behavior [114, 19]. Also, response thresholds

have been used to solve and load balancing [35, 190] problems in computational clusters

24

Task #2

Task #3

Task #1

Task #2

Task #3

Task #1

Task #2

Task #3

Task #1

(a)

Task #2

Task #3

Task #1

Task #2

Task #3

Task #1

Task #2

Task #3

Task #1

(b)

Figure 2.4: Diagram of task allocation explained with response threshold model. The con-
trol of task allocation can be explained with (a) fixed threshold values or (b) variable thresh-
old values.

where communication between computer processes is relatively easy. However, global task

needs may sometimes be estimated from locally accessible information [119, 130, 2, 151].

To address the issue of global stimuli, message passing between neighboring agents

is an often used technique in task allocation in robotic systems. The most well-known

methods are market-based algorithms [69, 116, 216], where agents compare their preference

to perform a task and the most eager agent performs it. The market-based algorithms are

similar to the ones using response thresholds, in the sense that with the former approach

agents compare their will to perform the task with each other, whereas in latter approach

they compare it with their internal thresholds.

2.3.3 Applications to task allocation

Swarm intelligence and collective robotics have been inspired by adaptive behaviors ob-

served in nature [22, 18, 232, 166, 49, 155]. Swarm robotic system is primarily inspired by

social insects. It is composed of homogeneous or heterogeneous agents and various tasks

are performed at different places at the same time. In many robotic systems, no commu-

nication or only local communication is available and the knowledge of the environmental

information is also limited. There is no centralized mechanism and the individual robot has

an equal capability for completing each task. In the swarm robotics applications, there has

been an issue of how the agents in a swarm are allocated to several subtasks in order to

25

maximize the overall system performance.

A lot of works have focused on determining whether an agent performs a given task or

not and maximizing the colony-level performance [179, 28]. Several effective and adaptive

behaviors have been identified in recent studies: task allocation [135, 221, 94], searching

[36, 90, 60, 131] and foraging [114, 137, 180]. Traditionally, task allocation has used a cen-

tralized mechanism [27, 174, 53, 169]. However, depending on tasks, it may not be possible

that a controller reads all the needed information, such as positions of agents and the cur-

rent tasks assigned to all agents, and then allocates its task to each agent. Yet it requires not

only obtaining the desired performance but also the robustness and fault tolerance. Hence,

the distributed task assignment approach with no centralized control has received attention

recently.

In swarm robotics, many studies show how the individuals in a swarm are allocated to

the subtasks to maximize the overall system performance. Agents can perform different

tasks and specialization characteristics increase the performance in division of labor. Task

partitioning can be used as a means of reducing the physical interference in a group of robots

[195, 171, 177, 48, 178]. In addition, self-organized task allocation using the response

threshold model [24] has been employed in foraging [140] and object clustering tasks [2].

There have been studies of task partitioning in swarm robotics to handle the transfer of

objects among homogeneous robots [178, 181, 28, 63].

The foraging task has been used as a test in a multi-robot system. Foraging task is one of

popular subjects to demonstrate task partitioning in multi-agent systems. A group of robots

are assigned to search for desired items and deliver them from a resource area to specific

locations. In a simple forging task, a group of robots must collect objects of a single type,

usually for energy balancing or a similar objective. The impact of simple communication

on the performance of a society of robots in a single-prey foraging task was studied [10].

They used the minimal knowledge of the behavioral state of the fellow agents. A behavior-

based algorithm using reinforcement learning was proposed to induce the robots to learn

how to balance each of the behaviors. The objective was to optimize the performance in

a foraging task [151], using an energy level to maintain the energy stocked in their nest by

collecting a food item [113]. A similar task allocation problem motivated by energy gain

has also been previously studied [115]. The foraging taxonomies [231] and multi-robot

coordination problems and solutions [226, 127] have been studied.

In typical foraging tasks, an individual robot or robots in a group collect objects from

an environment and immediately remove the objects from that spot [92] or transfer them to

26

another common location such as a nest or transfer cache [72, 93]. There are many exam-

ples of such foraging tasks using multi-robot systems and various task allocation methods

have been proposed to maximize the performance [28, 38, 229]. Several variables could be

considered for the evaluation of the performance in a foraging task. The performances can

be evaluated based on the total time required to complete a given task, energy consumption,

actual amount of task allocations, number of foraged objects and number of task changes.

Moreover, if costs are incurred due to the switching of the current task to another, the mini-

mization of the task switching is beneficial to the overall system performance. Simulation-

based experiments were used to demonstrate the robustness and adaptability of the proposed

approach to environmental variations, and the division of labor is demonstrated with mini-

mum task switching to obtain the specialization for specific tasks. In this paper, a dynamic

task allocation problem similar to that in Lerman et al. (2006) , which handles the foraging

problem with two types of objects according to their colors is considered.

Most aligned with this work is Jones and Mataric’s work (2003) , where the division

of labor is achieved in a distributed manner using mathematical modeling. They suggest

a ratio model for the division of labor. In this model, two types of objects are used (e.g.,

pucks), and each robot is equally capable of foraging for both puck types, but can only be

allocated to forage for a single type at a time. According to the control policy, a robot may

switch the foraged puck type from red to green depending on whether the ratio of red puck

entries in the view history is smaller than the ratio of robot entries foraging for red pucks,

and similarly, a robot may switch the foraged puck type from green to red depending on

whether the ratio of green puck entries in the view history is smaller than the ratio of robot

entries foraging for green pucks. The ratio of robot entries and that of puck entries that the

robot has sensed are used to determine the foraging state of the robot.

In a self-organized task allocation in swarm intelligence, stochastic decision based on

the response threshold model assigns given tasks to the individual robots in a swarm. While

some studies use fixed thresholds for responding differently to the same task demand [114],

most works employ methods using adaptively changing thresholds to allow flexible task

change of each agent according to the dynamic environment. Krieger et al. (2000) im-

plemented a simple and decentralized task allocation mechanism based on the individual

activation-thresholds. Each robot is assigned with threshold values and the robot will de-

cide to travel and collect food items if the energy level of the nest is less than the threshold.

Labella et al. (2006) presented a task allocation algorithm in a group of robots involved in

the object-retrieval task. Each robot leaves the nest with some probability. If its foraging

27

task is successful, that is, a robot is successful in retrieving a prey, then it increases its prob-

ability, If it is not successful, it decreases its probability. Division of labor in a group level

is autonomously progressed with this algorithm.

Yang et al. (2009) proposes a classical foraging scenario in order to test the response

threshold model. In that scenario, robots decide whether they go foraging with a certain

probability in order to adjust the number of working robots depending on the amount of

food left at the nest, which will lead to the division of labor. Castello et al. (2013) proposed

an adaptive response threshold model in the task allocation algorithm for a robotic swarm.

They adjusted the number of working robots efficiently according to the amount of food

left at the nest. They decreased the response threshold values if a relatively small amount

of food is placed within the home zone and increased the response threshold values if more

food is observed in the nest zone. Once threshold is calculated, robots decide whether to go

foraging or stay at home based on the probability.

Kalra and Martinoli (2006) compare an auction-based approach with the threshold-

based approach. If the information about the task is available to the individuals in a group,

the auction-based approach performs better than the threshold-based method. If the infor-

mation is not accurate, the threshold-based approach could perform as well as the auction-

based approach.

Other interesting studies have focused on handling task transition rates for task alloca-

tion in a swarm of robots [79, 89, 19], and show that an appropriate selection of task tran-

sition rates can guide the desired task distribution. In addition, the macroscopic analytical

model that describes the dynamics of the task transition was studied [153].

A few works tackle the problem of task allocation for sequentially interdependent sub-

tasks. There have been traditional task partitioning approaches focusing on reducing inter-

ference. Pini et al. (2013) proposes an autonomous task partitioning in a swarm of forag-

ing robots by using a cost function, conceptually similar to the problem presented in this

article. The robots autonomously calculate the traveled distance and deposits the objects at

an appropriate site. Then the robots performing random walk can find objects and transfer

them to the nest. The object transportation is executed as a sequence of subtasks performed

by multiple robots and task partitioning improves the performance.

Brutschy et al. (2014) presents a self-organized method for allocating the individuals of

a robot swarm to tasks that are sequentially interdependent. Objects are transferred directly

between robots and the task change in the method is based on the interface delay (waiting

time) experienced by the robots in one subtask relative to the interface delays experienced

28

in the other subtask. Elsayed and Al-Wahedi (2015) investigates task allocation for partially

sequential tasks in a two-robot environment. Two robots are non-identical. The first has an

ability to decide the optimal order of performing subtasks, while the other just follows a

set of sample behaviors. Zahadat and Schmickl (2016) presents an adaptable partitioning

of autonomous underwater robots based on social inhibition. An agent selects its own task

based on the relative demand for a set of multiple tasks and the response threshold values

regulated by local interactions.

In real manufacturing systems, the machine environments are changed dynamically and

unpredictably due to various real-time events, such as machine breakdowns, changes in

the scheduled product plans, or the arrival of high-priority tasks. Even under such cir-

cumstances, the overall systems that are composed of multiple machines should adapt to

their dynamic environment and maintain their expected performance. Therefore, dynamic

scheduling algorithm [209] handling the problem of scheduling in the presence of real-time

events, is important in many real-world applications, and many various methods have been

studied to solve these kind of dynamic scheduling problems [12, 5, 228, 207, 233, 1, 201,

47].

Bio-inspired approaches based on the response threshold model have also been applied

to others applications. Among various tasks, truck painting problem is the basic and simple

but appropriate task that the specialized tendency is most needed for improving performance

due to the extra costs for task changes. The objective of the dynamic scheduling algorithm is

to minimize the number of task changes of the overall system while it maintains the desired

performance level such as throughput; the number of tasks completed during a given time

span. Achieving optimal performance is a non-trivial problem because of environmental

unknowns such as the colors of future trucks as well as other uncertain events such as paint

booth failures.

A simple bidding mechanism based on market-based approach was first proposed: each

paint booth submits a bid for trucks depending on its current queue length and the color of

the last truck in its queue [162, 163]. The bids of all agents are compared, and the task is as-

signed to the highest bidder. This simple multi-agent bidding system is 10% more efficient

than the previously used centralized scheduler in terms of the total number of color changes

in all the booths. An improved method inspired by the ant behavior model was proposed

[34]. A truck painting booth is represented as an agent that autonomously competes to paint

a truck. Each booth has a threshold value for each color and the probability that booth with

a specific color will get a truck is obtained by the stimulus of truck and the threshold of

29

agent for that color. Obtaining a proper threshold is directly related to the overall system

performance in the response threshold model, and the threshold values are changed depend-

ing on the assignment of tasks. Method inspired by the wasp behavior model also studied

[41]. The threshold values are updated at each time depending on the currently performing

tasks. Repeated task selecting behaviors result in agent specialization for particular tasks

by lower the threshold values of tasks, and this tendency induces the less number of task

changes than market-based approach.

2.4 Summary of Chapter 2

In this chapter, we introduce different background ideas. Our basic interest is based on the

behavior of animals that show adaptive task allocation for improving colony survival in

a dynamic environment and there are many detail analysis of this behavior in literature.

These behaviors can be explained using stimulus-threshold relations. Various applications

with multi-agent systems are also introduced.

30

Chapter 3

Basic for task allocation

We want to present an agent-based task allocation method using response threshold model

inspired by insect societies. This model has the effect of reducing the task switches by

inducing the division of labor due to its specialized tendency and it has been studied for

the purpose of task allocation in a group of robots. First, a fixed response threshold model

using a randomly-generated threshold value was used for a foraging mission [229]. Later,

the adaptive response threshold model in which the threshold value is adaptively changed

depending on the environmental circumstances has been suggested [38]. Robots decided

whether they would go foraging or remain in a standby mode near the base area was per-

formed.

The foraging task used for our tests involves exploration for desired objects, and the task

switching of the robots seems inevitable in this type of task. We applied for improving the

performance of a foraging task. We suggest a method that includes the use of task history

to estimate the global task demand. Each robot estimates the desired task demand using the

moving average of the observed tasks in the course of time. The robots are characterized by

their own response threshold values. The threshold values are uniformly distributed among

a set of robots to allow for the diversity of the response characteristics.

The division of labor generally uses a global task demand as an important variable.

Based on the various experiments, an appropriate choice that uses the task history of the

recently-observed information can be used as a guide in a multi-robot system. Interestingly,

local information regarding the surrounding environment can be used to estimate the global

31

task demand well. Each robot becomes to have a specialization tendency, and the overall

system thus has the advantage of greatly reducing the occurrence of task changes. If there

is an extra cost for task switching, the system based on the response threshold model may

greatly improve the energy efficiency by reducing the task switching frequencies.

This chapter is published in conference and journal [125, 130].

3.1 Description of foraging task

We consider the problem of dynamically adjusting the population of robots performing

specific tasks in proportion to the amount of the tasks. The purpose of this task allocation is

to manage division of labor efficiently to reduce the overall task completion time. If all the

tasks need the same amount of time to perform, one possible solution is to assign a group of

agents, large or small, to each task depending on the demand of the task. In recent works,

self-organized task allocation has been studied to handle tasks that are both distributed and

sequential [74]. In a multi-foraging task, one or multiple objects are collected in complex

environments. A group of robots is used to identify an efficient multi-foraging task, whereby

efficiency is defined as a function of the energy wasted while performing tasks [32] or the

energy level in a nest [229]. A multi-foraging task was used to demonstrate the use of

a mathematical model for a general dynamic task allocation mechanism [138].

In a foraging task, two types of objects are used (e.g., pucks), and each robot can forage

for both the puck types: red and green pucks; however, each robot can be simultaneously

assigned to only one type of task, i.e., collecting either red or green pucks. Each robot has

two response threshold values for the two given tasks, i.e., the foraging red and green pucks,

respectively, and each robot performs the task of foraging for a specific puck according to

its control policy.

Most aligned with this work is Jones and Mataric’s work (2003) . They suggest a ratio

model for the division of labor. A robot may switch the foraged puck type from red to green

depending on whether the ratio of red puck entries in the view history is smaller than the

ratio of robot entries foraging for red pucks, and similarly, a robot may switch the foraged

puck type from green to red depending on whether the ratio of green puck entries in the view

history is smaller than the ratio of robot entries foraging for green pucks. The ratio of robot

entries and that of puck entries that the robot has sensed are used to determine the foraging

32

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)

Figure 3.1: Snapshot of simulation environment: (a) snapshot of an initial state that all
robots are assigned to clear red-colored objects; and (b) snapshot of a desired state that the
proper number of robots are assigned to each task according to its proportion. The large
red-colored and green-colored circles are robots and small red-colored and green-colored
circles are objects to be collected by robots. The vision range of a robot is fan-shaped as
shown above.

state of the robot. According to the multi-robot task allocation taxonomies proposed by

Gerkey and Mataric [69], the categorization of this paper is ST-MR-IA: single-task robots

(ST), multi-robot tasks (MR), and instantaneous assignment (IA) problem.

3.1.1 Simulation environment

The foraging task is performed in a circular arena as shown in Figure 3.1. The working area

of the arena is 315 m2, and the radius is approximately 10 m. Robots explore the arena to

forage objects. The large red and green circles are robots, and the small red and green dots

are pucks. In the beginning, the robots and pucks are randomly distributed in the arena. The

robots move to forage for the pucks during a given time span. If a robot approaches one

puck, the puck is immediately removed from the environment. After a puck is removed, a

new puck of the same type or the same color is placed in an arbitrary location in order to

maintain a constant number of pucks in the arena, and the robot continues to forage for the

remaining pucks. This type of foraging task is considered to be similar to feeding behaviors

in nature, if the pucks and robots are assumed to be the prey and predator, respectively.

In the foraging mission, robots may switch their current task according to an individ-

33

ual control policy when it is appropriate to control the balance or improve the overall per-

formance of the system. Here, a task allocation algorithm for regulating the population of

agents in proportion to the number of given tasks is considered. That is, the dynamic task

allocation maintains the proportion of robots with the tasks of foraging for red and green

pucks, respectively, such that they are equal to the proportion of red and green pucks in the

arena. Therefore, if 30% of pucks in the foraging arena are red pucks, 30% of the robots

should forage for red pucks. The system performance can be determined from the number

of foraged pucks, time spent or energy consumed during the completion of a given task. If

some costs are incurred for switching a task, it is also recommended that such task switch-

ing be minimized while maintaining the desired division of labor.

The simulation experiments are implemented using MATLAB program based on a real-

istic model of the ActivMedia Pioneer 3 DX mobile robot (Adept MobileRobots, Amherst,

NH, USA). The sensors data for collision avoidance or motor actions for movement are

considered with the inclusion of noisy signals to imitate real systems in which noise is ex-

perienced. However, the observation and gripping behaviors in real robots may be slightly

different from those in simulated robots. They never fail to grip a puck and obtain exact

information using their own sensors. In addition, the delivery of the puck is not considered

in the simulation. Therefore, the performance of real swarm robots may be slightly differ-

ent from that of simulated robots in that aspect. However, these limitation are common in

simulation and the results may be almost identical with a commonly used simulators, such

as that in Gazebo [217] or Swarmanoid [176].

3.1.2 Robot behaviors

During performing task, each robot repeats a set of the same behaviors. The robot behaviors

include vision sensing using a camera, avoiding obstacles, wandering, clearing and task

switching. Each robot observes the surrounding environment through its own sensors and

grips the closest puck within a constant distance. The robot simultaneously detects and

avoids obstacles in order to avoid collisions. In addition, the robot changes the foraging

target based on the individual control policy. A flowchart of the robot behaviors is shown in

Figure 3.2, and the details of the robot behaviors are explained in the following subsections.

34

Wandering

Camera

Observation

Detecting

Obstacle
Gripping

Obstacle

Avoidance

Switching

Task

Update

Puck History

Find Obstacle Grip Puck

Yes

No Yes

No

Sampling

Period

No
Yes

Figure 3.2: Flowchart of robot behaviors.

Vision sensing

Each robot has two types of tasks; collecting red pucks or green pucks, and it can switch

between tasks depending on the task demand. The robot is equipped with a camera and

captures the scene in front of it at ±90◦ within a 2 m range. Using this visual information,

the robot observes nearby pucks, and it updates its view history of the pucks.

All of the robots maintain a limited, constant-sized history that stores the most recently

observed puck types. It does not contain the identity number or location of a detected puck.

Only the last N observed pucks are stored in the puck history and used to estimate the

desired global task demand. If there is enough space in the history, all of the information

is stored. Otherwise, the oldest data are replaced by the new data. The puck history may

be biased based on where the robot is located, and the robot improves the estimation of the

task demands by wandering in an arena.

As an observation behavior, the robot stores the puck observation for every 2 m move-

ment. This is an important thing because continuous reading of visual information in a short

time can lead to the same information about the environment. This may cause duplicated

results in the puck history, which would reduce the calculation accuracy of the global task

demand. An exact division of labor may then not be successfully obtained. Thus, robots

have periodic shots of vision image for every wandering step. Robots have the maximum

forward speed of 0.25 m/s; therefore, the robot camera captures an image for every eight

wandering steps.

35

Obstacle avoidance

Each robot uses eight infrared (IR) sensors to perform the obstacle avoidance behavior.

Using IR sensors is effective in the area of autonomous robotics [70, 56, 157]. The wall of

a circular arena and other robots are treated as obstacles. The agent tries to avoid obstacles,

but small pucks are ignored with no interference with the agent’s moving. Each sensor is

equipped on the front side of the robot at a uniform distance from each other to cover 180◦,

and their detecting range is approximately 0.5 m. The robot changes its current moving

direction when the sensors detect obstacles.

If the right sensors detect obstacles, the robot turns to the left; conversely, it turns to the

right when the left sensors detect obstacles. The robot turns away from the obstacle at an

angle of 45◦ in either case. If the obstacles are simultaneously detected on both parts, the

robot changes its moving direction by turning 180◦ in the counterclockwise direction. How-

ever, at times, these constant angle changes may lead to similar patterns in the movement

direction and cause the occurrence of a congested group of robots if the robots are gathered

in a specific area. To avoid this congestion, a Gaussian random variable is included to obtain

a variance in the obstacle avoidance angle.

Obstacle avoidance behavior is a basic behavior that is critical to the safety of the robot.

Therefore, the occurrence of collisions with other robots and arena boundaries should be

eliminated. However, the puck is not considered as an obstacle because the robot may end

up spending considerable time in obstacle avoiding behaviors.

Wandering

The size of the foraging robot is 0.3 m in diameter, and there is no communication between

the robots. A robot can move forward and backward at the maximum velocity of 0.25 m/s.

Apart from saving information in the puck history, the robot forages for a puck at each time

step. The initial movement direction of each robot is randomly set from −π to π, and

the robot maintains the moving direction until a desired puck is detected. If a robot finds

the pucks of the same color as that of the current robot task, the robot then turns toward

the closet puck location and moves ahead to grip it. The robot does not perform wandering

behavior if the obstacle avoidance behavior or puck gripping is performed. If the robot

senses a puck of a type that is different from its own interest type, it ignores the puck.

36

Clearing

Robots find the closest object within its vicinity among target objects of interest, then move

towards the closest object. If the distance between a robot and the object is shorter than

0.3m and there is no obstacle near the robot, the object can be immediately cleared at the

current location, and object of the same color is placed at random position as a replacement.

Robots keep the current moving direction if there is no detected object, and turn towards

the puck of interest.

Task switching

Each robot should decide the puck color that is to be foraged for in order to regulate the

division of labor in a multi-robot system. The individual robot can estimate the approxi-

mate global task demand using puck information stored in the history and by measuring the

ratio of the observed puck colors. After a robot updates its puck history in an observation

behavior, it re-evaluates the task switching function and decides whether it should change

its current foraging task or not. There is no communication between robots, and robots only

use the information in their own puck history to estimate the task demand. Extra time is re-

quired to change the task, and the robots pause at their current location to change their task.

Details regarding the proposed task switching function are provided in the next subsection.

3.2 Task allocation with fixed response threshold

3.2.1 Task selection method

The desired task distribution can be obtained by appropriately selecting the individual tran-

sition rate. Based on the response threshold model, the following task switching function is

defined.

Pij(t) = Sij(t)− θij (3.1)

where Sij(t) is the estimated global task demand for the j-th task of the i-th agent at time

step t, and θij is the response threshold value for the j-th task of the i-th agent that deter-

mines the tendency to perform the corresponding task. For each agent, the score Pij(t) is

calculated using the difference between the task demands and the threshold values for all

37

of the tasks, and the agent chooses the task with the maximum score. If the task demand

is increased and the response threshold value is decreased, the calculated value of the score

Pij(t) is high. A robot with a lower threshold starts to perform a task earlier than one with

a higher threshold for the same task. This mechanism is represented in the task switching

algorithm.

The score value Pij(t) for the i-th agent to work on the j-th task at the time step t is

obtained, and each robot switches the current performing task depending on the result ob-

tained from Equation (3.1). In order to estimate the global task demand, the robot calculates

the proportion of each type of puck by counting the number of red and green pucks in the

puck history and estimates the task demand Sij(t) as follows:

Sij(t) =
1

L

L∑
l=1

colorlij(t) (3.2)

where colorlij(t) is the color j in the l-th puck history of robot i at time t. If the l-th puck

color is color j, then colorlij = 1, otherwise, it is zero. L is the length of the puck history

and is set to L = 20.

The task demand is estimated using the moving average of the color scores in the puck

history. The moving average is commonly applied to the time series data to smooth out

short-term fluctuations and read long-term trends. Conceptually, if the length of the puck

history increases, the changes in the task demand, as well as the frequency of task switching

may decrease. Therefore, an improved approach is proposed as follows:

S
′
ij(t) =

1

L

L−1∑
k=0

Sij(t− k) =
1

L

1

L

L−1∑
k=0

L∑
l=1

colorlij(t− k) (3.3)

The first method in Equation (3.2) (called History1) uses the moving average of the puck

history; the second method in Equation (3.3) (called History2) uses the moving average of

the estimated task demand obtained from the first method. This method enlarges the length

of the task history to 2L.

Each robot has an equal number of response threshold values for the given tasks. In the

foraging task, each robot has two types of thresholds for foraging red and green pucks, re-

spectively. In the response threshold model, the division of labor can be regulated depend-

ing on the distribution of the response threshold values in the group. In previous works,

the effects of randomly selected threshold values [119] and a single threshold value for se-

38

0 5 10 15 20
0

0.5

1

Response threshold values for foraging red pucks

Robot number

V
a
lu

e

0 5 10 15 20
0

0.5

1

Response threshold values for foraging green pucks

V
a
lu

e

Robot number

Figure 3.3: Response threshold values of robots for two tasks.

quentially ordered tasks [125] were studied. In the basic concept of the response thresh-

old model, a single threshold value is required for a corresponding task. To apply a sin-

gle threshold for two tasks, the task should be ordered sequentially, proportional to its task

demand, and we would require a different type of task selection function. In the case of

two tasks, the performance of a single threshold can be the same as those of the multiple

thresholds. However, for more than two tasks, the performance is very different because the

task can be only changed to the before or next task. In this paper, an individual robot has a

constant response threshold value, which can be presented as follows:

θi,red =
1

M − 1
× (i− 1), i = 1, ...,M (3.4)

θi,green = 1− 1

M − 1
× (i− 1), i = 1, ...,M (3.5)

whereM is the total number of robots. The assigned response threshold values for each task

can be between zero and one as shown in Figure 3.3. The sum of the response threshold

values for each robot is one. Here, we require an individual agent to have response threshold

values at evenly-spaced intervals within the range from the minimum to the maximum value.

Subsequently, we shall compare the proposed distribution of the response threshold values

with the randomly selected values [119].

Based on the response threshold model, the tendency for a specific task is changed de-

39

pending on the estimated task demand Sij(t) and the response threshold value θij . The

individual response for the same task demand varies according to the individual response

threshold value for each robot; this method used for selecting a specific task is a special-

ization for a specific task The agents with low threshold values tend to specialize in the

corresponding task. The smaller the threshold value is for a given specific task, the greater

is the activation achieved for that task. Therefore, the task specialization for a division of

labor is well demonstrated using this model. This specialization tendency can also reduce

the number of task switches. If we assume that there is a cost incurred for task switching,

time consumption, and the minimization of such task changes would be advantageous for

group behavior.

3.2.2 Simulation results

To analyze the proposed algorithm in the foraging task, not only the total count of foraged

pucks, but also the total occurrences of task switching for all of the robots are measured.

Fifty pucks were randomly distributed in an arena, and twenty robots continuously moved

from one place to another to forage for pucks. At the beginning, half of the robots were

tasked with foraging for a red puck, while the others were tasked with foraging for a green

puck. For each experiment, 20 independent runs were averaged, and the results with His-

tory1and History2 were compared to a ratio model (called Ratio) [95].

Result with changes in task demands

First, the basic situation in which the ratio of pucks was changed in the time course was

used as a test condition. During the first 1,000 simulation time steps, the number of red

pucks was maintained at 30%. That is, there were 35 green pucks and 15 red pucks in a

given arena. After the first 1,000 time steps, the number of red pucks was switched to 80%

and 50% for the next two consecutive sets of 1,000 simulation time steps, respectively. The

results of the simulations during the aforementioned 3,000 simulation time steps are shown

in Figure 3.4. The red dashed-dotted line represents the performance of the ratio model;

the other lines represent the results obtained on using the response threshold model. The

blue dotted line represents History1; the green solid line represents History2. The error bar

shows the standard deviation over 20 runs.

In all of the methods used, each type of puck, red and green—was steadily collected as

40

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

900

Time steps

N
u

m
b

e
r

o
f

fo
ra

g
e

d
 r

e
d

 p
u

c
k
s

History2

Histroy1

Ratio

(a)

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

800

Time steps

N
u

m
b

e
r

o
f

fo
ra

g
e

d
 g

re
e

n
 p

u
c
k
s

History2

Histroy1

Ratio

(b)

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

Time steps

N
u

m
b

e
r

o
f

re
d

 c
o

lo
r

c
h

a
n

g
e

s

History2

Histroy1

Ratio

(c)

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

Time steps

N
u

m
b

e
r

o
f

g
re

e
n

 c
o

lo
r

c
h

a
n

g
e

s

History2

Histroy1

Ratio

(d)

Figure 3.4: Number of foraged: (a) red and (b) green pucks and occurrences of task switch-
ing in foraging for (c) red and (d) green pucks.

shown in Figure 3.4(a),(b). However, the greatest number of pucks was foraged in History2.

This means that robots could spend more time in collecting pucks, which would reduce

the time wasted. As shown in Figure 3.4(c),(d), in terms of reducing the task switching,

the response threshold model, especially History2, showed a greater improvement than the

result of ratio model. The frequent task changes lead to the poor foraging performance of

the ratio model.

These results are obtained owing to the specialization tendency of each robot. If some

robots start to intensively forage for one specific puck, those robots had a tendency to forage

for pucks of the same color. This tendency is demonstrated well in Figure 3.5, which dis-

plays the number of pucks foraged by an individual robot. The first row presents the results

of History2. Each row shows the foraged red pucks, foraged green pucks, task changes for

41

0 10 20
0

5

10
Switch for Red Pucks

0 10 20
0

5

10
Switch for Green Pucks

0 10 20
0

20

40

60

80
Collected Red

H
is

to
ry

2

0 10 20
0

20

40

60

80
Collected Green

0 10 20
0

5

10

0 10 20
0

5

10

0 10 20
0

20

40

60

80

H
is

to
ry

1

0 10 20
0

20

40

60

80

0 10 20
0

5

10

Robot number
0 10 20

0

5

10

Robot number
0 10 20

0

20

40

60

80

R
a
ti
o

Robot number
0 10 20

0

20

40

60

80

Robot number

Figure 3.5: Number of foraged pucks and task changes of an individual robot.

0 500 1000 1500 2000 2500 3000
0

0.5

1

H
is

to
ry

2

0 500 1000 1500 2000 2500 3000
0

0.5

1

H
is

to
ry

1

0 500 1000 1500 2000 2500 3000
0

0.5

1

R
a
ti
o

Time steps

(a)

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time steps

R
a
ti
o
 o

f
re

d
 r

o
b
o
ts

 i
n
 a

 g
ro

u
p

History2

Histroy1

Ratio

Red Pucks

(b)

Figure 3.6: Ratio of robots foraging for red pucks in a group: (a) individual trend of each
algorithm; and (b) overlapping trends of all algorithms.

the red pucks and task changes for the green pucks in the left-to-right direction.

In the ratio model, all of the robots foraged for red and green pucks in a similar manner.

However, in the response threshold model, the pucks were selectively foraged for by each

robot. Some robots were strongly specialized in a specific task. From the results, it can be

observed that Robots 1 and 2 only foraged for red pucks and Robots 19 and 20 preferentially

foraged for green pucks. Accordingly, there were few task changes for another type of puck

42

in these robots. However, other robots were softly specialized depending on a slight gap

between the response threshold values of the two tasks, and they foraged for both types

of pucks. Therefore, the majority of the task changes occurred for these robots. We often

observe that time and energy is required for task changes in real application problems.

Minimizing the task changes would reduce this time consumption, and thus, History2 may

be a preferable solution.

Figure 3.6 shows the changes in the ratio of robots foraging for red pucks in each algo-

rithm. Both History1 and History2 show the same ratio of robots foraging for red pucks in

a group as the ratio of red pucks. History1 shows a faster convergence tendency; however,

it shows greater overshooting than History2. In general, the shorter puck history resulted

in a quicker convergence to the desired state; however, more frequent task changes are re-

quired for robots in a group than for individual robots.

The ratio model showed the quickest reaction to the task changes for red pucks. Nev-

ertheless, it showed the worst performance in terms of overshooting and some errors in the

ratio of robots foraging for red pucks. In the ratio model, a robot focused on balancing the

estimated task demand and the ratio of the foraging task performed by neighboring robots.

In the case in which the proportion of one specific task was given, a few extra robots were

assigned to forage for the minor-color pucks. This feature produced a better result in the

foraged pucks with a minor proportion in the whole population of pucks. In the two cases in

which the ratios of the red pucks were 30% and 80%, respectively, there were more robots

foraging for minor pucks than the ratio of minor pucks, and this tendency caused some gap

between the global task demand (portion of two types of pucks) and the assigned robots in

the ratio model.

Figure 3.7 shows the results of an optimal method with the assumption that all of the

agents knew the exact ratio of each puck. In this case, an individual robot could easily

select its task using a stochastic strategy and select a task probabilistically in proportion to

the ratio of tasks. Further improved performances can then be obtained in the aspects of

accuracy in the ratio of red robots and the number of foraged red pucks as shown in Figure

3.7(a),(b). However, there is a requirement for more than tens of times the task switches as

shown in Figure 3.7(c).

An individual robot has to exert energy to forage for pucks and to grip the pucks. In

addition to these costs, some extra costs were incurred due to the task switching. To observe

the effect of task switching, the three methods, History1, History2 and ratio, were evaluated

for varying ratios of red pucks for 1,000 simulation time steps with no additional time for

43

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a
ti
o
 o

f
re

d
 r

o
b
o
ts

 i
n
 a

 g
ro

u
p

Red Pucks

Optimal

(a)

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

Time steps

N
u
m

b
e
r

o
f
fo

ra
g
e
d
 r

e
d
 p

u
c
k
s

(b)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

Time steps

N
u
m

b
e
r

o
f
re

d
 c

o
lo

r
c
h
a
n
g
e
s

(c)

Figure 3.7: Result of an optimal method using a stochastic approach: (a) ratio of red robots
in a group; (b) number of foraged red pucks; and (c) number of task changes in foraging for
red pucks.

0 0.2 0.4 0.6 0.8 1
300

400

500

600

700

800

900

1000

Ratio of red pucks

N
u

m
b

e
r

o
f

fo
ra

g
e

d
 p

u
c
k
s

Ratio

History1

History2

(a)

0 0.2 0.4 0.6 0.8 1
820

825

830

835

840

845

850

855

860

Ratio of red pucks

N
u

m
b

e
r

o
f

w
a

n
d

e
ri
n

g
 s

te
p
s

Ratio

History1

History2

(b)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Ratio of red pucks

N
u

m
b

e
r

o
f

ta
s
k
 s

w
it
c
h

e
s

Ratio

History1

History2

(c)

Figure 3.8: Performance evaluation with varying ratios of red pucks: (a) number of all
foraged pucks; and (b) number of wandering steps; and (c) number of task changes.

the task change, but only counting the number of task changes. The performance in the col-

lection of pucks changed depending on the ratio of foraging tasks. The total number of for-

aged pucks and wandering steps was almost the same for the three algorithms, as shown in

Figure 3.8(a),(b). Therefore, the energy required for wandering and gripping did not differ

across these cases; moreover, the total consumed energy mainly depended on the number of

task switches for each experiment. History2 showed an improved performance in the aspect

of the task changes as shown in Figure 3.8(c). The results for the two methods, History1

and History2 compared with those for the ratio model in terms of change in demand were

shown. The response threshold models used a fixed constant-sized history for storing the

most recently observed puck types. History2 exhibits a better performance than History1 in

terms of task switching. This induced an improved performance in the number of foraged

pucks, while it probably guessed the global task demand (the current proportion of pucks in

the environment).

44

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time steps

R
a

ti
o

 o
f

re
d

 r
o

b
o

ts
 i
n

 a
 g

ro
u

p

1

2

5

10

20

30

40

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time steps

R
a

ti
o

 o
f

re
d

 r
o

b
o

ts
 i
n

 a
 g

ro
u

p

1

2

5

10

20

30

40

(a)

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

Time steps

N
u

m
b

e
r

o
f

fo
ra

g
e

d
 r

e
d

 p
u

c
k
s

1

2

5

10

20

30

40

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

700

Time steps

N
u

m
b

e
r

o
f

fo
ra

g
e

d
 r

e
d

 p
u

c
k
s

1

2

5

10

20

30

40

(b)

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

Time steps

N
u

m
b

e
r

o
f

re
d

 c
o

lo
r

c
h

a
n

g
e

s

1

2

5

10

20

30

40

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

Time steps

N
u

m
b

e
r

o
f

re
d

 c
o

lo
r

c
h

a
n

g
e

s

1

2

5

10

20

30

40

(c)

Figure 3.9: Performance of the History1 and History2 methods with various lengths of the
puck history. The various colors indicate varying sizes of the puck history from (L=1) to
(L=40): (a) ratio of red robots in a group in History1 (left) and History2 (right); (b) number
of foraged red pucks in History1 (left) and History2 (right); and (c) number of task changes
for red pucks in History1 (left) and History2 (right).

45

0 500 1000 1500 2000 2500 3000
0

0.5

1

Ratio of red robots

H
is

to
ry

2
(1

0
)

0 500 1000 1500 2000 2500 3000
0

0.5

1

H
is

to
ry

1
(1

0
)

0 500 1000 1500 2000 2500 3000
0

0.5

1

H
is

to
ry

1
(2

0
)

Time steps

(a)

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

Time steps

N
u
m

b
e
r

o
f
re

d
 c

o
lo

r
c
h
a
n
g
e
s

History2(10)

History1(10)

History1(20)

(b)

Figure 3.10: Comparison results of History1 (L=10), History1 (L=20) and History2 (L=10):
(a) ratio of red robots in a group; (b) number of red color changes. The numbers in paren-
theses refer to the length of the puck history.

Therefore, the difference in the performances between the ratio model and the response

threshold model was evident when there were costs related to task switching. In a con-

straint condition with a cost for task switching, if the cost of task switching increased, the

total energy wasted in the foraging for pucks increased rapidly. Task switching occurred

infrequently in the response threshold model as compared to the ratio model. Thus, the

response threshold model is more suitable if the task switching cost is high.

Results with changes in size of history

Figure 3.9 shows the experimental results of the two methods, History1 and History2 for

varying sizes of the puck history. For the two methods, as the length of the puck history in-

creases, the accuracy of the proportion of robots foraging for red pucks in a group increases.

The number of robots collecting red pucks converged to the desired results; however, the

total number of task changes decreases as the length of the task queue increases. We also

observed that the time required to converge to the ratio of robots to forage for red pucks

increases with the History2 method. This effect is the result of the specialized tendency of

History2.

Generally, the total number of task switches decreases when the size of the task queue

increases. When the two methods with the same size of task queue were compared, His-

46

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Time steps

R
a
ti
o
 o

f
re

d
 r

o
b
o
ts

 i
n
 a

 g
ro

u
p

normal

weight1

weight2

red pucks

(a)

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

Time steps

N
u
m

b
e
r

o
f
fo

ra
g
e
d
 r

e
d
 p

u
c
k
s

normal

weight1

weight2

(b)

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

Time steps

N
u
m

b
e
r

o
f
re

d
 c

o
lo

r
c
h
a
n
g
e
s

normal

weight1

weight2

(c)

Figure 3.11: Results of weighted History1 (L=10): (a) ratio of red robots in a group; (b)
number of foraged red pucks; and (c) number of red color changes.

tory2 was found to be more effective than History1 (see History1 with L=10 and L=20 and

History2 with L=10 in Figure 3.10). As the size of the task queue with History1 increases

to twice the original value (from L=10 to L=20), the ratio of red robots becomes more ac-

curate, i.e., even better than that in History2 (L=10). Actually, History2 uses double the

size of the task queue used in History1 for L=10. However, the number of task switches for

History2 (L=10) is still less than that for History1 (L=20). The moving average of the puck

history has a positive effect on the task changes.

Figure 3.11 shows the results of the weighted History1 (L=10); the green solid line

represents the original History1, the blue dotted line represents the weighted History1 where

the weight is set to [12, 22, ..., (L − 1)2, L2] to emphasize the newest history; and the red

dashed-dotted line represents the reversely weighted History2. Owing to the weight of

the newest history (weight1), a slightly faster response to the change in task demand and

improved performance in terms of smaller task changes were observed with the appropriate

proportion of pucks to the task demand than the original History1.

Results with changes in vision sampling period

To avoid recording the same puck repetitively in the puck history, the robots sense the en-

vironment once every eight time steps using visual information. Figure 3.12 shows that

increasingly frequent vision sensing leads to increased task changes. In addition, the per-

formance of the response threshold model was more robust for the change in the vision

sampling period than in the ratio model.

47

2 4 6 8 10
0

50

100

150

200

250

Period of camera observation behavior

N
u
m

b
e
r

o
f
re

d
 c

o
lo

r
c
h
a
n
g
e
s

History2

History1

Ratio

(a)

2 4 6 8 10
0

50

100

150

200

250

Period of camera observation behavior

N
u
m

b
e
r

o
f
g
re

e
n
 c

o
lo

r
c
h
a
n
g
e
s

History2

History1

Ratio

(b)

Figure 3.12: Comparison of the results of the number of task changes with a variation in the
vision sampling period from two to ten time steps: (a) task changes for red pucks; and (b)
task changes for green pucks.

Results with fixed number of tasks

The case in which the foraged pucks are not reproduced was considered, and Figure 3.13

shows the results. There were 500 pucks in the same arena; 20 robots wandered in order

to forage for the pucks. The proportion of red pucks was set to 30% at the starting of

the simulation. The foraged pucks were not reproduced in the arena. Therefore, the total

number of pucks decreased as time passed. In this foraging task, the division of labor results

differed minimally from those of the ratio model.

The red and green pucks were steadily foraged in both the models, as shown in Figure

3.13(a). The number of task switches was smaller in the response threshold model, as

shown in Figure 3.13(b). This is similar to the results obtained in the previous experiments.

However, several robots switched their tasks to forage for green pucks at an earlier period.

The green pucks were preferentially foraged because the ratio of green pucks was higher

than that of red pucks. After some simulation time steps, the robots began to switch their

states to forage for red pucks according to the increasing task demand for foraging for red

pucks. Therefore, the ratio of robots foraging for red pucks and foraged red pucks changed,

as shown in Figure 3.13(c),(d). These features are largely shown in the response threshold

model, especially in History2, which had a strong specialization characteristic.

48

0 200 400 600 800 1000
0

50

100

150

Time steps

N
u
m

b
e
r

o
f
fo

ra
g
e
d
 r

e
d
 p

u
c
k
s

History2

Histroy1

Ratio

(a)

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

Time steps

N
u
m

b
e
r

o
f
re

d
 c

o
lo

r
c
h
a
n
g
e
s

History2

Histroy1

Ratio

(b)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a
ti
o
 o

f
re

d
 r

o
b
o
ts

 i
n
 a

 g
ro

u
p

History2

Histroy1

Ratio

(c)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Time steps

N
u
m

b
e
r

o
f
fo

ra
g
e
d
 r

e
d
 p

u
c
k
s

History2

Histroy1

Ratio

(d)

Figure 3.13: Results of foraging tasks when the foraged pucks were not reproduced: (a)
number of foraged red pucks; (b) number of task switches in foraging for red pucks; (c)
ratio of robots foraging for red pucks; and (d) ratio of foraged red pucks.

Results with changes of threshold distribution

It is necessary to determine the appropriate response threshold value to improve the sys-

tem performance in the response threshold model. In the proposed approach, the response

threshold values in the group of robots were at evenly-spaced intervals within the range from

the minimum to the maximum value. If randomly assigned values were used, as shown in

Figure 3.14(a), a slightly decreased performance in terms of the ratio of the division of labor

in the group was obtained, as shown in Figure 3.14(b). However, more improved perfor-

mance in the rate of foraged pucks as compared to the ratio model was still obtained. In

addition, the number of task switches was markedly improved in comparison to the ratio

model, as shown in Figure 3.14(c),(d).

49

0 5 10 15 20
0

0.5

1

Response threshold values for foraged red pucks

V
a

lu
e

0 5 10 15 20
0

0.5

1

Response threshold values for foraged green pucks

V
a

lu
e

Robot number

(a)

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a
ti
o
 o

f
re

d
 r

o
b
o
ts

 i
n
 a

 g
ro

u
p

History2

Histroy1

Ratio

(b)

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

Time steps

N
u
m

b
e
r

o
f
fo

ra
g
e
d
 r

e
d
 p

u
c
k
s

History2

Histroy1

Ratio

(c)

0 500 1000 1500 2000 2500 3000
0

50

100

150

Time steps

N
u
m

b
e
r

o
f
re

d
 c

o
lo

r
c
h
a
n
g
e
s

History2

Histroy1

Ratio

(d)

Figure 3.14: Randomly distributed pattern for response threshold values for two foraging
tasks: (a) response threshold value in a random pattern; (b) ratio of robots for red pucks in
a group; (c) number of foraged red pucks; and (d) number of task switches for red pucks.

3.2.3 Drawback of specialization in foraging task

Despite the previous results, the proposed method based on the response threshold model

can be effective in all aspects. If the proportion of foraged pucks is considered as the index

of the system performance, the response threshold model showed a worse result than the

ratio model. A robot in a response threshold model has a specialized tendency to perform

one specific task. Thus, specialized robots should move a much greater distance to forage

for specific color pucks without task switching. However, if the proportion of some pucks

is much smaller than those of other colors, the probability of obtaining the specific puck is

reduced, and the minor pucks have a decreased chance of being foraged by the robots than

in the ratio model.

50

In fact, in a circular arena, the probability that the robots will forage for specific pucks

is related to the square of the ratio of the task. It the portion of pucks is 30% and 70% for

red and green pucks, respectively, the chances that the robots with the task of foraging for

red pucks will find the red pucks may be 0.32/(0.32 + 0.72) ∗ 100%. The probability of

obtaining a foraged red puck may be 15.5%. Figure 3.15(a) to 3.15(f) show the results with

some changes in the experimental settings when the proportion of red pucks was fixed to

30% during 1,000 simulation time steps; (a) and (b) show the results with the vision camera

angle 60◦ from the front; (c) and (d) ratio show the results with the vision camera angle

20◦ from the front; and (e) and (f) show the results with the vision camera angle 20◦ from

the front; the number of pucks increased three times. Figure 3.15(a),(b) shows the ratio of

robots foraging for red pucks and the foraged red pucks. Although the ratio of robots in

the group matched the ratio of tasks, the ratio of foraged pucks was lower for the response

threshold model, as expected. Therefore, if the ratio of foraged pucks is regarded as the

system performance measure, the response threshold model showed a weakness because

there is a trade-off between the accuracy and the number of foraged minor pucks.

If the robots capture images of the front with a narrow angle, the exact estimation of the

global task demand will be difficult, and the results of the division of labor will decrease in

accuracy and will require more time to become stable, as shown in Figure 3.15(c),(d). How-

ever, when the density of the distributed pucks increased by three times that of the original

experiment, despite the poor camera detection ability, the performance of the division of

labor increased in accuracy, as shown in Figure 3.15(e),(f). In a foraging task in a circular

arena, the results obtained with various systems are related with not only the ability of the

robots, but also the surrounding environments. Additionally, the obstacle avoiding behavior

and distribution of pucks in a circular arena make it difficult to search for specific pucks.

Here, pucks are not considered as obstacles, and robots can pass by the pucks easily. If

the pucks are considered as obstacles, the movements of the robots in a fixed area become

restricted. The inaccuracy in the estimation of task demand and frequent obstacle avoidance

may limit the specialization tendency in the response threshold model.

We tested another experiment in which robots treated the pucks as obstacles. Figure

3.16 shows the ratio of robots foraging for red pucks in a group, and the number of task

switches for red pucks when the pucks are considered as obstacles. These performances

are evaluated for the same foraging task as used in Figures 3.4 and 3.6; however, pucks are

considered as obstacles. We found a slight mismatch between the global task demand and

the ratio of foraged robots in both History1 and History2, as shown in Figure 3.16(a), and

51

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a

ti
o

 o
f

re
d

 r
o

b
o

ts
 i
n

 a
 g

ro
u

p

History2

Histroy1

Ratio

(a)

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time steps

R
a

ti
o

 o
f

re
d

 p
u

c
k
s
 i
n

 a
ll

fo
ra

g
e

d
 p

u
c
k
s

History2

Histroy1

Ratio

(b)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a

ti
o

 o
f

re
d

 r
o

b
o

ts
 i
n

 a
 g

ro
u

p

History2

Histroy1

Ratio

(c)

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time steps

R
a

ti
o

 o
f

re
d

 p
u

c
k
s
 i
n

 a
ll

fo
ra

g
e

d
 p

u
c
k
s

History2

Histroy1

Ratio

(d)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a

ti
o

 o
f

re
d

 r
o

b
o

ts
 i
n

 a
 g

ro
u

p

History2

Histroy1

Ratio

(e)

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time steps

R
a

ti
o

 o
f

re
d

 p
u

c
k
s
 i
n

 a
ll

fo
ra

g
e

d
 p

u
c
k
s

History2

Histroy1

Ratio

(f)

Figure 3.15: Ratio of robots foraging for red pucks in a group and the ratio of red pucks
to all foraged pucks: (a) robots foraging for red pucks (front 60◦); (b) ratio of red pucks
(front 60◦); (c) robots foraging for red pucks (front 20◦); (d) ratio of red pucks (front 20◦);
(e) robots for red pucks (front 20◦, triple pucks); and (f) ratio of red pucks (front 20◦, triple
pucks).

the number of task changes for red pucks was similar to the result obtained with ratio, as

shown in Figure 3.16(b). However, History2 still showed the best performance in terms of

reducing the task changes among the three algorithms.

3.3 Task allocation with variable response threshold

In the previous section, uniformly distributed threshold values is given in advance for each

agent in a group and these values are not changed during performing task. We showed that

the distribution of thresholds determines the accuracy of division of labor and its perfor-

mance is much improved than the previous method, especially in the aspect of task changes.

However, the response threshold values should be calculated manually and it is difficult to

assign a proper value in case of multiple tasks. In addition, this approach does not satisfy

the characteristics of a swarm robotics; robust, scalable, and flexible. We should apply the

52

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time steps

R
a
ti
o
 o

f
re

d
 r

o
b
o
ts

 i
n
 a

 g
ro

u
p

History2

Histroy1

Ratio

Red Pucks

(a)

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

Time steps

N
u
m

b
e
r

o
f
re

d
 c

o
lo

r
c
h
a
n
g
e
s

History2

Histroy1

Ratio

(b)

Figure 3.16: Ratio of robots foraging for red pucks in a group, and the number of task
switches for red pucks: (a) robots for red pucks in a group; and (b) number of task switches
for red pucks.

variable threshold method to obtain more adaptive and improved performance.

3.3.1 Task selection method

There is also a number of tasks with their associated demand. We assume that the tasks are

ordered in a sequence and an appropriate level of response threshold for each segment can

be defined as shown in Figure 3.17. If an agent has its response threshold within the range

of a specific task, it is assigned to the task. This concept is the same with task assignment

tendency in honey bee colonies. The threshold represents the physiological age and different

tasks are performed during its life-time in a process of behavioral development.

Task 1 Task 2 Task 3

3rd 4th 5th

Task 4

10th 9th 8th 7th 6th 2nd 1st

Figure 3.17: Example of diagram used for task allocation. Four tasks are ordered in a
sequence proportionally to its demands and the threshold values of ten agents are spaced.
Agents belonging to range that is split into segments relative the task demands is assigned
to the corresponding task.

53

Threshold regulation

We are interested in how the patterns of all the thresholds are spread uniformly over the

range, from θmin to θmax, in the whole swarm for an accuracy task allocation [123, 122].

For this, we design a simple algorithm via social interaction inspired by jamming avoidance

response. This behavior is performed by some species of weakly electric fish [222]. It oc-

curs when two electric fish with very similar discharge frequencies meet. Each fish shifts its

discharge frequency to increase the difference between the two fish’s discharge frequencies.

By doing this, both fish prevent jamming of their sense. The jamming avoidance behavior

escapes jamming of close frequencies.

Inspired by this behavior, we design a simple model for regulation of threshold values

between a pair of individuals within a limited sensing range. If agent i meets agent k, the

threshold value θi of agent i and θk of agent k are updated following the rules:

Rule 1. If θi > θk and |θi - θk| < α, then θi = θi + δ and θk = θk - δ.

Rule 2. If θi < θk and |θi - θk| < α, then θi = θi - δ and θk = θk + δ.

Rule 3. If θi = θj , then θi=θi ± X and θk=θk ± X .

where α is a minimum difference of thresholds between individuals, δ is a constant pa-

rameter, and X ∈ (0, 1) is a random value. θi is restricted to a range of (θmin, θmax). Each

agent updates its threshold for every interaction with another agent. Repeated interactions

among members can lead to an almost uniform distribution of thresholds, regardless of ini-

tial thresholds.

3.3.2 Simulation results

Figure 3.18 shows distributed thresholds when the initial thresholds of all agents are almost

the same and randomly distributed over the range. We can see that the proposed method can

spread the response thresholds of the whole swarm agents. Using these variable thresholds,

three different experiments are performed to test the performance.

Results with changes in task demands

In the first experiment, we investigate the adaptability of the method responding to changes

in task demands. There are two tasks, foraging red pucks (task 1) and green pucks (task 2).

54

0 1000 2000 3000 4000 5000 6000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time steps

T
h

re
s
h

o
ld

s

(a)

0 1000 2000 3000 4000 5000 6000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time steps

T
h

re
s
h

o
ld

s

(b)

Figure 3.18: Changes of thresholds with α = 0.1 and δ = 0.001 from the different initial
distribution: (a) initial thresholds are almost equal; and (b) initial threshold are randomly
distributed over the range.

At the beginning, the proportion of task 1 and task 2 is set to 20% and 80%, respectively.

At the time step 3,000, it is changed to 70% and 30%, and at the time step 6,000, it is

changed to 50% and 50% in sequence. Figure 3.19 represents the results. Since all the

robots start with the same task, they all start with task 1. As time passes, the swarm is split

into two groups with the same proportion of task demands. By changing the task demands,

the proper proportion of agents is re-assigned to the changes in task demands.

The accuracy of division of labor may be a little changed because the distribution of

thresholds are varied depending α and δ. But the overall performance still converged to

the desired state. The result shows that task allocation can also be obtained using variable

threshold values.

Results with changes in number of agents

Figure 3.20 shows the robustness and flexibility of the swarm when the number of agents is

changed. During the first 1,500 simulation time steps, about 50% agents are assigned to task

1 because the task demand is fixed to 50%. After that time, all agents assigned to task 1 are

removed from the arena. At that moment, we see that the proportion of agents performing

task 1 is dropped to 0%. However, about 50% agents of the remaining agents are re-assigned

to task 1. Figure 3.20(a) represents the behavior of the swarm in response to the changes and

55

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o
rt

io
n
 o

f
a
g
e
n
ts

 a
s
s
ig

n
e
d
 t
o
 t
a
s
k
 1

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o
rt

io
n
 o

f
a
g
e
n
ts

 a
s
s
ig

n
e
d
 t
o
 t
a
s
k
 2

(a)

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o
rt

io
n
 o

f
a
g
e
n
ts

 a
s
s
ig

n
e
d
 t
o
 t
a
s
k
 1

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o
rt

io
n
 o

f
a
g
e
n
ts

 a
s
s
ig

n
e
d
 t
o
 t
a
s
k
 2

(b)

Figure 3.19: Proportion of agents assigned to each task with changes in task demand: (a)
proportion of agents performing each task with δ = 0.01; and (b) proportion of agents
performing each task 2 with δ = 0.001 (left-task 1, right-task 2).

it shows that the swarm reacts properly, regardless of the number of agents. The threshold

values are re-balanced among the remaining agents after 1,500 simulation time step and the

threshold difference between agents are larger than the previous period as shown in Figure

3.20(b) due to the decreasing number of swarm. The thresholds are continuously updated

by the self-organizing process in the dynamically changing environment.

Results with multiple tasks

In the last experiment, we consider a distribution of a population of agents for more tasks;

four tasks rather than two tasks. The proportion of each task is set to 30%, 30%, 20%, and

56

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o

rt
io

n
 o

f
a

g
e

n
ts

 a
s
s
ig

n
e

d
 t

o
 t

a
s
k
 1

(a)

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time steps

T
h

re
s
h

o
ld

s

(b)

Figure 3.20: Proportion of agents assigned to a specific task when some agents are removed
from the arena during task: (a) proportion of agents performing task 1; and (b) changes of
threshold values.

20% and the proportion of robots assigned to each task is shown in Figure 3.21. The swarm

reacts properly and the proportion of agents assigned to each task reaches the desired level

regardless of the increasing number of tasks.

3.4 Summary of Chapter 3

To perform various tasks, an individual agent in a group sometimes needs to choose the task

that is most commensurate with its current state in the overall system. In this chapter, we

consider a task allocation algorithm for regulating the proportion of agents performing tasks

so that it is equal to the proportion of task demands. To solve these problems, we propose a

decentralized strategy based on the response threshold model.

In centralized approaches, it is possible for an individual agent to have needed infor-

mation concerning task demands and the tasks of other agents. They can then easily select

proper tasks. However, in decentralized approaches, agents are unable to have global in-

formation due to their limited sensing abilities, requiring them to use their local knowledge

in other ways. Each individual member has a constant task demand history that reflects

global demand. In addition, each individual has response threshold values for all tasks and

manages the task switching process in response to the stimuli of the task demands. The

57

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o
rt

io
n
 o

f
a
g
e
n
ts

 a
s
s
ig

n
e
d
 t
o
 t
a
s
k
 1

(a)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o
rt

io
n
 o

f
a
g
e
n
ts

 a
s
s
ig

n
e
d
 t
o
 t
a
s
k
 2

(b)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o
rt

io
n
 o

f
a
g
e
n
ts

 a
s
s
ig

n
e
d
 t
o
 t
a
s
k
 4

(c)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o
rt

io
n
 o

f
a
g
e
n
ts

 a
s
s
ig

n
e
d
 t
o
 t
a
s
k
 3

(d)

Figure 3.21: Proportion of agents assigned performing multiple tasks: (a) proportion of
agent assigned to task 1; (b) proportion of agent assigned to task 2; (c) proportion of agent
assigned to task 3; and (d) proportion of agent assigned to task 4.

robot then determines the task to be executed to regulate the overall division of labor. This

task selection induces a specialized tendency to perform a specific task and regulates the

division of labor.

We investigate performance using a simulated swarm of moving robots that perform a

foraging task. The foraging task requires task allocation among multiple robots over a set of

tasks. Various experiments are performed. The results show that the proposed algorithm is

comparable with the conventional model. In addition, we note that the system performance

varies greatly depending on the response thresholds and the variable response threshold

model is more appropriate for satisfying the robust, scalable, and flexible characteristics

required for multi-agent systems.

58

Chapter 4

Task allocation for parallel tasks

Multi-agent systems need to be adaptable to changes in the environment and the individual

worker needs to switch tasks according to the task demands. The mechanisms to solve such

an adaptive task allocation problem in the face of various internal and external states are

thus of great interest. Inspired from the task allocation in the insect colonies, for example

task assignment in honeybee is regulated via social inhibitions, we propose a flexible task

allocation mechanism affected by not only tasks but also existence of other agents.

For a desired distribution of tasks over a swarm of robots, we propose a decentralized

strategy following a linear differential system for task transition, which regulates the divi-

sion of labor based on the response threshold model. The proposed algorithm can be ap-

plied to multiple robots for foraging tasks, each of which uses local environmental informa-

tion about the task demand and the tasks assigned to neighboring robots. Robots choose or

switch their tasks based on the information even in dynamically changing environment.

We investigate the response of the overall system on the change of task demands or the

number of agents. We also see that the overall system converges to a desired task distri-

bution in a group level, trying to reduce the number of task change occurrences due to the

specialized tendency of the response threshold. Then we applied the proposed approach

to factory domain application that minimizing the occurrence of task changes is beneficial

because each change incurs additional time and material costs. The goal is to minimize the

number of task changes of the overall system while it maintains the desired performance

level such as throughput.

59

This chapter is submitted in journals [126, 128].

4.1 Methods

There are multiple candidate tasks and each robot is equally capable of completing each

task. Only a single type of task can be assigned to each robot at any time and each robot is

moving around in the given arena performing an assigned foraging task during a given time

span. In the dynamic task environment, the number of tasks or the number of robots may be

changed, for example, by adding new tasks or removing some robots. A robot may switch

from its own task to another if that task is highly demanded in the given environment.

To solve task allocation problem, we focus on adjusting the proportion of robots per-

forming each subtask adaptively. If it is assumed that all the subtasks need the same amount

of time to complete, one possible solution is to maintain the fraction of subgroup members

equal to the proportion of subtasks to be done. We presume that the overall swarm perfor-

mance is maximized when the allocation of robots to subtasks is optimal.

In order to achieve the optimal allocation, robots in the swarm should change currently

performing subtasks if necessary. Two different levels of modeling is available: microscopic

and macroscopic. On the one hand, microscopic modeling focuses on the individual robot

and on interactions among individual robots. It is difficult to apply mathematical methods,

so microscopic modeling is performed. On the other hand, macroscopic modeling focuses

on the swarm as a single system. For a large size of swarm, the individual robot behaviors

can be described by a continuous-time Markov process in the absence of the task switch-

ing time. There has been recent work on designing density feedback controllers, which are

functions of agent populations in different states, to drive a swarm whose states evolve ac-

cording to Markov chain to a target distribution [14, 154, 50, 58]. The system of individual

robots can be abstracted to a linear differential equation model. We first explain the linear

differential model briefly, presented by Halasz et al. (2007) and Berman et al. (2009). Then

we explain our proposed task partitioning method for adjusting the proportion of robots

performing each subtask adaptively, which is based on the response threshold model.

60

4.1.1 Modeling

We consider N agents and each agent can be allocated to one task among M tasks. We

denote the number of agents performing task i ∈ {1, . . . ,M} at time t by ni(t). Then the

population fraction performing task i at time t is defined as xi(t) = ni(t)/N , and the vector

of population fractions is represented by x(t) = [x1(t), . . . , xM (t)]T . The desired number

of robots for task i is defined by n̄i and the desired target distribution is the set of population

fractions for each task, x̄ = [x̄1, . . . , x̄M]T , where x̄i = n̄i/N .

We can model the interconnection topology between M tasks via a directed graph,

G = (V,E). A set of vertices, V , represents M tasks. For a set of edges, E, task i

and j are adjacent, (i, j), if a robot performing task i can change its task to task j. The

graph G is strongly connected if a path exists between any i, j ∈ V . To model the task

transfer from one task to another, every edge in E is assigned transition rate, kij(t), where

kij(t) means the task transition probability per unit time for one agent previously executing

task i to switch to task j. The transition rate from i to j does not equal to the transition rate

from task j to i, kij(t) 6= kji(t). Using the transition rate, the population fraction of robots

executing task i is given by the linear equation:s

dxi(t)

dt
=

∑
∀j|(j,i)∈E

kji(t)xj(t)−
∑

∀j|(i,j)∈E

kij(t)xi(t) (4.1)

Since the number of agents is conserved, Eq. (4.1) can be equivalently represented as the

linear model to represent the average change rate of the population fractions executing the

tasks
dx(t)

dt
= Kx(t) (4.2)

where K ∈ RM×M is a task transition matrix with the following properties

KT 1 = 0 (4.3)

with Kij = kij(t) for i 6= j and Kii = 1 −
∑
∀j|(i,j)∈E kij(t). Equation (4.2) is the

formulation of Eq. (4.1) over allM tasks as a matrix equation and is referred as the reaction

rate equation. Using this model, the steady-state distribution of the group over various tasks

can be controlled by appropriately selecting the individual transition rates.

The studies of Halasz et al. (2007) and Hsieh et al. (2009) show that the system Eq. (4.2)

61

always converges to a unique task distribution regardless of the choice of K for strongly

connected graph cases. It has a unique stable equilibrium. With the desired distribution

x̄ with M tasks, the population can automatically distribute the task accordingly among

agents through the selection of the individual transition rates, kij(t). They studied how

to determine the set of constant transition rates that result in fast convergence and how to

minimize task transition at equilibrium state. However, constant transition rates even force

continuous task switching at equilibrium state and the optimal transition rates are calculated.

A centralized system should compute the optimal transition rates to guide group behavior

and provide rate information to each robot.

In our work, an individual agent selects its task autonomously without any centralized

control and the transition rates are regulated adaptively depending on properties of the en-

vironment such as number of agents, number of tasks, area of arena, and others.

4.1.2 Task selection method

Our objective is to deploy a team of robots to achieve the desired distribution among various

tasks, starting from an initial distribution, with no inter-agent wireless communication. We

assume that every robot has no information about optimal transition rates kij in the task

transition graph G. In the absence of the global information, each individual agent should

estimate the transition rate using local environmental information. To handle this problem,

we utilize a task probability function based on the response threshold model.

To explain the mathematical model, we assume that a robot m(m = 1, ...,M) is given

with collected task demands smi(t) and the corresponding response threshold θmi(t) for

task i (i = 1, ..., N). Then the task probability that robot m responds to perform task i is

determined by

Pmi(t) =
smi(t)

n

smi(t)n + θmi(t)n
(4.4)

with variable n (n > 1), which determines the steepness of task probability. For smi(t) <

θmi(t), the probability of engaging task performance is close to 0 and for smi(t) > θmi(t),

this probability is close to 1. At smi(t) = θmi(t), Pmi(t) = 0.5.

Figure 4.1 shows the task transition probability depending on the choice of n and θ.

Figure 4.1(a) shows that different values of n produce different probability given the same

stimulus s. Large n has steep curves, and the task probability grows fast as the stimulus

62

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Stimulus (s) (theta=0.5)

P
ro

b
a
b
ili

ty

n=2

n=4

n=6

n=8

n=10

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Stimulus (s)

P
ro

b
a
b
ili

ty

theta=0.0

theta=0.2

theta=0.4
theta=0.6

theta=0.8

theta=1.0

(b)

Figure 4.1: Task probability curves for varying n and θ values: (a) task probability for
different values of n; and (b) Task probability for different values of θ. n represents the
slope of curve and θ produces difference responses, given the same stimulus s.

increases. We use n = 10 for our experiments. Figure 4.1(b) shows that agents with

smaller θ tend to respond to small stimulus values easily.

Based on the probability given in Equation (4.4), each agent decides to change the

current task or not. A robot performing task i currently changes its task to task j if the

probability of task j is the largest among all the possible tasks. In the aspect of an overall

system, the task transition rate, kij(t), can be estimated by

kij(t) =
nij(t)

ni(t)
(4.5)

where nij(t) represents the number of robots currently performing task i and becoming to

have the maximum probability for task j. That is, those robots change their task to task j.

This value kij(t) changes depending on the condition of each agent but will decrease as the

overall system converges to the desired task distribution.

Our objective is to allocate a group of robots to achieve the desired distribution among

various tasks. We assume that every agent has knowledge of the whole graphG, but without

knowing the optimal transition rate. All individuals select a suitable task locally using local

information without any communication aids among agents, with no clear picture of what

is going on at the level of the overall system level. Repetitive and continuous task selection

can lead to the desired performance closely.

If agents can obtain the global information about the environment, they can easily

63

choose tasks, just by using the fraction of each task among the whole tasks and the number

of robots assigned to tasks. However, robots have difficulty in fetching the global informa-

tion due to their limited sensing abilities and no communication aid. They should decide

their own task based on their estimation of the environment. Here, using the task probability

from Equation (2), the individual robot selects a task with the highest value. Then the task

transition rate, kij(t), may be estimated by counting the number of robots that has the max-

imum value of Pmj(t) for task j among robots m currently performing task i. However, the

information still cannot be fetched easily in the local environment.

4.1.3 History based information estimation

For estimating the needed information for task decision, we resented more improved ap-

proach inspired by the pheromone trails of insects for a memorization process to obtain a

proper threshold value for each task. Pheromone named by P. Karlson and M. Lusher in the

1950s is a chemical media for delivering information by individuals of the same species.

Without direct communication, ants, bees, and wasps coordinates the activities of individu-

als in the colony by depositing and sensing chemical markers in a shared physical environ-

ment. For example, ants initially wander randomly and upon finding food, return to their

nest while laying down pheromone trails to guide other ants to food source. The ant colony

optimization algorithm was proposed for searching an optimal path based on the behavior of

ants seeking a path between their nest and a source of food [54] and applications to various

dynamic scheduling problems were studied [146, 108, 120, 227, 213].

The characteristics of pheromone that are capable of enabling complex functions are

mainly related with evaporation [55]. Evaporation represents that old information is dis-

appearing as time passes due to the volatile tendency of pheromone. This characteristic

enables agents to receive the most recent information and we want to use this tendency to

update the response threshold for task.

The task demands and neighboring robots can be monitored to estimate the task prob-

ability. The recent information about the task demands and neighboring robots is stored in

the history window of finite length. It is related to what tasks are highly demanded in a

given environment and what tasks neighboring robots are doing. If the proportion of tasks

is similar to or the same as the proportion of robots assigned to the tasks, the task allocation

will be desirable. Each robot performs observation behavior periodically and only the most

recent information is stored in the history queue. From the record, the robot estimates the

64

global task demands and the global robot distribution. The robot saves the local surrounding

information with constant time interval to prevent storing duplicated information in history

queue.

Estimation of task demand

For implementation of the pheromone memory based algorithm, each agent has two task

queues, task demand queue and task supply queue, and stores the information of observing

tasks and neighboring agents. In task demand queue, the types of detected tasks within the

sensing range are stored and the task types of neighboring agents within the communication

range are stored in task supply queue in order. Then, they estimate the global information

approximately by using the fraction stored in queues.

If a robot m has information of the global task demand, the proportion of task demand

for task i can be simply obtained with

ŝi =
si∑N
i=1 si

(4.6)

where si is the task demand for task i. In the decentralized approach with no information

about the global task demand, each agent should estimate the proportion of tasks by using

the distribution of demands in the task demand queue as follows:

smi(t) =

∑L
l=1 task

D
mi(l)

L
(4.7)

where L is the length of task demand queue and m is the robot number. We assume that

smi(t) approximates the above ŝi for task i. In addition, taskDmi(l) is 1 if the task type in

the l-th queue of agent m is task i, otherwise it is 0.

Similarly, the proportion of robots performing task i, xi(t), can be estimated with

xi(t) ≈
∑L

l=1 task
N
mi(l)

L
(4.8)

where taskNmi(l) is 1 if the neighboring agents of an agent m perform the task i in the l-th

queue, otherwise it is 0. Each robot maintains two queues, the queue of task demand: taskDm
and the queue of task types of observed neighboring robots, taskNm . We assume that each

robot can easily observe what tasks are being performed by the neighboring robots. In the

65

object foraging task to collect objects with a swarm of robots, the first queue monitors what

objects have been observed by a given robot, and the second queue saves what tasks have

been done by its neighboring robots.

Regulation of response threshold

According to the response threshold model [23, 212, 41], the threshold is updated depending

on the performance of tasks. If a task is performed by an agent, it decreases the threshold

value of that task and increases the thresholds of other unperformed tasks. The more agents

perform a specific task, the lower the response threshold to this type of task, and vice versa.

This threshold update process leads to the emergence of specialized agents who are more

responsive to particular types of tasks with lower thresholds than the others with higher

thresholds.

Base on the response threshold model, the individual robot updates its response thresh-

old using the amount of task demand and the number of robots assigned to that task [118].

θmi(t+ 1) = θmi(t)− η(smi(t)− xi(t)) (4.9)

where η is a scaling factor to regulate the threshold over time and threshold θij is constrained

to the interval [θmin, θmax] = [0, 1]. If the proportion of task demand for task i is larger

than the proportion of robots performing task i, threshold θmi is decreased to encourage

more participation of robots on task i, and otherwise, threshold θmi can be increased.

Both parameters smi(t) and xi(t) can be obtained from the whole set of task demands

and robot states. In a decentralized approach, each robot could estimate the information

using two queues to record local task demands and observed task types of neighboring

robots. Then, Equation (4.9) is changed into:

θmi(t+ 1) = θmi(t)− η(

∑L
l=1 task

D
mi(l)

L
−
∑L

l=1 task
N
mi(l)

L
) (4.10)

where L is the queue length, taskDmi(l) is given in Equation (4.7) and taskNmi(l) in Equa-

tion (4.8).

The thresholds update rule in Equation (4.10) indicates that if the task demand on task

i is larger than the number of robots performing the task, an agent tends to specialize on

the task by lowering its threshold and increases the probability of task performance. From

66

these repeated behaviors, each agent becomes to have a tendency to perform one specific

task and this specialization reduces task changes within the overall system, producing the

expected division of labor.

4.2 Analysis

In this section, we consider the stability of our proposed model.

4.2.1 Convergence to equilibrium state

In the equilibrium stat that task distribution is equally to task demands, the balancing con-

dition is needed as

kij x̄i = kjix̄j , ∀(i, j) ∈ E (4.11)

We now show that our task allocation model described in Equation (4.1) has a stable equi-

librium point that satisfies the desired target distribution x̄i(t) for task i, for i = 1, . . . ,M.

dxi(t)

dt
=

∑
∀j|(j,i)∈E

kjixj(t)−
∑

∀j|(i,j)∈E

kijxi(t) (4.12)

We argue that the system described by the above equation for i = 1, . . . ,M (M is the num-

ber of all tasks) for all (i, j) ∈ E with condition Equation (4.11), the response threshold up-

dating rule in Equation (4.9) and the task selection function in Equation (4.4) will converge

almost surely to x̄ = [x̄1, . . . , x̄M]T . Consider the following Lyapunov function given by

V =
M∑
i=1

x̄i
2

(
1− xi

x̄i

)2

(4.13)

and the time derivative of Equation (4.13) is

dV

dt
=

M∑
i=1

(xi − x̄i)
x̄i

dxi
dt

=
M∑
i=1

(xi − x̄i)
x̄i

 ∑
∀j|(j,i)∈E

kjixj −
∑

∀j|(i,j)∈E

kijxi

 (4.14)

67

Then, by Equation (4.11), the above equation can be changed into

dV

dt
=

M∑
i=1

(xi − x̄i)
x̄i

 ∑
∀j|(i,j)∈E

x̄i
x̄j
kijxj −

∑
∀j|(i,j)∈E

kijxi


=

M∑
i=1

∑
∀j|(i,j)∈E

(
xj
x̄j
− xi
x̄i

)
kij(xi − x̄i)

=
∑

∀j|(i,j)∈E

(
xj
x̄j
− xi
x̄i

)
φij

(4.15)

where φij = kij(xi − x̄i).

We can set up the convergence condition such that φij has an opposite sign to (xj/x̄j −
xi/x̄i). Thus, if xj/x̄j > xi/x̄i, then φij < 0 and similarly, if xj/x̄j < xi/x̄i, then φij > 0.

That is,

dV

dt
=

∑
∀j|(i,j)∈E

(
xj
x̄j
− xi
x̄i

)
φij < 0 (4.16)

Thus, the time derivative of the Lyapunov function evaluates to negative. In addition, con-

sider when all φij = 0 or when xi/x̄i = xj/x̄j for all i, j, the time derivative of the Lya-

punov function is always non-positive, and then the system converges almost surely to the

desired distribution, x̄i. If the number of agents are totally conserved,

M∑
i=1

xi = 1 (4.17)

and there are two types of tasks (M = 2), then Equation (4.15) always satisfies the follow-

ing condition

dV

dt
=

∑
∀j|(i,j)∈E

(
1− xk
1− x̄k

− xi
x̄i

)
kij(xi − x̄i) < 0 (4.18)

The task transition rate kij has a positive value, kij > 0, and if (xi − x̄i) > 0, then

(1−xi
1−x̄i −

xi
x̄i

) < 0 because 1−xi
1−x̄i < 1 and xi/x̄i > 1. Similarly, if (xi − x̄i) < 0, then

(1−xi
1−x̄i −

xi
x̄i

) > 0.

If there are more than two types of tasks, (M ≥ 3), Equation (4.15) might produce a

positive value. However, if we assume that task assignment is regulated between the agents

68

performing task i and the other agents not performing task i, then it satisfies the convergence

condition

dV

dt
=

∑
∀j|(i,j)∈E

(
1−

∑M
k=1,k 6=i xk

1−
∑M

k=1,k 6=i x̄i
− xi
x̄k

)
kij(xi − x̄i) < 0 (4.19)

In our task, each agent has an estimated information, smi(t), for the desired task distribu-

tion, x̄m. Based on this value, if more agents are assigned to task i than the desired pro-

portion, some agents currently performing task i should be changed to other tasks including

task j. Then sequentially, it can be assumed that task is regulated between two groups, per-

forming task j and not performing task j. By this way, Equation (4.15) converges asymp-

totically to x̄ = [x̄1, . . . , x̄M]T .

4.2.2 Convergence of threshold update

We provide a proof that the rule for the response threshold can lead to convergence to the

equilibrium of task allocation. In order to regulate threshold Θ = [θ1, θ2, ..., θN−1, θN]′

for N tasks in an adaptive process, we design our adaptation laws according to the steepest

descent method [78]. The iterative equation of Θ can be represented as

Θ(t+ 1) = Θ(t) + ηP (t) (4.20)

or, equivalently,

4Θ(t) = Θ(t+ 1)−Θ(t) = ηP (t) (4.21)

where the positive scalar η is the learning rate, which determines the convergence speed and

the vector P (t) represents a search direction.

We desire to balance the proportion of task demand and the proportion of robots working

on the task. We define a cost function J(θ(t)) = [J1, J2, ..., JN]′, which is selected as a

nonnegative function with the summation of squared errors

Jk(θ(t)) =
1

2
(ŝk(t)− xk(t))2 (4.22)

where ŝk is the rate of task demand for the k-th task and xk is the population fraction of

robots for the k-the task for k = 1, ..., N (see Equation(4.6)-(4.8)). Then the cost function

69

decreases at every iteration,

4J(θ(t)) = J(θ(t+ 1))− J(θ(t)) < 0 (4.23)

or

J(θ(t+ 1)) < J(θ(t)) (4.24)

Thus the key idea is to choose an appropriate search direction P (t) such that Equation (4.24)

is satisfied for sufficiently small learning rate η. Consider the first-order Taylor series ex-

pansion of J(θ(t)) about θ(t), then we have

J(θ(t+ 1)) = J(θ(t) +4θ(t)) ≈ J(θ(t)) + gT (t)4θ(t) (4.25)

where g(t) = [g1, g2, ..., gN]′ and gk(t) = (ŝk(t) − xk(t)) represents the gradient of

Jk(θ(t)) evaluated at θ(t) and in order to satisfy Equation (4.24), the last term on the right-

hand side in Equation (4.25) should be negative. We choose

P (t) = −g(t) (4.26)

so that, from Equation (4.21)

gT (t)4θ(t) = ηgTP (t) = −ηgT (t)g(t) < 0 (4.27)

Consequently, Equation (4.20) becomes, which is the same with Equation (4.9),

Θ(t+ 1) = Θ(t)− ηg(t) (4.28)

which leads to Equation (4.9), since gk(t) = ŝk(t) − xk(t). By the central limit theorem,

the average of samples can approximate the expected rate of task demand or rate of robots

working on the task. We can use Equation (4.10) with the observed samples.

We run the foraging task to collect objects with a swarm of robots. Every experiment

is repeated for 10 independent runs. At the beginning, all robots are initially assigned

to the red task (clearing red-colored objects) and the initial values of all thresholds are

randomized to ensure that each robot is not predetermined for a specific task. Task demand

is represented as the proportion of specific objects among the whole population of objects,

70

and if 50% of objects are red, then we want that 50% of the robots perform red task

for clearing red-colored objects. The performance can be determined by the proportion of

robots performing each task.

4.3 Simulation results

4.3.1 Robot behaviors

Each robot obtains locally-surrounding information with its own visual sensor and it can

change the task depending on the task transition condition. A variety of robot behaviors is

shown in Figure 4.2. Differently to the experiment in Chapter 3, the information about the

task type of robots and the color of objects are stored in two queues, separately. We assume

that in simulation, robots discriminate two types of objects and see what tasks neighboring

robots are performing with the help of the vision camera. Robots distinguish objects and

other robots with vision cameras; they can detect the color of objects as well as the color of

robots. Each robot has its own task and it emits red- or green-colored light depending on

what task it is currently taking. It can see what task its neighboring robots within its visual

vicinity are doing.

Each robot has color-preference for foraged objects, either green or red objects. It

means two types of tasks are available for each robot. Robots update the color of detected

objects in the task demand queue and the task types of neighboring robots in the task supply

queue (see subsection 4.1.3). The queues record the most recent information about objects

and neighboring robots within a fixed time length. As a result, each robot manages the

information of what objects have been observed recently and what tasks neighboring robots

in its surrounding environment have completed. Each robot updates the response threshold

for tasks and computes the task probability for each task. Depending on the value, the robot

can switch its current task to another. The length of both history queues are set to L = 20

and the learning rate for the threshold is set to η = 0.015 (see Equation (4.28)).

4.3.2 Results with fixed task demands

In the first experiment, the task demand of red task is set to 10%, 30%, 50%, 70%, and

90%, and green task is set to 90%, 70%, 50%, 30%, and 10%, respectively. This means

71

Collision

Avoidance

Task selection

behavior

Camera
Observation

Yes

Yes

Yes

No

t=T/2

t=T

Period ?

Move toNo

Wandering

 Observed?

 Observed?

queue

queue

Update robot

Update puck

Obstacle

PuckSamplingNo

Yes

No

closest puck

Within
distance

Clearing puck

Figure 4.2: State transition of robot behaviors.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o

rt
io

n
 o

f
a

g
e

n
ts

 a
s
s
ig

n
e

d
 t

o
 1

s
t

ta
s
k

(a)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o

rt
io

n
 o

f
a

g
e

n
ts

 a
s
s
ig

n
e

d
 t

o
 2

n
d

 t
a

s
k

(b)

Figure 4.3: Proportion of robots assigned to two different tasks; clearing red-colored objects
(red task) and green-colored objects (green task): (a) the proportion of robots perform-
ing the red task; and (b) the proportion of robots performing the green task, while task
demands are set to 10%, 30%, 50%, 70% and 90% for the red task and 90%, 70%, 50%,
30%, and 10% for the green task, respectively.

that 5, 15, 25, 35, and 45 robots should be assigned to clear red objects and 45, 35, 25,

15 and 5 robots should be assigned to clear green objects. The progress of the proportion

72

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

Robot ID

(a)

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

Robot ID

(b)

Figure 4.4: Thresholds change for two tasks in robots: (up) initial state and (down) final
state; (a) the red task threshold; and (b) the green task threshold.

of robots assigned in each task is shown in Figure 4.3. First, all robots perform the red

task, but after some time passing, the swarm is split for performing different tasks as the

same proportion with the desired task demands. The swarm reacts properly to the changes

in the proportion of task demands by switching a proper number of robots from red task

to green task. Even with the limited sensing range, the proportion of robots assigned to

each task reaches a stable level after a while. There is some gap between the proportion of

task demands and that of robots assigned to the tasks when the proportion difference of task

demands is large.

This tendency is due to the specialization characteristics of the response threshold model.

Specialized robots move longer distances without changing task. If the portion of some ob-

jects in demand is smaller than the others, the probability for detecting the minor group of

objects and robots is relatively smaller and then more robots performing the minor task may

be needed than the actual task proportion.

Figure 4.4 shows the change of thresholds for two tasks, which are assigned randomly

at the beginning. At the end of the simulation, some robots have thresholds that are equal

to the maximum threshold, θmax or minimum threshold, θmin, but other robots still have

thresholds between [θmin, θmax]. This means that some robots are strongly specialized to

tasks and others are softly specialized to tasks. Task allocation within individual agents

can be explained by assuming that red task specialists have low thresholds for red task

and high thresholds for green task, whereas green task specialists have opposite thresh-

73

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c)

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d)

Figure 4.5: Various cases of specialized tendency: (a) strongly specialized to green task;
(b) red task; (c) Softly specialized to both tasks; and (d) strongly specialized to red task
changes to softly specialized to red task to increase the probability to green task and de-
crease the probability of red task.

old rates. As soon as the number of green task specialists decreases, the associated task

stimulus will increase until it exceeds the corresponding thresholds of red task specialists.

Consequently, some red task specialists will perform green tasks until the corresponding

stimulus falls below their thresholds. This threshold update process provides the emergence

of specialized agents more responsive to particular task types.

There are two types of specialization in a strong or soft manner. Strongly specialized

individuals perform only one or a few activities. However, dynamic real-time environmen-

tal changes or the fluctuation over the portion of members within the colony may need an

adaptive task allocation ability for the colony survival. In this case, softly specialized indi-

74

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o

rt
io

n
 o

f
a

g
e

n
ts

 a
s
s
ig

n
e

d
 t

o
 1

s
t

ta
s
k

(a)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o

rt
io

n
 o

f
a

g
e

n
ts

 a
s
s
ig

n
e

d
 t

o
 1

s
t

ta
s
k

(b)

Figure 4.6: Proportion of robots assigned to red task: (a) all information is given to robots
due to unlimited sensor range; and (b) constant task transition rate is applied in task transi-
tion model.

viduals perform several activities, but tend to join the activities most needed by the group

by changing their tasks flexibly. For example, some ant species specialized in cleaning can

carry out foraging that they would normally not perform, if the number of foraging ants

decreases. This mechanism can be explained well in our experimental results.

These various tendencies are shown in Figure 4.5, which shows four types of threshold

progress patterns. Two figures in the upper side show the result of strongly specialized to

the green task and red task, respectively. In the lower side, the left figure shows agents

softly specialized to both tasks. The thresholds are changed depending on the situation.

The right figure shows the case that the agent is strongly specialized to red task, but its

red task threshold is increased and the green task threshold is decreased to respond and

perform the green task.

The same experiments were repeated in Figure 4.6, when the information about task

types of robots and objects can be calculated with unlimited sensor range in our method

(Figure 4.6(a)), and robots use the constant task transition rate in the task transition model

[79] (see Equation 4.1) calculated by using the global information (Figure 4.6(b)).

Table 4.1 shows the comparison of the total number of task change occurrences. In

both cases, the proportions of robots assigned to the red task result in the convergence

to the desired task distribution with different variance levels, and continuous task changes

with more fluctuation can be observed with a constant transition rate in the task transition

75

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o

rt
io

n
 o

f
a

g
e

n
ts

 a
s
s
ig

n
e

d
 t

o
 1

s
t

ta
s
k

Red Robots(expt)

(a)

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o
rt

io
n
 o

f
a
g
e
n
ts

 a
s
s
ig

n
e
d
 t
o
 1

s
t
ta

s
k

Red Robots(expt)

Red Robots(desired)

(b)

Figure 4.7: Proportion of robots assigned to red task in a group with changes in task
demands: (a) constant task transition rates; and (b) estimated information.

model. If we count the number of task changes of swarm robots, our proposed method has

more advantage in terms of task changes. It also handles the task allocation with only local

information, without global communication among robots.

4.3.3 Results with changes in task demands

For the next experiments, we tested variation of task demands in time course. Figure 4.7

shows the results with task demand changes. The tasks demands of two tasks, (red task,

green task), were initially set to 20% and 80%, respectively. At time step 2,000, the task

demands were then changed to 70% and 30%, and at time step 4,000, the demands were

again changed to 50% and 50% respectively. When we test the task allocation with more

tasks,

Figure 4.8 shows the results of three types of tasks: red task, green task, and blue

task. Task demands were set to 20%, 80%, and 0% at first. At time step 5,000, the task

demands were changed to 60%, 20%, and 20%, then at time step 10,000, the demands

Table 4.1: Overall comparison for the number of task changes.

Figure 4.6(a) Figure 4.3(a) (Our proposed method) Figure 4.6(b)
Count 5 106 8,240

76

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

Time steps

Ratio of red task robots in group

(a)

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

Time steps

Ratio of green task robots in group

(b)

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

Time steps

Ratio of blue task robots in group

(c)

Figure 4.8: Proportion of robots assigned to three tasks with changes in task demands: (a)
red task; (b) green task; and (c) blue task.

were changed to 0%, 20% and 80% respectively. As the figures demonstrate, the swarm

immediately reacts with the changes of task demands. By changing the task demands, the

proper fractions of robots were re-assigned and the desired distribution was obtained in the

overall system level.

4.3.4 Results with changes in number of agents

In the next experiment, we investigated the adaptability of the swarm to the change in the

number of robots. Task demand of each task was initially set to 50% and all agents assigned

to red task were suddenly removed from the swarm at time step 1,000. Figure 4.9 repre-

sents the behavior of the swarm in response to the change. The swarm reacts to the abrupt

change by switching the task of some robots. The mechanism behind this reaction is as fol-

lows: when a number of robots are removed from the system, the robots with small thresh-

old value for red task start to work on that task by changing their thresholds values into

lower level. Our proposed method shows an adaptive ability to the environmental change,

only using local estimation of the task demands and task types of neighboring agents.

4.4 Application to Factory Domain Applications

Using data from various experimental situations, changes in experimental environments

and parameters in the proposed algorithm, we analyze the performance for a practical task

in factory domain applications.

77

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o

rt
io

n
 o

f
a

g
e

n
ts

 a
s
s
ig

n
e

d
 t

o
 1

s
t

ta
s
k

Red Robot(expt)

(a)

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

p
o

rt
io

n
 o

f
a

g
e

n
ts

 a
s
s
ig

n
e

d
 t

o
 1

s
t

ta
s
k

Red Robots(expt)

Red Robots(desired)

(b)

Figure 4.9: Proportion of robots assigned to red task: (a) with constant transition rate; and
(b) with local estimation. The demands of the two tasks were initially given as same with
50% and 50%. At time step 1,000, all agents assigned to red task were removed from the
swarm.

4.4.1 Task description

Among various tasks, truck painting problem ([162, 163]) is an appropriate task that the

specialized tendency is needed for improving performance due to the extra costs for task

changes. Each truck can require any paint color, and the colors required by trucks are not

known in advance. Only one color can be set for a paint booth at a time, and some amount

of remaining paint will be wasted each time a booth changes its current color to paint the

different color. Thus, frequent color changes in a paint booth incur both time and material

costs. A good system to assign trucks to paint booths thus reduces such color changes with

maximizing the total number of painted trucks in all the paint booths.

The basic scheduling paradigm is shown in Figure 4.10. A paint booth is an agent, and

multiple agents compete to perform task of painting truck. One truck arrives per every unit

time and is assigned to an agent using its bidding or choice process. If a paint booth machine

is assigned more than one task, each task is stored in its queue to be performed one at a time

in order. The length of each machine’s queue is set to three and if a machine’s queue is full,

that machine does not participate in the bidding process until there is a empty space in the

machine’s queue. In the event that no booth makes a bid (because all of the paint booths are

either broken or have full queues), the truck is waiting in a temporary storage and assigned

when there is a possible booth.

78

...

Agent #1

...

Agent #2

A

B

B

C E

G

ECA Waiting Tasks

Task A Task C Task E

Agent #k

Task
Queue

Figure 4.10: Paradigm of dynamic scheduling model in truck painting problem.

4.4.2 Modified task selection method

The objective of the dynamic scheduling algorithm is to minimize the number of task

changes of the overall system while it maintains the desired performance level such as

throughput; the number of tasks completed during a given time span. In the previous sec-

tions, we showed that history based approach could be an effective method. In this section,

we want to implement based on the history of recently processed tasks.

Each individual agent has a limited and constant-sized memory queue (task history) that

stores the recent processed tasks by itself. The appropriated thresholds values are obtained

using the information in its own task history. The schematic diagram of a task history queue

used for each agent is shown in Figure 4.11. This model is composed of three parts, task

history queue, main booth, and task queue. Each agent currently performs one task and the

waiting tasks are stored in queue in an assigned order. In addition, each individual agent

maintains a limited, constant-sized task history queue storing its recently processed tasks.

Thus, we use the moving average of the information in task history to update the response

threshold values. The basic concept is the same with the pheromone. Old information in

the task history is excluded automatically, just as pheromone disappears over time, which

makes the system adaptive to environmental change.

The pheromone evaporation strategy is obtained by computing a weighted moving aver-

age of the last N values, which is the length of the task history queue. That is, we count the

number of tasks stored in a task history queue and update the threshold value for each task

in direct proportion to that value. Here, a drop of pheromone is represented as memory ele-

79

AAB B B B B

Machine Booth

tt−1 t+1 t+2 t+3

Task History Queue Task Queue

Task

Assigned

t−N

Figure 4.11: Schematic diagram of a task queue. This agent is currently processing a task
of type B, and a task of type A is waiting in its queue. The agent last processed a task of
type B, and it has four tasks of type B and one task of type A in its task history queue.

ment in a history of tasks and the list of elements in a queue is pheromone on a trail. Then

the pheromone information pheromonekj of agent k for task j is estimated as follows:

pheromonekj =
1

N

N∑
l=1

wl · tasklkj (4.29)

where N is the length of task history queue and tasklkj is calculated by task in the l-th task

history of agent k. If the l-th task is j, then tasklkj = 1, otherwise, it is 0. The weight wl is

a scaling factor in the task history. More recent processed tasks can have higher weights, or

the system can have a uniform distribution of weights across a given number of tasks [124].

The pheromone is computed over the last N values; older values are not included, which

emulates the evaporation of the pheromone. Then the threshold values are updated in direct

proportion to that average, as in Equation (4.30).

θkj(t) =
pheromonekj∑M
i=1 pheromoneki

(4.30)

where M is the number of all possible tasks. Thus, the probability Pkj(t) is given by

Pkj(t) = Sj(t)
2 + θkj(t)

2 (4.31)

where the stimulus Sj is proportional to the amount of time the job has been waiting for

assignment to a booth. The outputs from Equation (4.31) are compared among the booths,

and the task is assigned to the booth with the highest value.

The threshold updating method differs slightly in Equation (4.4). However, we can

describe it in a similar form with the original approach. If we assume that the weight

80

parameter wl is 1. If a truck j of color j is completed in booth k, then booth k updates its

task history queue by adding color j and deleting the oldest information. Then the threshold

value θkj for color j is updated as follows:

θkj(t+ 1) = θkj(t)− 1 (4.32)

and the threshold value for color m of a deleted task m in task history is increased:

θkm(t+ 1) = θkm(t) + 1, ∀m ∈ 1, 2, ...,M (4.33)

This means that the threshold values of all booths are regulated in direct proportion to the

number of processed tasks in their individual histories. The basic concept of pheromone

computation is counting the number of tasks recently processed by each agent.

In our algorithm, we need a rule for breaking ties. If more than two agents make the

same highest bid, the one with the shortest task completion time will be selected, as deter-

mined by the following equation.

P ′k(j) =
1/4T k(j)∑n

i=1,i 6=k 1/4T i(j)
(4.34)

where 4Tk(j) is defines as the time until truck j is painted in booth k, as determined by

the following equation:

4Tk(j) = qtproc + ntsetup + tworking (4.35)

where q is the number of waiting trucks in the current queue of booth k, tproc is the time

required to paint one truck, n is the number of requiring color changes for the waiting trucks,

tsetup is the time required for a color change, and tworking is the remaining time to finish the

currently painted truck in booth k. In this way, the agent with a smaller queue length has a

higher probability of taking a new task. If there is still more than one competing agents, the

task is randomly assigned to one of competing agents.

81

4.4.3 Comparison with other conventional methods

We detail a comparison between our history based approach, market-based approach, and

insect-inspired model approach on the task allocation problem for parallel multi-purposed

agents using the problem of assigning trucks to paint booths.

Before starting the simulation, we set the system parameters for each algorithm. Ci-

cirello and Smith (2001) compared Cicirello’s, Campos, and Morley’s approaches. We

used the same parameter settings for each method. In Morley’s algorithm (called Market),

K=91, C=1791, and L=4. In Cicirello’s algorithms (called R-Wasps), the parameters are set

to δ1 = 100, δ2 = 10, and δ3 = 1.05, and the initial thresholds θk,cj are all set to θmin,

with θmin = 1 and θmax = 10, 000. In Campos’s algorithm (called ABA), α=617.188,

β=4.66797, ξ=7.85156, and φ=17.7344.

Our pheromone memory approach needs two kinds of parameters. One is N, the length

of the task history queue, and another is wl, the weight parameter for the task history queue.

To analyze the effect of each parameter, we use three different parameter settings. The first

one (called History(1)) is set to N = 1, and another (called History(2)) is set to N = 10 both

with a uniform distribution of weights, that is wl is 1 for all l = 1,...,N. The third one (called

History(3)) is set to N=10 with the weight parameter related to the square of the order in the

task history queue. From the last stored task, the weight is set to N2, (N - 1)2, ... ,22, 12.

To compare the performance, we mainly measured on the average number of state

changes occurrences (setup process) in all the booths, which is related to the wasted time

and material costs. We also measured the average needed time per truck (cycle time), the

average number of painted trucks (throughput), and the average length of the occupied task

queue (queue length) for each agent. For all the experiments, we ran the simulation for

1,000 time steps and repeated 100 independent runs to calculate the averaged performance

of each algorithm. Furthermore, we measured the performances of all the algorithms after

100 time steps from the start to remove the effect of the initial conditions.

Results with original experiment environments

In the first experiment, we evaluate our model using the same environments as Morley‘s

original problem: seven truck paint booths and 14 paint colors. All paint booths are initially

set for a specific color chosen at random and have three limited queues for trucks. Each

truck arrives at a rate of one per unit time (here, a minute), the painting time for one truck is

5-minute, and the time needed for a color change is 1-minute. Each truck can be assigned

82

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

50

100

150

200

250

300

350

400

450

500

T
h
e
 n

u
m

b
e
r

o
f
a
s
s
ig

n
e
d
 c

o
lo

r

Color number

(a)

1 2 3 4 5 6 7
0

20

40

60

80

100

120

N
u
m

e
r

o
f
s
e
tu

p
 p

ro
c
e
s
s

Booth number
1 2 3 4 5 6 7

0

50

100

150

200

T
h
ro

u
g
h
p
u
t
o
f
e
a
c
h
 b

o
o
th

Booth number

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

A
v
e
ra

g
e
 o

f
q
u
e
u
e
 l
e
n
g
th

Booth number
1 2 3 4 5 6 7

0

5

10

15

C
y
c
le

 t
im

e
 o

f
e
a
c
h
 b

o
o
th

Booth number

(b)

1 2 3 4 5 6 7
0

20

40

60

80

100

120

N
u
m

e
r

o
f
s
e
tu

p
 p

ro
c
e
s
s

Booth number
1 2 3 4 5 6 7

0

50

100

150

200

T
h
ro

u
g
h
p
u
t
o
f
e
a
c
h
 b

o
o
th

Booth number

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

A
v
e
ra

g
e
 o

f
q
u
e
u
e
 l
e
n
g
th

Booth number
1 2 3 4 5 6 7

0

5

10

15

C
y
c
le

 t
im

e
 o

f
e
a
c
h
 b

o
o
th

Booth number

(c)

1 2 3 4 5 6 7
0

20

40

60

80

100

120

N
u
m

e
r

o
f
s
e
tu

p
 p

ro
c
e
s
s

Booth number
1 2 3 4 5 6 7

0

50

100

150

200

T
h
ro

u
g
h
p
u
t
o
f
e
a
c
h
 b

o
o
th

Booth number

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

A
v
e
ra

g
e
 o

f
q
u
e
u
e
 l
e
n
g
th

Booth number
1 2 3 4 5 6 7

0

5

10

15

C
y
c
le

 t
im

e
 o

f
e
a
c
h
 b

o
o
th

Booth number

(d)

Figure 4.12: Distribution of assigned truck colors (a) and results for the first experiment
(b)-(d); (a) Approximately 50% of the trucks require one specific color (color 1), and the
other 50% require colors randomly chosen from among the other 13 colors; (b), (c), and
(d) show results from the Market, ABA, and R-Wasps algorithms, respectively, and each
figure comprises the total number of state changes among all agents, throughputs for each
agent, average length of occupied queues, and cycle times, that is the average consumed
time between the previously processed truck and the currently processed truck. The various
colors in the throughputs figures represent the sum of tasks processed by each agent.

to any of the 14 colors, and the required colors are not known in advance. Approximately

50% of the trucks require one specific color, and the other 50% require colors are drawn

randomly from among the other 13 colors.

The experimental results of the market-based approach and the two insect-inspired ap-

proaches are shown in Figure 4.12, and the results of our proposed algorithm inspired by

83

Table 4.2: Comparison results from the original experimental environments.

Num. of change Cycle time Throughput phQueue length
Market 559.30±11.99 7.00±0.00 900.10±0.74 0.10±0.00
ABA 342.70±13.52 7.12±0.06 901.00±1.97 0.95±0.04

R-Wasps 284.20± 8.95 7.33±0.08 900.00±2.50 0.78±0.12
History(1) 269.80±12.44 7.11±0.06 900.60±3.06 0.57±0.05
History(2) 291.80±9,81 7.39±0.08 899.60±2.32 0.90±0.10
History(3) 294.50±8.80 7.37±0.06 899.80±3.94 0.92±0.08

pheromone memory are shown in Figure 4.13. Figure 4.12 shows the distribution of as-

signed truck colors and the performances of the Market, ABA, and R-Wasps algorithms,

respectively. In (a), it shows that one specific color (color 1) captures 50% of all the colors.

Because the simulation ran for 1,000 time steps and the truck is arrived at a rate of one per

unit time, there are almost 500 trucks assigned to one color. In (b)-(d), various colors in the

throughput figures of each algorithm represent different tasks processed by an agent, and

particularly, the white color in the throughput graph represents the task that accounts for

50% of all assigned tasks.

Most agents process several tasks, but the results differ among the algorithms. On the

first hand, in the market-based algorithm, all agents equally process almost all kinds of tasks,

so the average lengths of the occupied queues are low and state changes occur frequently in

all agents. Cycle times of booths are also almost same. On the other hand, the results of the

insect-inspired algorithms show quite different patterns with the market-based algorithm. In

the ABA and R-Wasps algorithms, some agents process one kind of task almost exclusively.

For example, in the ABA algorithm, agents 2 and 3 mainly process one task and show few

state changes. However, because of the waiting time in the queue, the average length of

occupied queues and cycle time increase compared with the market-based algorithm. At

the same time, in the ABA and R-Wasps algorithms, the other five booth agents process

all the other 13 colors, and all state changes occur among those agents. Those results can

be explained using agent specialization characteristics in an insect-based approach. Some

agents are specialized for a specific single color that composes a huge portion of the tasks,

which reduces not only the state changes of the specialized agents but also the total number

of state changes among all agents. The specialization ability of R-Wasps is better than that

of ABA. The color 1 is almost never processed in other agents than the specialized agents

3, 4, and 6.

Figure 4.13 shows the performances of the pheromone memory algorithms. In His-

84

1 2 3 4 5 6 7
0

20

40

60

80

100

120
N

u
m

e
r

o
f

s
e

tu
p

 p
ro

c
e

s
s

Booth number
1 2 3 4 5 6 7

0

50

100

150

200

T
h

ro
u

g
h

p
u

t
o

f
e

a
c
h

 b
o

o
th

Booth number
1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

A
v
e

ra
g

e
 o

f
q

u
e

u
e

 l
e

n
g

th

Booth number
1 2 3 4 5 6 7

0

5

10

15

C
y
c
le

 t
im

e
 o

f
e

a
c
h

 b
o

o
th

Booth number

(a)

1 2 3 4 5 6 7
0

20

40

60

80

100

120

N
u

m
e

r
o

f
s
e

tu
p

 p
ro

c
e

s
s

Booth number
1 2 3 4 5 6 7

0

50

100

150

200

T
h

ro
u

g
h

p
u

t
o

f
e

a
c
h

 b
o

o
th

Booth number
1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

A
v
e

ra
g

e
 o

f
q

u
e

u
e

 l
e

n
g

th

Booth number
1 2 3 4 5 6 7

0

5

10

15

C
y
c
le

 t
im

e
 o

f
e

a
c
h

 b
o

o
th

Booth number

(b)

1 2 3 4 5 6 7
0

20

40

60

80

100

120

N
u

m
e

r
o

f
s
e

tu
p

 p
ro

c
e

s
s

Booth number
1 2 3 4 5 6 7

0

50

100

150

200

T
h

ro
u

g
h

p
u

t
o

f
e

a
c
h

 b
o

o
th

Booth number
1 2 3 4 5 6 7

0

0.5

1

1.5

2

2.5

3

A
v
e

ra
g

e
 o

f
q

u
e

u
e

 l
e

n
g

th

Booth number
1 2 3 4 5 6 7

0

5

10

15
C

y
c
le

 t
im

e
 o

f
e

a
c
h

 b
o

o
th

Booth number

(c)

Figure 4.13: Results of the pheromone memory algorithm for the first experiment: (a)
History(1) algorithm; (b) History(2) algorithm; and (c) History(3) algorithm.

tory(1) with a short length of task history queue, the individual agent is less specialized,

and each agent processes many kinds of tasks, similar to the market-based approach. In

History(2), the task distribution pattern is similar to those of the other insect-based algo-

rithms. It shows a specialized tendency of some agents (agent 4, 5, and 7), which means that

the pheromone memory algorithm can adjust the specialization of agents just by changing

the length of the task history. Also, History(3) shows results similar to those of History(2)

with a little less specialized tendency. The overall comparison results for all algorithms are

85

1 2 3 4 5 6 7
0

50

100

150
T

h
ro

u
g

h
p

u
t

o
f

e
a

c
h

 b
o

o
th

1 2 3 4 5 6 7
0

20

40

60

80

100

N
u

m
e

r
o

f
s
e

tu
p

 p
ro

c
e

s
s

Market

1 2 3 4 5 6 7
0

50

100

150

1 2 3 4 5 6 7
0

20

40

60

80

100

R−WASP

1 2 3 4 5 6 7
0

50

100

150

1 2 3 4 5 6 7
0

20

40

60

80

100

ABA

1 2 3 4 5 6 7
0

50

100

150

1 2 3 4 5 6 7
0

20

40

60

80

100

History(1)

1 2 3 4 5 6 7
0

50

100

150

1 2 3 4 5 6 7
0

20

40

60

80

100

History(2)

1 2 3 4 5 6 7
0

50

100

150

1 2 3 4 5 6 7
0

20

40

60

80

100

History(3)

Figure 4.14: Comparison of results with a new environmental setup; the process time is
changed to 6-minute, and the setup time is changed to 3-minute.

shown in Table 5.1. The History(1) has the best performance in the number of state changes

and it is better in the cycle time and queue length than the other insect-inspired approaches

when all the test algorithms maintains the similar performance in throughput as its com-

petitors. In the original experiment environments, due to the non-uniform task distribution,

specialization characteristics may have a negative effect on the number of task changes.

Results with changes in experimental environments

Next, we change the parameters, such as process time for truck painting, setup time for color

change, number of assigned tasks, and the distribution of tasks, to check the robustness in

various environments. The performance of each algorithm is evaluated in two aspects of

throughput and the number of state changes occurrences because the cycle time and queue

length have no significant difference among the algorithms.

Non-uniform task distribution

86

1234567
0

50

100

150

T
h

ro
u

g
h

p
u

t
o

f
e

a
c
h

 b
o

o
th

1 234567
0

20

40

60

80

100

N
u

m
e

r
o

f
s
e

tu
p

 p
ro

c
e

s
s

Market

1234567
0

50

100

150

1234567
0

20

40

60

80

100

R−WASP

1234567
0

50

100

150

1234567
0

20

40

60

80

100

ABA

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(1)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(2)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(3)

(a)

1234567
0

50

100

150

T
h

ro
u

g
h

p
u

t
o

f
e

a
c
h

 b
o

o
th

1 234567
0

20

40

60

80

100

N
u

m
e

r
o

f
s
e

tu
p

 p
ro

c
e

s
s

Market

1234567
0

50

100

150

1234567
0

20

40

60

80

100

R−WASP

1234567
0

50

100

150

1234567
0

20

40

60

80

100

ABA

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(1)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(2)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(3)

(b)

Figure 4.15: Comparison of results when the number of assigned tasks is changed from 14
to 7 with the same number of agents: (a) 5 minutes process time, and 1 minute setup time;
and (b) 6 minutes process time, and 3 minutes setup time.

First, we change the process time from 5-minute to 6-minute and the setup time from 1-

minute to 3-minute. Those conditions are the maximum values that all agents can process

the tasks without loss of product. In those conditions, no specializations occur among the

agents because the lack of spare queues prevents agent specialization; thus the agents pro-

cess all the tasks equally, as shown in Figure 4.14. The total number of setups for color

87

Table 4.3: Overall comparison of results when the number of uniformly distributed tasks
is 7 with (a) 5-minute process time and 1-minute setup time and (b) 6-minute process time
and 3-minute setup time.

(a)

Num. of change Cycle time Throughput Queue length
Market 569.90±14.65 7.00±0.00 900.10±0.32 0.12±0.00
ABA 149.90±83.17 8.03±00.98 901.40±1.96 0.78±0.17

R-Wasps 40.50±11.51 7.02±0.30 900.80±1.81 0.56±0.04
History(1) 54.10±11.16 7.01±0.12 900.10±1.73 0.46±0.02
History(2) 40.30±9.84 7.03±0.03 900.20±1.14 0.56±0.04
History(3) 38.20±12.66 7.02±0.02 900.70±1.49 0.55±0.04

(b)

Num. of change Cycle time Throughput Queue length
Market 336.30±54.60 7.36±0.25 858.30±31.00 2.25±0.23
ABA 434.20±16.28 7.86±0.09 802.30±9.09 2.66±0.05

R-Wasps 434.20±26.61 7.88±0.11 799.90±11.49 2.65±0.10
History(1) 157.40±10.27 7.04±0.02 900.40±2.27 1.20±0.05
History(2) 368.30±63.76 7.65±0.21 829.00±25.41 2.46±0.22
History(3) 319.50±79.62 7.48±0.22 848.50±29.80 2.30±0.34

changes is almost the same in all the algorithms.

Second, we change the assigned tasks from 14 to 7 with the same number of agents,

and the results of the two cases are shown in Figure 4.15. In (a), we set the process time

as 5-minute and the setup time as 1-minute, and in (b), we set the process time as 6-minute

and the setup time as 3-minute. Those results are clearly similar to the results of the original

experiments. The History(1) algorithm shows the best performance in the number of setup

processes, and History(2) and History(3) show specialization characteristics.

Uniform task distribution

We repeat the previous four experiments with a uniform distribution of color conditions in

the task (the probability that each color is assigned to a truck is the same, so the required

colors are selected randomly among all possible colors). The results are shown in Fig-

ure 4.16-4.17, with 14 tasks in Figure 4.16 and 7 tasks in Figure 4.17. In Figure 4.16, we

obtain results similar to those of the previous experiments. The History(1) algorithm shows

the best performance in the number of setup processes, History(2) and History(3) show spe-

cialization, and the lack of spare queue prevents an agent specialization.

88

1234567
0

50

100

150
T

h
ro

u
g
h
p
u
t
o
f
e
a
c
h
 b

o
o
th

1 234567
0

20

40

60

80

100

120

N
u
m

e
r

o
f
s
e
tu

p
 p

ro
c
e
s
s

Market

1234567
0

50

100

150

1234567
0

20

40

60

80

100

120

R−WASP

1234567
0

50

100

150

1234567
0

20

40

60

80

100

120

ABA

1234567
0

50

100

150

1234567
0

20

40

60

80

100

120

History(1)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

120

History(2)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

120

History(3)

(a)

1234567
0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t
o
f
e
a
c
h
 b

o
o
th

1 234567
0

20

40

60

80

100

N
u
m

e
r

o
f
s
e
tu

p
 p

ro
c
e
s
s

Market

1234567
0

20

40

60

80

100

120

1234567
0

20

40

60

80

100

R−WASP

1234567
0

20

40

60

80

100

120

1234567
0

20

40

60

80

100

ABA

1234567
0

20

40

60

80

100

120

1234567
0

20

40

60

80

100

History(1)

1234567
0

20

40

60

80

100

120

1234567
0

20

40

60

80

100

History(2)

1234567
0

20

40

60

80

100

120

1234567
0

20

40

60

80

100

History(3)

(b)

Figure 4.16: Comparison results of uniform task distribution experiments with 14 tasks: (a)
5 minutes process time, 1 minute setup time; and (b) 6 minutes process time, 3 minutes
setup time.

In Figure 4.17, agent specialization is clearly visible in these experimental results and

the comparison of the results in Figure 4.17 are summarized in Table 4.3. When the num-

ber of tasks is the same as the number of agents, each agent should specialize in a task to

89

1234567
0

50

100

150

T
h
ro

u
g
h
p
u
t
o
f
e
a
c
h
 b

o
o
th

1 234567
0

20

40

60

80

100

120

N
u
m

e
r

o
f
s
e
tu

p
 p

ro
c
e
s
s

Market

1234567
0

50

100

150

1234567
0

20

40

60

80

100

120

R−WASP

1234567
0

50

100

150

1234567
0

20

40

60

80

100

120

ABA

1234567
0

50

100

150

1234567
0

20

40

60

80

100

120

History(1)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

120

History(2)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

120

History(3)

(a)

1234567
0

50

100

150

T
h
ro

u
g
h
p
u
t
o
f
e
a
c
h
 b

o
o
th

1 234567
0

20

40

60

80

100

N
u
m

e
r

o
f
s
e
tu

p
 p

ro
c
e
s
s

Market

1234567
0

50

100

150

1234567
0

20

40

60

80

100

R−WASP

1234567
0

50

100

150

1234567
0

20

40

60

80

100

ABA

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(1)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(2)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(3)

(b)

Figure 4.17: Comparison results of uniform task distribution experiments with 7 tasks: (a) 5
minutes process time, 1 minute setup time; and (b) 6 minutes process time, 3 minutes setup
time.

minimize the occurrence of setup processes. So ideally, if each agent processes a single

task, no setup processes will occur, and Figure 4.17(a) shows those expected results. The

History(2) and History(3) methods show that each individual agent processes one task al-

90

1234567
0

50

100

150

T
h
ro

u
g
h
p
u
t
o
f
e
a
c
h
 b

o
o
th

1 234567
0

20

40

60

80

100

N
u
m

e
r

o
f
s
e
tu

p
 p

ro
c
e
s
s

Market

1234567
0

50

100

150

1234567
0

20

40

60

80

100

R−WASP

1234567
0

50

100

150

1234567
0

20

40

60

80

100

ABA

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(1)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(2)

1234567
0

50

100

150

1234567
0

20

40

60

80

100

History(3)

(a)

1234567
0

50

100

150

T
h
ro

u
g
h
p
u
t
o
f
e
a
c
h
 b

o
o
th

1 234567
0

20

40

60

80

N
u
m

e
r

o
f
s
e
tu

p
 p

ro
c
e
s
s

Market

1234567
0

50

100

150

1234567
0

20

40

60

80

R−WASP

1234567
0

50

100

150

1234567
0

20

40

60

80

ABA

1234567
0

50

100

150

1234567
0

20

40

60

80

History(1)

1234567
0

50

100

150

1234567
0

20

40

60

80

History(2)

1234567
0

50

100

150

1234567
0

20

40

60

80

History(3)

(b)

Figure 4.18: Comparison of results with 5 uniform distribution tasks: (a) 5 minutes process
time, 1 minute setup time; and (b) 6 minutes process time, 3 minutes setup time.

most exclusively, though each agent shows a few task changes. This tendency induces better

specialization ability than R-Wasps. In History(1), each agent normally processes four or

91

1 2 3 4 5 6 7
0

50

100

150

Task history L=0

T
h
ro

u
g
h
p
u
t

1 2 3 4 5 6 7
0

50

100

150

Task history L=1
1 2 3 4 5 6 7

0

50

100

150

Task history L=3
1 2 3 4 5 6 7

0

50

100

150

Task history L=5
1 2 3 4 5 6 7

0

50

100

150

Task history L=10

(a)

1 2 3 4 5 6 7
0

50

100

150

Task history L=0

T
h
ro

u
g
h
p
u
t

1 2 3 4 5 6 7
0

50

100

150

Task history L=1
1 2 3 4 5 6 7

0

50

100

150

Task history L=3
1 2 3 4 5 6 7

0

50

100

150

Task history L=5
1 2 3 4 5 6 7

0

50

100

150

Task history L=10

(b)

Figure 4.19: Comparison of results depending on the length of the task history (7 tasks for
7 agents, 5-minute process time, 1-minute setup time): (a) non-uniform task distribution;
and (b) uniform task distribution.

five tasks. When the process and setup times become longer, as shown in Figure 4.17(b),

the specialization pattern disappears, and the number of state changes increases as in the

previous results. In the number of task changes, the History algorithms show similar per-

formances, and History(1) has the best performance among the five algorithms. In addition,

History(3) has the properties found in both History(1) and History(2): specialization as in

History(2) and various task assignments as in History(1). Because of its long history of

task queue, History(3) could have a tendency to specialization, but because of the weighted

history, that tendency becomes a little weaker. Because of those merged characteristics,

History(3) shows better best performance than History(2) in the number of setup processes

and throughput of each booth as shown in Table. 4.3(b). The results when the number of

tasks is smaller than the number of agents are shown in Figure 4.18, and they confirm the

tendency of each algorithm shown in the previous experimental results. History(1) or His-

tory(3) shows good performance, depending on the environmental situation.

92

1 2 3 4 5 6 7
0

50

100

150

200

5 tasks

T
h
ro

u
g
h
p
u
t

1 2 3 4 5 6 7
0

50

100

150

200

10 tasks
1 2 3 4 5 6 7

0

50

100

150

200

15 tasks
1 2 3 4 5 6 7

0

50

100

150

200

20 tasks
1 2 3 4 5 6 7

0

50

100

150

200

25 tasks

(a)

1 2 3 4 5 6 7
0

50

100

150

200

5 tasks

T
h
ro

u
g
h
p
u
t

1 2 3 4 5 6 7
0

50

100

150

200

10 tasks
1 2 3 4 5 6 7

0

50

100

150

200

15 tasks
1 2 3 4 5 6 7

0

50

100

150

200

20 tasks
1 2 3 4 5 6 7

0

50

100

150

200

25 tasks

(b)

Figure 4.20: Comparison of results depending on the number of tasks in History(2) (7
agents, 5-minute process time, 1-minute setup time): (a) non-uniform task distribution; and
(b) uniform task distribution.

1 2 3 4 5 6 7
0

50

100

150

200

250

3min Painting time

T
h
ro

u
g
h
p
u
t

1 2 3 4 5 6 7
0

50

100

150

200

250

4min Painting time
1 2 3 4 5 6 7

0

50

100

150

200

250

5min Painting time
1 2 3 4 5 6 7

0

50

100

150

200

250

6min Painting time
1 2 3 4 5 6 7

0

50

100

150

200

250

7min Painting time

(a)

1 2 3 4 5 6 7
0

50

100

150

3min Painting time

T
h
ro

u
g
h
p
u
t

1 2 3 4 5 6 7
0

50

100

150

4min Painting time
1 2 3 4 5 6 7

0

50

100

150

5min Painting time
1 2 3 4 5 6 7

0

50

100

150

6min Painting time
1 2 3 4 5 6 7

0

50

100

150

7min Painting time

(b)

Figure 4.21: Comparison of results depending on the process time in History(2) (14 tasks
for 7 agents, 5-minute process time, 1-minute setup time): (a) non-uniform task distribution;
and (b) uniform task distribution.

93

Results with changes of parameters

We analyze the effect of system parameters in our proposed algorithm. Figures 4.19, 4.20,

and 4.21 show the changes in system performance in various environments, such as task

history length, the number of tasks, and the process time under two different patterns of task

distribution. Agent specialization is well shown in Figure 4.19. Depending on the pattern of

task distribution, some agents or all agents process only one task, and that effect increases

with the longer length of the task history. Even when the variety of tasks is much larger

than the number of agents, if the portion of one specific task is larger than the throughput

of a single agent, specialization is maintained, as shown in Figure 4.20. For example, in

Figure 4.20(a), there are 25 tasks for 7 agents, and some agents (agent 2, 6, 7) still process

one task mainly. However, if few spaces are available in the queue of an individual agent,

then specialization disappears, as shown in Figure 4.21.

One study [111] focuses on market-based approach and Campos’s insect-inspired model

approach and finds a trade-off between the cycle time and color changes. Recently, Lichocki

et al. (2012) reported that an algorithm’s system parameters can be tuned using an evolution-

ary algorithm or hand-tuning technique to obtain an optimized performance in the division

of labor based on the response threshold model . Thus, it is important to select appropriate

parameters to maximize system performance. All our experiments might show improved

performances with better choices for the parameter values of each algorithm. However,

evolutionary algorithm or fine-tuning is not recommended in factory-domain applications

because it generally takes a long time to get an optimal solution and it is not easy to adapt

system parameters to dynamic environmental changes.

In addition, our proposed algorithm generally shows better performance than insect-

inspired model approaches. All algorithms apply the response threshold model based on the

stimulus-threshold relation, but the core difference is how they regulate the threshold values

according to task performance. In two insect-inspired model approaches, the threshold

value of the performed task is decreased and the threshold values of non-performed tasks

are increased. To have the specialization characteristics, the gap between the threshold value

of performed and the threshold values of non-performed tasks is spread. However, in our

algorithm, the threshold value of the recent performed task is decreased and the threshold

value of the earlier performed task is increased. This principle may be more effective in

dynamic scheduling problem based on the stimulus-threshold relation because the threshold

is changed depending on its own result of task performance.

In our pheromone memory algorithm, the main parameter that affects the performance

94

is the size of pheromone memory, that is, the length of the task history. We only need to

adjust the length of the task history according to the environment to optimize performance,

which could be an easy tuning process. In general, a shorter task history produces faster

convergence to the desired division of labor, and as the length of the task history increases,

agent specialization capability increases. So History(1) shows better performance than His-

tory(2) or History(3) in the original experiment environments, and History(2) or History(3)

show better performance than History(1) when the number of tasks is the same as or smaller

than the number of agents.

Until now, we have presented a new pheromone memory approach to solving a dynamic

scheduling problem to minimize the total number of state changes in a factory application

problem. Each machine maintains a limited, constant-sized task history storing its recently

completed tasks, and the model calculates appropriate threshold values using a pheromone-

based approach. The specialized tendency is controlled by the length of the pheromone

memory, and various experimental results show that the proposed method performs mostly

better than other conventional methods.

4.5 Summary of Chapter 4

In this chapter, we study the effect of the variable threshold model. In a decentralized ap-

proach, it is important to estimate task demands and regulate threshold values. To accom-

plish this, each agent stores local information about sensed tasks in a history window of

finite length. The agent performs sensing behavior periodically, and the types of detected

tasks within the sensing range are stored in sequence. New information replaces the old-

est information, and the proportion of each task in the history is used as a measure of the

needed information. This measure is generated without any centralized control methods.

The method can produce varying tendencies to perform tasks by changing the response

thresholds given in the task selection function. This ultimately promotes a desired group-

level task distribution and reduces the number of task changes. The suggested method is

tested using a simulation of multiple robots, and the results of the dynamic task allocation

process demonstrate that the proposed method is effective even when only local information

about the environment is given to an individual agent in a group.

Scheduling problems in factory domain applications are usually concern many parallel

machines, with each machine is able to process several tasks. In most cases, changing the

95

current machine state to another state to process a different task incurs additional mate-

rial costs and time. If the overall system can maintain expected performance, minimizing

those state changes is very beneficial, and agent-based approaches inspired by task alloca-

tion strategies in several social insects have gained increasing attention as offering possible

solutions. The basic concept is based on a stimulus-threshold relation that an individual

agent determines whether to perform a given task or not based on two factors: the environ-

mental external stimuli of the task and the internal threshold values of all possible tasks. In

this approach, obtaining proper threshold values is directly related to overall system perfor-

mance, and we present a pheromone-based approach obtaining appropriate threshold val-

ues. Each agent maintains a limited, constant-sized task history queue of recently processed

tasks, and each agent’s information is individually used to calculate the threshold values of

tasks. From the various experimental results, we show that the performance of the proposed

method performs is comparable to that of other conventional methods.

96

Chapter 5

Task allocation for sequential tasks

In this chapter, we present a self-organized task allocation based on the response threshold

model with decomposing a task into sequentially interdependent subtasks and allocating a

group of agents to the subtasks. Many insect societies use various task partitioning strategies

and the tasks are often divided into sequentially connected subtasks. It is known that the

task partitioning is greatly helpful for a colony’s survival [186, 197, 64, 191].

In swarm robotics, there have been studies of task partitioning to handle the transfer

of objects [178, 181, 28, 121]. Our proposed method shows a self-organized process that

originates from the individual decision of robots based on the surrounding local information.

The method handles an indirect transfer of food objects in the foraging task. A swarm

of agents interact in the cache transfer area for their task change. The method does not

require a central controller and the robots do not require communication with each other.

Each robot decides whether to switch between subtasks depending on the local information

available individually. The response threshold model ultimately controls the task transition

rate depending on the task demand and the number of neighboring agents for each task. The

repetitive and continuous task selection leads to the desired task distribution in a group level

and we analyzed the convergence of task distribution.

In addition, we analyze the effective of task partitioning in various conditions. Then

we will show that it ultimately improve the foraging performance. Existing works on task

partitioning in swarm robotics have mostly considered object transfer among homogeneous

robots. They focused on the object retrieval with a group of robots without any differenti-

97

ation of robots. Here, we handle robot agents with varying moving speeds. We tested the

foraging task with varying moving speeds of agents and found that the task can be self-

organized efficiently into subtasks with differentiated agent classes.

This chapter has been submitted in journals [126, 129], accepted for publishing in a journal

[129], and prepared to submitted in a journal [133].

5.1 Methods

We describe the problem of task allocation for a foraging task consisting of sequential sub-

tasks. The goal of the method is to determine an allocation of robots to subtasks needed to

complete the overall transfer task. It is balancing the number of agents performing each task

and maximizing the swarm-level performance, that is, the number of food objects retrieved

per time unit. In some cases, robots collect objects in an environment and immediately re-

move them on that spot [92]. Or robots are supposed to obtain items from the resource and

deliver them to another common location or the central place such as home or nest [174, 76].

In our foraging task, collected objects are transported indirectly via a cache area to the nest.

5.1.1 Description of foraging task

We assume that a foraging task is composed of two interdependent subtasks, resource-

harvesting and resource-storing tasks. The two primary behaviors will be performed and

the simplified state diagram of robots performing the foraging task is shown in Figure 5.1.

Agents harvest from resources and deposit food in a cache area. Food from the cache area

is supposed to be stored in a central nest, and another agents transport food items to the

nest. Harvesting agents travel to a resource area, pick up a food pellet and deliver it so that

it can be processed later by a storing agent. To facilitate the transfer of food items to the

nest, harvesting agents deposit their food items in a cache. Storing agents travel to a cache

area, pick up a food pellet if one is present and deliver it to the central nest. The set of

sequential tasks (harvesting from a specific resource area and storing food obtained from

the cache in the central nest) are inter-linked. The harvesting task is a prior condition to the

resource-storing task and the whole foraging task that transfers one object from the resource

area to the nest is finished if both subtasks are completed.

98

storing task

harvesting task

go for foraging go to transfer area

change to harvesting task

change to storing task

go to the nest

pick up object pick up object

drop object store object

Figure 5.1: Simplified state diagram for robots performing the foraging task. Solid line be-
longs to the harvesting subtask and dashed line belongs to the storing subtask. The behavior
of each robot is determined by the subtask it is currently performing.

The performance of the swarm, the total number of objects stored in the central nest,

relies on the number of robots in each area working on the two different subtasks and how

the robots interact for object transfer. Varying the proportion of agents to each subtask yields

different performances at the overall swarm level. The subtask for storing agents is greatly

affected by the subtask for harvesting agents, because food items should be transported by

harvesting agents before they are stored in the nest. As mentioned earlier, we consider the

foraging task in which object transfer at the cache area is indirect. A robot that arrives at the

cache area (transfer area) drops its carrying food object and returns to the resource area. To

obtain an optimal allocation, the number of robots working on the storing subtask should

be regulated appropriately to transport objects located in the transfer area to the nest. To

maximize the overall performance, the proposed method relies on balancing the number of

objects located in the transfer area and the number of robots working on the storing task

adaptively. The total performance also depends on the characteristics of subtasks or the

information about the surrounding environment.

5.1.2 Task selection method

Each agent autonomously decides whether to change the current task or not. The individual

changes the current task according to the task selection function. The agent has a changeable

99

0 5 10 15 20

Task demand (with τ=1)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty

θ
il
=4

θ
il
=6

θ
il
=8

θ
il
=10

θ
il
=12

θ
il
=14

(a)

0 5 10 15 20

Task demand (with θ
il
=10)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty

τ=0.1

τ=0.2

τ=0.5

τ=1

τ=2

τ=5

(b)

Figure 5.2: Task performing probability curves for various values of (a) θil(t) and (b) τ with
a given range of task demand dil(t). τ represents the slope of curve and θil(t) produces
different response value given the same value of dil(t). This is also true of τ , except at the
point where all curves intersect.

threshold for each task and responds differently to the same stimulus, which can coordinate

the foraging behavior effectively. As a result, a collection of each agent’s response produces

a swarm-level performance in a self-organized manner.

To explain a mathematical model, we assume that each agent l has a response threshold

θil(t) for task i. Then an individual agent’s willingness to perform task i per unit time is

a stochastic term calculated by a sigmoid function based on the response threshold model.

For each agent, the task selection function for calculating the probability is given by

Pil(t) =
1

1 + e−
1
τ

[dil(t)−θil(t)]
, ∀i = 1, . . . ,M (5.1)

with task demand of task i for agent l, dil(t), the threshold value θil(t), and the control

parameter τ , which determines the slope of transition probability. Task demand dil(t) is the

actual number of agents required to perform task i and dil(t) is the detected task demand

by agent l within a limited sensing range.

Each agent decides to change the current task or not based on the probability obtained

from Equation (5.1). A agent currently performing task i changes to task j if the probability

of task j is the largest among all the values of tasks. The threshold θil(t) decreases and the

task selection probability for task i increases. If the task demand is relatively lower than the

100

fraction of agents performing that task, the threshold of the corresponding task increases.

In the aspect of an overall system, the task transition rate, kij(t), can be defined as

kij(t) =
nij(t)

ni(t)
(5.2)

where nij(t) represents the number of robots currently performing task i and becoming to

have the maximum probability for task j. That is, those robots change their task to task j.

This value kij(t) changes depending on the condition of each agent but will decrease as the

overall system converges to the desired task distribution.

Figure 5.2 shows various response curves for different values of τ and θil(t) with a given

range. Figure 5.2(a) shows that varying τ ’s produce the different task transition probability,

given the same task demand and threshold. Smaller τ has flatter task transition probability

curves and higher τ has steeper curves (the task transition probability grows fast as the

task demand increases). Figure 5.2(b) shows that an agent with smaller θi tends to respond

to small stimulus values and an agent with higher θil(t) will not respond to small stimulus

values. For dil(t) < θil(t), the probability of a given task is close to 0 and for dil(t) > θil(t),

this probability is close to 1. At dil(t) = θil(t), Pil(t) = 0.5. In the rest of the paper, we

consider the case τ = 1 simply, but similar results can be obtained for any τ (τ > 0).

In constrat to Equation (4.4), task selection function in Chapter 4, dil(t) and θil(t) is not

normalized. We directly use the counting information not the normalized proportion.

Regulation of response threshold

To obtain the desired task distribution in a swarm of robots, the task selection probability

for a specific task can be increased by lowering the threshold of that task, or decreased

by increasing the threshold. This threshold-updating process results in the emergence of

specialized agents who are more responsive to tasks with lower thresholds than the others

and this tendency produces a gradual migration of task allocation.

In the response threshold model, the threshold is usually updated after performing task

[23, 212, 41]. Completing a task induces a decrease in threshold of that task and an increase

the thresholds of the other tasks not performed. The more often an agent performs a specific

task, the lower its response threshold to this type of task, and vice versa.

In our task allocation algorithm, the individual agent updates its response threshold

considering not only the associated task demand but also using local information from other

101

agents, that is, a task state of other agents. This tendency can be represented as follows:

θil(t+ 1) = θil(t)− η {dil(t)− nil(t)} (5.3)

where θil(t) is constrained to the interval [θmin, θmax] and η is a learning rate for strength-

ening or weakening factors to regulate the threshold over time. In this paper, the range of

threshold is set to [θmin, θmax] = [1, 50] for a simple application and η is selected as 1 to

change the tendency of individual for a specific task 2% per unit time.

Equation (5.3) means that threshold θil(t) for task i is regulated by the fraction of agents

performing that task. If the task demand dil(t) is above the quorum, nil(t), the threshold

of the corresponding task is decreased and thus the task selection probability for that task is

increased. We refer to such a tendency as task specialization and this is further accelerated

until dil(t) drops below nil(t). If there are more task demands than the fraction of agents

being able to perform that task, then another agent has a chance to work on the task by low-

ering its threshold and it increases the probability to perform the task. From the repeated

process, each agent becomes to have a tendency to perform one specific task and this spe-

cialization reduces task changes at equilibrium state, maintaining the expected division of

labor.

5.1.3 Convergence analysis

We show that the microscopic behaviors and interaction rules are automatically generated

through maximizing the performance evaluation function of the overall system.

Analysis with behavior

In a given foraging task, each agent has no information about the desired target distribution,

x̄i, and the current distribution, xi, then they instead regulate the task distribution with the

following assumption,
xj
x̄j
' nj/N

dj/
∑M

j=1 dj
∝ nj
dj

(5.4)

where nj is the number of agents performing task j and dj is the demand of task j; the

demand can be estimated with the number of observed objects. Equation (5.4) indicates

102

that task demand, dj , is instead used to estimate the desired distribution, x̄j , and the number

of agents observed in the vicinity, nj , is used to estimate the current distribution, xj . Then

Equation (4.15) can be written as

dV

dt
=

∑
∀j|(i,j)∈E

(
xj
x̄j
− xi
x̄i

)
kij x̄i

(
xi
x̄i
− 1

)

'
∑

∀j|(i,j)∈E

(
nj
dj
− ni
di

)
kij
x̄i
di

(ni − di)
(5.5)

The x̄i and di are non-negative values. If we design the kij(ni − di) has an opposite sign

to (nj/dj − ni/di), by design if nj/dj > ni/di, then kij(ni − di) < 0; the transition rate

kij has an opposite sign to (ni − di), and if nj/dj < ni/di, then kij(ni − di) > 0; the

transition rate kij has an same sign to (ni−di), Equation (4.16) can converge to the desired

distribution.
dV

dt
'

∑
∀j|(i,j)∈E

(
nj
dj
− ni
di

)
kij
x̄i
di

(ni − di) < 0 (5.6)

The obtained design rule for converging to the desired performance is reflected in the

threshold updating rule in Equation (5.3). If the task demand dil(t) of task i is relatively

higher than the number of agents nil(t), in the neighborhood, performing task i, it needs to

increase the probability Pil(t) by decreasing the threshold θil(t) for task i, which induces

the increasing number of agents performing that task and the transition rates kij and kji are

regulated adaptively in a overall system level.

Analysis with object flows

Modeling material flows is another view whether task allocation can be regulated by a com-

mon transfer area. For easy understanding, we first explain based on our simulation envi-

ronment for the foraging task with, the assumption that there are three tasks: harvesting,

transferring, and storing tasks.

The first step is to model the rate at which the harvesting robots search for, find, and

transfer the collected objects into the first transfer area. We assumed that collecting produc-

tivity scales with the density of prey. The rate of the transferred objects, dh(t), increases

with an increasing numbers of harvesting agents, nh(t), and a decreasing radius of the har-

103

vesting area, rh, with a constant factor of αh. Then the amount of collected food items per

unit simulation time step is given by:

dh(t)

dt
= −αh

nh(t)

r2
h

dh(t) (5.7)

This formulation describes the dynamics of the collected items. The first area is conceived

of as the number of food items that are located in the environment and that are waiting for

transporters to take them to the nest.

In a sequential task, the transfer area is an important location because it is regulated on

both sides by robots performing injection tasks. To describe the dynamics of the objects

in the transferred area, we have to consider the flow of objects. The number of objects

increases with the influx of the collected materials from the harvesting area. In parallel, it

decreases with the flux of materials that are transported from the transfer area to the next

area to be stored in the nest by storing robots. In the equilibrium state, the number of

transferred food items should be maintained. This means that if the rate is the same, then

the number of robots between the injected areas is indirectly related to the size of area. If

the area is large, then more robots will have to be assigned to that task in order to maintain

the same transfer rate.

To explain the mathematical model, we assume that this rate depends on the number of

working robots, nt(t), and objects, dt(t). A higher density of objects in the environment

results in quicker encounters with objects by transporter robots, and thus the transportation

rate will increase as the density of objects increases. Thus transport rates in the transferred

area will be changed as:

dt(t)

dt
= αh

nh(t)

r2
h

dh(t)− αt
nt(t)

r2
t

dt(t) (5.8)

Similar to Equation (5.8), the dynamics of the objects inside the storing area can be de-

scribed:

ds(t)

dt
= αt

nt(t)

r2
t

dt(t)− αs
ns(t)

r2
s

ds(t) (5.9)

where ds(t) is the number of objects in the storage area and ns(t) is the number of robots

performing the storing task. We assumed that the objects are stored in the nest over time

with a constant rate, αs. The total number of objects stored in the nest can be described by

104

the second term of Equation (5.9). Then, the overall state equation can be merged as below:


dh(t)/dt

dt(t)/dt

ds(t)/dt

 =


−αhnh(t)/r2

h 0 0

αhnh(t)/r2
h −αtnt(t)/r2

t 0

0 αtnt(t)/r
2
t −αsns(t)/r2

s




dh(t)

dt(t)

ds(t)

 (5.10)

In case of M-subtasks,



d1(t)
dt

d2(t)
dt

...

dM−1(t)
dt

dM (t)
dt


=



−α1n1(t)
r21

0 · · · 0 0

α1n1(t)
r21

−α2n2(t)
r22

· · · 0 0

...
...

. . .
...

...

0 0
αM−2nM−2(t)

r2M−2

−αM−1nM−1(t)

r2M−1
0

0 0 0
αM−1nM−1(t)

r2M−1

−αMnM (t)
r2M





d1(t)

d2(t)

...

dM−1(t)

dM (t)


(5.11)

In a sequential task, task changes only occur between the injected tasks. Both harvesting

and storing robots can be changed only to the transferring task, while transferring robots can

be changed to all other tasks. So, the state matrix can be represented as the lower triangular

matrix and all diagonal entries are negative. This means that all the states converge to the

stable state, even in multiple stages transfer cases.

5.2 Simulation environment

In our foraging task scenario, the overall foraging task is partitioned into two subtasks; the

harvesting subtask and the storing subtask. The harvesting and the storing subtasks have

a sequential interdependency as they should be performed one after the other in order to

complete the overall task sequence; transporting an object from the resource to the nest. We

first explain the experimental environment. Then we evaluate the method using a swarm of

105

−6 −4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4

5

L

(a)

−6 −4 −2 0 2 4 6

−5

−4

−3

−2

−1

0

1

2

3

4

5

L

(b)

Figure 5.3: Snapshot of simulation experiments: (a) snapshot of the initial state that all
robots are assigned to harvesting task; and (b) snapshot of a desired state that the proper
number of robots are assigned to each subtask, harvesting and storing tasks, according to its
task demand. A swarm of robots are allocated to two subtasks, harvesting and storing tasks
that are sequentially interdependent. Robots working on the harvesting task are represented
by red color circles and robots working on the storing task are represented by blue color
circles. Unladen robots that move around to pick up empty objects are shown with circles
and robots that transfer objects to their destination are shown with color-filled circles, re-
spectively.

robot agents in various simulation experiments.

5.2.1 Environment

The environment is partitioned into three areas. We refer to the three areas marked with

three different ground colors as the harvesting area, containing food items to be collected,

the cache area (transfer area) as a common storage where objects are collected or dropped,

and the central nest where objects are stored finally. Figure 5.3 is a snapshot of the simula-

tion experiment. The yellow-colored circular area in the center stands for the central nest,

the middle zone in sky-blue color indicates the cache area and the outer white-colored area

is the harvesting area where food objects represented by star shapes are randomly scattered.

The radius of the inner circle is 1 m while the middle and outer radius that limits the range

of the harvesting and storing task are 3 m and 5 m, respectively. Additionally, a light source

106

is located at the center of arena. All the robots can sense the direction of the light source,

which plays a role of a reference compass.

Each robot is equally capable of completing each subtask and only one type of subtask

can be assigned to a robot at any time. A robot working in the harvesting area picks up

an object and transports it to the cache area. By dropping the carrying object in the cache

area, the object is transferred indirectly to robots working on the storing task. The robots

working in the cache area collect objects only in that area and transport them to the nest.

Since objects are transferred indirectly, an additional behavior for object transfer between

robots is not necessary.

Each robot moves around in the harvesting area, picks up one food pellet at a time,

and delivers it to the cache (transfer) area. To transfer objects, robots head towards the

light source until they arrive in the transfer area. They drop the carrying objects at random

location on the way to the light source and then go back to the harvesting area and move

around to pick up another object again. Robot working on the harvesting subtask shuttles

between a food resource and the transfer area. Robots performing the storing task can

pick up food pellets only within the transfer area and transport them to the central nest. In

Figure 5.3, robots working on the harvesting task are represented by red-colored circles and

robots working on the storing task are represented by blue-colored circles. Unladen robots

are shown with red or blue-color circles and laden robots that transport food objects to their

destination are shown with color-filled circles, respectively.

There are a number of objects in the harvesting area and no depletion occurs. The black

star shapes stand for objects. In the experiment, an object is picked up by a robot agent and

the new one is generated in an arbitrary place in the harvesting area only after the object

is dropped in the transfer area. When an object is transported from the transfer area to the

central nest, that object is just cleared. The central nest has an infinite capacity for storage.

There are a fixed number of objects in the environment at any given time, given that

they are simulated to appear and disappear, and no depletion occurs. The black star shapes

stand for objects. An object is picked up by a robot in the harvesting area and is transported

to the central nest via the transfer area. A new one is generated in an arbitrary place in the

harvesting area only after the object is dropped in the central nest, that object is just cleared.

The central nest has an infinite capacity for storage.

107

5.2.2 Robot behaviors

To imitate real robot behaviors, we take a Khepera-like robot model for simulation [159]

using MATLAB. The robot has a round shape with a diameter of 12 cm. It can hold an

object to be transported. The robot is a two-wheel, differential drive mobile robot. It can

freely control the wheel motor speeds to turn its moving direction. It is equipped with infra-

red sensors, used to perceive obstacles up to a distance of 20 cm and sense the direction of

a light source up to a distance of 16 m. Ground sensors positioned underneath the robot can

detect the color of the floor ground. An omni-directional camera is mounted on the top of a

robot to perceive objects as well as neighboring robots up to a distance of about 3 m. Each

robot can emit a light depending on what type of task it is currently doing, which helps

count the number of neighboring agents for each task. There is no communication between

robots and the maximum moving speed of robots is 10 cm per time step.

Each robot performs a foraging task by collecting the closest object. It finds an object

near the robot and moves to grip the object. Robots can detect objects and neighboring

robots by using their omni-directional camera. Simultaneously, a robot performs collision

avoidance behaviors for preventing collision with other robots and the outer wall of the

arena. Each robot uses eight infrared sensors to read how close other robots or obstacles

are positioned to them. The sensors are positioned uniformly around the robot to cover 180

degrees on the front side of robot. A robot can change its moving direction when the sensors

detect any obstacle within their sensing range.

Initially, all robots start at random positions in the harvesting area. When robot i with a

food object arrives in the transfer area, it drops the carrying object and updates its threshold

θil(t). In our foraging task, a robot just decides whether to change the current task or not,

only one threshold θil(t) for the storing task is needed. For this, a robot handles the visual

information from the omni-directional camera. The necessary information for the threshold

updating is a task demand dil(t), which is estimated as the number of objects in the transfer

area and the number of robots nil(t) performing the storing task. We assume that a robot can

distinguish objects and robots from visual information obtained using an omni-directional

camera mounted on the top of a robot to perceive objects as well as neighboring robots up

to a distance of about 3 m.

Each robot initially has the minimum threshold θil = θmin and updates it. Harvesting

agents pick up a food pellet in the harvesting area and drops it in the cache area. If its task

selection probability becomes lower than that of the other tasks, they decide to change it

to the other subtask. They stay in the cache area and start to perform the storing task from

108

that moment. Here, there is no delay or extra cost to change its task. Robots working on

the storing task also decide whether to continue to perform the current task or change it to

the harvesting task based on local information. While agents perform the storing task, they

continuously update their thresholds at every fixed period (every 20 time steps).Harvesting

agents update the thresholds after they drop the food object in the cache area.

5.3 Simulation results

In the dynamic task allocation environment, the amount of task demands or the number of

robots may be changed, for example, by adding new objects or removing some robots. A

robot may switch its task depending on the environmental situation. In a typical foraging

task, the performance can be determined by the number of foraged objects, exhausted time,

or consumed energy. If there needs some cost for changing a task, it is also recommended

to minimize the task switching maintaining the desired division of labor. In the simulations,

we measure the number of objects located in the cache area, the number of robots working

on the storing task, and the proportion of agents assigned to each subtask. There are 50

robots and 50 food objects and each simulation runs for 2,000 time steps. The same number

of robots as food items is used to compare the performance with the theoretical expected

results. Each simulation is repeated twenty times.

For sensors data acquisition and motor control for movement are considered with the

inclusion of noisy signals to imitate real robots. However, they never fail to obtain informa-

tion from the camera image and picking or dropping behaviors for transferring an object.

These behaviors in real robots may be slightly different from those in simulated robots.

Therefore, the performance of real swarm robots may be slightly different from that of sim-

ulated robots.

5.3.1 Result of task allocation

In the beginning of foraging task, all robots are in the harvesting area (all robots are assigned

to the harvesting task) and the number of food objects transported to the transfer area in-

creases as time passes. Some robots with lower thresholds start to switch to the storing

task, and ns (number of robots for the storing task) increases and nh (for harvesting task)

decreases. Then a smaller number of objects in the harvesting area will be delivered to the

109

0 500 1000 1500 2000
0

10

20

30

40

50

60

N
u
m

b
e
r

o
f
ro

b
o
ts

 f
o
r

s
to

ri
n
g
 t
a
s
k

Time steps

Robot=50,object=50

Robot=100,object=50

Robot=100,object=100

(a)

0 500 1000 1500 2000
0

10

20

30

40

50

N
u
m

b
e
r

o
f
o
b
je

c
ts

 i
n
 t
ra

n
s
fe

r
a
re

a

Time steps

Robot=50,object=50

Robot=100,object=50

Robot=100,object=100

(b)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a
ti
o
 o

f
ro

b
o
ts

 f
o
r

h
a
rv

e
s
ti
n
g
 t
a
s
k

Robot=50,object=50

Robot=100,object=50

Robot=100,object=100

(c)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a
ti
o
 o

f
ro

b
o
ts

 f
o
r

s
to

ri
n
g
 t
a
s
k

Robot=50,object=50

Robot=100,object=50

Robot=100,object=100

(d)

Figure 5.4: Various results of an original simulation: (a) change of the number of robots
working on storing task; (b) change of the number of objects remaining in the transfer area;
(c) progress of the proportion of robots assigned to harvesting task; and (d) progress of the
proportion of robots assigned to storing task. Since all robots are assigned to harvesting task
initially, they all start with harvesting task. Then the swarm is split properly by switching a
proper number of robots from harvesting task to storing task.

cache (transfer) area from the resource and an appropriate number of robots are assigned

to each subtask. The proposed task allocation algorithm can regulate the labor by adjusting

the number of robots performing the storing task properly according to the change in the

number of food pellets in the cache area.

Figure 5.4 shows the overall task allocation process of the proposed algorithm (black

line). For comparison, different number of robots and objects run for comparison (red and

blue colored lines). The maximum number of robots working on the storing task is 20 and

110

the average number of objects remaining in the transfer area is also about 20. One robot is

needed to collect an object in the transfer area. Thus, the same number of storing agents

as the number of food objects in the transfer area will be maintained. Both values show

the dynamic change of states with some amount of variances as shown in Figure 5.4(a)-(d),

but the proportion of robots assigned to each task converges to the stable states as shown in

Figure 5.4(c)-(d).

When the number of robots and objects are simultaneously doubled (red colored line),

the similar proportions of robots are assigned to harvesting and storing task, respectively as

shown in Figure 5.4(c)-(d), while the number of robots for storing task and the number of

objects in the transfer area are doubled as show in Figure 5.4(a)-(b). However, when only

the number of robots is doubled (blue colored line), the remaining objects in the transfer

area is still 20 and less robots compared to the total number of robots are needed to perform

the storing task. So the proportion of robots assigned to harvesting task is higher than others.

In a foraging task, when the group harvesting from the resource confronts a higher

task demand at the transfer area by observing many food objects, some harvesting agents

get to have a higher probability to switch to the storing subtask. When the storing group

experiences a lower task demand, some robots storing objects will therefore be more likely

to switch to the harvesting task. The number of objects remaining in the transfer area will

gradually reach the equilibrium state. Additionally, the proportion of the two groups will

become equal. There is some overshoot in an earlier time due to the tipping effect. This is

because the initial thresholds of all robots are given completely same and it will be improved

if the threshold fluctuates.

Figure 5.5 shows the changes of the threshold of all robots and the number of task

changes of an individual robot. All robots start with the minimum threshold (θmin) and

after updating the threshold, the distribution of thresholds are changed as shown in Fig-

ure 5.5(a). Each robot has a different threshold and this tendency induces a different re-

sponse to the changes of environment and finally leads to the division of labor. A robot

with lower thresholds has more specialized tendency to perform a specific task without task

change and this leads to less frequent task changes for the individual robots. This kind of

task adaptability needs frequent task changes at the initial state and a small number of task

changes are needed after the task distribution converges to the stable state.

As shown in Figure 5.5(b), during the first 200 simulation time steps, a steep increase

is observed, but after that time, the slope becomes to follow a gentle curve. The number of

task changes becomes small while the task partitioning converges to the desired stable state.

111

0 10 20 30 40 50
0

10

20

30

40

50

Robots

T
h

re
s
h

o
ld

 v
a

lu
e

(a)

0 500 1000 1500 2000
0

50

100

150

200

250

300

N
u

m
b

e
r

o
f

ta
s
k
 c

h
a

n
g

e
s

Time steps

Robot=50,object=50

Robot=100,object=50

Robot=100,object=100

(b)

0 500 1000 1500 2000
0

1000

2000

3000

4000

N
u

m
b

e
r

o
f

o
b

je
c
ts

 s
to

re
d

 i
n

 n
e

s
t

Time steps

Robot=50,object=50

Robot=100,object=50

Robot=100,object=100

(c)

Figure 5.5: Change of (a) threshold from initial threshold (θmin) to final threshold, (b) the
total number of task changes of an overall group, and (c) objects stored in nest.

The difference in the performances are evident if there are costs related to task changes. In a

constraint condition with a consumed energy for task change, if the number of task change

increased, the total energy wasted in the foraging task increased rapidly. When there are

more robots than objects (blue-colored line), the number of task changes is not increased.

More detailed analysis about the effect of the ratio between the robots and objects is left our

future work. The performance of an overall system can be also evaluated by the number

of objects stored in the nest. As shown in Figure 5.5(c), the performance increases linearly

without fluctuation despite the change of task changes, since the task partitioning is effec-

tive. More improved performance is obtained with increasing the number of robots and ob-

jects. In our previous works [130], we show that an individual robot has to exert energy for

wandering steps, gripping food objects, and task changes. The total number of wandering

steps is almost the same and the energy required for performing foraging task is mainly

depending on the number of foraged objects and the number of task changes. Therefore,

the difference in the performances among results is evident when there are difference in the

number of task changes and gripping behaviors. If the cost of each behavior increases, the

total energy wasted in the foraging task increases rapidly.

Figure 5.6 shows the effect of using the response threshold model. Instead of using

thresholds for task selection, each robot can just determine its task based on the instanta-

neous information as given below:

Pil(t) =
1

1 + e−
1
τ

[dil(t)−nil(t)]
, ∀i = 1, . . . ,M (5.12)

112

0 500 1000 1500 2000
0

5

10

15

20

25

N
u
m

b
e
r

o
f
o
b
je

c
ts

 i
n
 t
ra

n
s
fe

r
a
re

a

Time steps

With threshold

Without threshold

(a)

0 500 1000 1500 2000
0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
ro

b
o
ts

 f
o
r

s
to

ri
n
g
 t
a
s
k

Time steps

With threshold

Without threshold

(b)

0 500 1000 1500 2000
0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

o
f
ta

s
k
 c

h
a
n
g
e
s

Time steps

With threshold

Without threshold

(c)

0 500 1000 1500 2000
0

500

1000

1500
N

u
m

b
e
r

o
f
o
b
je

c
ts

 s
to

re
d
 i
n
 n

e
s
t

Time steps

With threshold

Without threshold

(d)

Figure 5.6: Comparison of the results with threshold and without threshold for task transi-
tion function: (a) the number of objects in the transfer area; (b) the number of robots for
the storing task; (c) the total number of task changes for the overall group; and (d) the total
number of food objects stored in the nest.

As shown in Figure 5.6(a), the number of objects in the transfer area reaches to the desired

level faster in case of without thresholds, but less robots with lager variation are assigned to

storing task and much more task changes are needed even with the similar performance as

shown in Figure 5.6(b)-(d).

To confirm that the proposed response threshold model has a stable equilibrium point

that satisfies the desired target distribution, we assume that each robot knows the desired

number of robots remaining in the transfer area. The desired number of robots is propor-

tional to the size of area they move around. Then the threshold can be updated only depend-

113

0 500 1000 1500 2000
0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
ro

b
o
ts

 f
o
r

s
to

ri
n
g
 t
a
s
k

Time steps

(a)

0 500 1000 1500 2000
0

20

40

60

80

N
u
m

b
e
r

o
f
ta

s
k
 c

h
a
n
g
e
s

Time steps

(b)

Figure 5.7: Results using only the number of objects for threshold regulation, but holding
information of the desired target distribution: (a) the number of robots assigned to the stor-
ing task; and (b) the total number of task changes.

ing on the current number of robots in the transfer area as follow:

θil(t+ 1) = θil(t)− η {n̄il − nil(t)} (5.13)

Fast time to the stable state and less task changes are needed in this approach as shown in

Figure 5.7. The number of robots for storing task is the same with the result in Figure 5.4(a).

In Figure 5.4(a) and Figure 5.7(a), the number of robots performing storing task (ns) is

about 20. This is the similar with the theoretical expected value.

If there are two types of foraging tasks in a circular arena, the desired task distribution

can be calculated by mathematically. To balance the workload among sequential subtasks in

Euclidean space, the desired number of robots for each task is in proportional to the number

of objects in the given area and in inverse proportion to the area they move around if all

robots are homogeneous in their ability for performing tasks. Then in a stable equilibrium

point, the balancing condition is defined as

ds
r2
s

ns =
dh
r2
h

nh (5.14)

where ds and dh are the number of objects in storing and harvesting area with radius rs and

114

rh, respectively. If the number of robots and objects are the same, Equation (5.14) can be

rewritten as
ns
r2
s

ns =
(N − ns)

r2
h

(N − ns) (5.15)

where N is the number of robots and objects. Then, it is

n2
s

r2
s

=
(N − ns)2

r2
h

→ ns
rs

=
(N − ns)

rh
(5.16)

Equation (5.16) means that the proportion of task partitioning is decided according to the

radius of foraging area. Finally, the number robots performing storing task can be defined

ns =
rs

rs + rh
N (5.17)

Then ns = 3/(3 + 5) × 50 = 18.8. From the result, we note that our proposed method

converges to the optimal task distribution.

5.3.2 Result with changes of arena size

To study the influence of environments on the performance of the proposed method, we

run several cases by environmental conditions or agent parameters. First, we investigate

the adaptability to the changes in the size of foraging area. In an original simulation, the

radius of the harvesting area is 5 m (black colored line). We change it to 15 m (blue colored

line). Figure 5.8 shows the comparison results with the previous simulations. The number

of robots performing storing task is about 20 when the radius of harvesting area is 5 m.

When the radius of harvesting area is changed to 15 m, the number of robots is a little less

than 10. This is the same with the expected results; ns = 3/(3 + 15) × 50 = 8.3 when

radius rh is 15 m.

Due to the increasing size of foraging arena, robots need to move more distance to

food objects and transport them to the transfer area, the object-transfer rate is reduced and

more robots are assigned to the foraging task. Then half as many as robots are sufficient to

perform the storing task to handle food objects in the transfer area under that environment.

Depending on the environmental situation, an adaptive task allocation within the swarm

group autonomously regulates the division of labor for sequential subtasks.

115

0 500 1000 1500 2000
0

5

10

15

20

25

N
u
m

b
e
r

o
f
o
b
je

c
ts

 i
n
 t
ra

n
s
fe

r
a
re

a

Time steps

Radius of harvesting area=5m

Radius of harvesting area=15m

(a)

0 500 1000 1500 2000
0

5

10

15

20

25

30

N
u

m
b

e
r

o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

Time steps

Radius of harvesting area=5m

Radius of harvesting area=15m

(b)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a
ti
o
 o

f
ro

b
o
ts

 f
o
r

h
a
rv

e
s
ti
n
g
 t
a
s
k

Radius of harvesting area=5m

Radius of harvesting area=15m

(c)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

Radius of harvesting area=5m

Radius of harvesting area=15m

(d)

0 500 1000 1500 2000
0

50

100

150

200

N
u

m
b

e
r

o
f

ta
s
k
 c

h
a

n
g

e
s

Time steps

Radius of harvesting area=5m

Radius of harvesting area=15m

(e)

0 500 1000 1500 2000
0

500

1000

1500

2000

N
u

m
b

e
r

o
f

o
b

je
c
ts

 s
to

re
d

 i
n

 n
e

s
t

Time steps

Radius of harvesting area=5m

Radius of harvesting area=15m

(f)

Figure 5.8: Comparison of the results with different foraging area size: (a) number of
objects remaining in the transfer area; (b) number of robots assigned to storing task; (c)
proportion of robots assigned to harvesting task; (d) proportion of robots assigned to storing
task; (e) task changes of an overall group; and (f) objects stored in nest. The radius of
harvesting area is changed from 5 m to 15 m.

5.3.3 Result with changes of moving speed

In the next simulation, we investigate adaptability of the swarm to change in the moving

speed of robots. To make the difference in completing each subtask, we change the speed

of robots performing the storing task, while the speed of robots performing the harvesting

task keeps the same as in the previous results.

Figure 5.9 represents the results. If the robot’s speed is the same in the two groups, sim-

ilar results (black colored line) were achieved as shown in Figure 5.4(d) that the proportion

of robots assigned to the storing task converges to about 40%. When we reduce the speed of

robots working on the storing task by half (blue colored line), more robots are assigned to

that task to reduce the number of objects collected in the cache transfer area. If the speed of

robots performing the storing task is four times faster than robots performing the harvesting

task (red-colored line), fewer robots are needed to transport objects to the nest and the pro-

116

0 500 1000 1500 2000
0

5

10

15

20

25

N
u

m
b

e
r

o
f

o
b

je
c
ts

 i
n

 t
ra

n
s
fe

r
a

re
a

Time steps

Robot speed=10cm/unit

Robot speed=5cm/unit

Robot speed=40cm/unit

(a)

0 500 1000 1500 2000
0

5

10

15

20

25

30

N
u

m
b

e
r

o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

Time steps

Robot speed=10cm/unit

Robot speed=5cm/unit

Robot speed=40cm/unit

(b)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
h

a
rv

e
s
ti
n

g
 t

a
s
k

Robot speed=10cm/unit

Robot speed=5cm/unit

Robot speed=40cm/unit

(c)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

Robot speed=10cm/unit

Robot speed=5cm/unit

Robot speed=40cm/unit

(d)

0 500 1000 1500 2000
0

50

100

150

200

N
u

m
b

e
r

o
f

ta
s
k
 c

h
a

n
g

e
s

Time steps

Robot speed=10cm/unit

Robot speed=5cm/unit

Robot speed=40cm/unit

(e)

0 500 1000 1500 2000
0

500

1000

1500

2000

N
u

m
b

e
r

o
f

o
b

je
c
ts

 s
to

re
d

 i
n

 n
e

s
t

Time steps

Robot speed=10cm/unit

Robot speed=5cm/unit

Robot speed=40cm/unit

(f)

Figure 5.9: Comparison of the results with different moving speed of robots performing
storing task: (a) number of objects remaining in the transfer area; (b) number of robots
assigned to storing task; (c) proportion of robots assigned to harvesting task; (d) proportion
of robots assigned to storing task; (e) task changes of an overall group; and (f) objects stored
in nest.

portion of robots performing the storing task is reduced to 30%. In each case, the number

of objects in the transfer area is changed as shown in Figure 5.9(a) because our algorithm

in Equation (5.3) depends on the number of robots working on the storing task. We observe

that our method dynamically allocates the task to a swarm of agents.

5.3.4 Result with time delay for changing task

In our simulations, we assume that there is no delay or extra cost to change its task. How-

ever, in real robots or applications, there needs some cost for changing a task; exhausted

time, or consumed energy. Figure 5.10 shows the comparison results when the robots pause

at their current location for 50 simulation steps after changing their task. If an extra time is

required to change the task, the performances are totally worse. There are much overshoot,

delayed time to be stable, and more number of task changes. But, it eventually converges to

117

0 200 400 600 800 1000
0

5

10

15

20

25

N
u

m
b

e
r

o
f

o
b

je
c
ts

 i
n

 t
ra

n
s
fe

r
a

re
a

Time steps

no−delay

With delay

(a)

0 200 400 600 800 1000
0

10

20

30

40

N
u

m
b

e
r

o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

Time steps

no−delay

With delay

(b)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
h

a
rv

e
s
ti
n

g
 t

a
s
k

no−delay

With delay

(c)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

no−delay

With delay

(d)

0 200 400 600 800 1000
0

20

40

60

80

100

120

N
u

m
b

e
r

o
f

ta
s
k
 c

h
a

n
g

e
s

Time steps

no−delay

With delay

(e)

0 200 400 600 800 1000
0

200

400

600

800

N
u

m
b

e
r

o
f

o
b

je
c
ts

 s
to

re
d

 i
n

 n
e

s
t

Time steps

no−delay

With delay

(f)

Figure 5.10: Comparison of the results with time delay and without delay for task change:
(a) number of objects remaining in the transfer area; (b) number of robots assigned to storing
task; (c) proportion of robots assigned to harvesting task; (d) proportion of robots assigned
to storing task; (e) task changes of an overall group; and (f) objects stored in nest.

the same results in task distribution. The same number of objects is remained in the transfer

area and the same number of robots perform storing task. The algorithm is still effective

even if the assumption is violated.

5.3.5 Result with changes in number of agents

We investigate how the system responds robustly to an abrupt change of the task distribu-

tion. At time step 1,000, all agents assigned to the storing task are kidnapped from the

swarm. The environment is the same with the original simulation. Figure 5.11 represents

the behaviors of swarm in response to the change and shows that the swarm reacts prop-

erly by allocating a proper number of robots to the storing task. The task allocation among

the remaining robots performing the harvesting task is regulated and the robots with low

thresholds switch their current task to the storing task. Thus, it lowers the task demand of

the storing task. A new proportion of robots are assigned to each task again, and the pro-

118

0 500 1000 1500 2000

Time steps

0

10

20

30

N
u

m
b

e
r

o
f

o
b

je
c
ts

 i
n

 t
ra

n
s
fe

r
a

re
a

(a)

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

N
u

m
b

e
r

o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

Time steps

(b)

0 500 1000 1500 2000

Time steps

0

0.2

0.4

0.6

0.8

1

R
a

ti
o

n
 o

f
ro

b
o

ts
 f

o
r

h
a

rv
e

s
ti
n

g
 t

a
s
k

(c)

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time steps

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

(d)

0 500 1000 1500 2000
0

50

100

150

200

250

N
u

m
b

e
r

o
f

ta
s
k
 c

h
a

n
g

e
s

Time steps

(e)

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

N
u

m
b

e
r

o
f

o
b

je
c
ts

 s
to

re
d

 i
n

 n
e

s
t

Time steps

(f)

Figure 5.11: Results with sudden changes in the number of robots: (a) number of objects
remaining in the transfer area; (b) number of robots assigned to the storing task; (c) pro-
portion of robots assigned to the harvesting task; (d) proportion of robots assigned to the
storing task, (e) task changes of an overall group; and (f) objects stored in nest.

portion converges to a stable state within a short time.

5.3.6 Results with multiple tasks

Lastly, to confirm that the proposed algorithm could be used for multiple subtasks, we per-

formed a similar foraging task in which a swarm of robots were allocated to three subtasks:

harvesting, transferring and storing tasks. Harvesting robots drop the collected objects in

the transfer area and the transferring robots transfer them to the storing area. The trans-

ferring area is added between harvesting and storing area as shown in Figure 5.12(a). The

outer radius of the transferring and harvesting area are 9 m and 15 m, while the outer radius

of storing area is 3 m, the same radius with the original experiment as shown in Figure 5.3.

For task partitioning with multiple transfers, each robot has three different threshold values

for three tasks and selects the task with the maximum probability.

In a sequential task, task changes are occurred between the injected tasks. The harvest-

119

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

L

(a)

0 500 1000 1500 2000

Time steps

0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
h

a
rv

e
s
ti
n

g
 t

a
s
k

(b)

0 500 1000 1500 2000

Time steps

0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
tr

a
n

s
fe

ri
n

g
 t

a
s
k

(c)

0 500 1000 1500 2000

Time steps

0

0.2

0.4

0.6

0.8

1
R

a
ti
o

 o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

(d)

Figure 5.12: Results with multiple tasks: (a) arena composed of three tasks, harvesting,
transfer and storing: (b) proportion of robots assigned to the storing task; (c) proportion of
robots assigned to the transferring task; and (d) proportion of robots assigned to harvesting
task.

ing robots can only change to the transferring task and the storing robots can change to the

transferring task. In case of transferring robots, they can be changed to all others tasks.

Figure 5.12(b)-(d) show the proportion of robots performing each task. All robots started

with the harvesting task, and an appropriate number of robots changed from the harvesting

task to the transferring task and storing task. The proportion of robots assigned to each

task converged to the desired equilibrium and this accorded very closely with theoretical

expectations. In a stable equilibrium point, the balancing condition is as follows:

120

ds
r2
s

ns =
dt
r2
t

nt,
dt
r2
t

nt =
dh
r2
h

nh (5.18)

where dt and nt are the number of objects and robots in a transferring area with radius, rt.

The number of robots performing each task for multiple tasks can then be defined as:

ns =
rs

rs + rt
(N − nh), nt =

rt
rt + rh

(N − ns) (5.19)

By solving Equation (5.19) with the condition that the number of robots be conserved, N =

ns+nt+nh, we noted that the proper number of robots for each task is directly proportional

to the area of the arena for each subtask. This is the same result with Equation (5.17). We

can then expect that the desired proportion of multiple tasks is as follows: ns = 3/(3 +

9 + 15) = 11.1%; nt = 9/(3 + 9 + 15) = 33.3%; and nh = 15/(3 + 9 + 15) = 55.6%.

In Figure 5.12, we can see that the proportions of each task converges to the expected task

distribution.

Figure 5.13 shows the distribution of the response threshold values for each subtask af-

ter finishing a task. In Figure 5.13(b),(c), we can see that the response thresholds for current

performing tasks are lower than that of others and there is also difference among robots

assigned to the transferring task. This means that some robots were strongly specialized

to specific tasks and others are softly specialized to all tasks. This tendency an adaptive

induces task allocation in a group. In case of the transferring task, thresholds of other tasks

are the same with the maximum limitation. This means that robots performing the trans-

ferring task specialized strongly to current performing task and minimized the probability

to respond to perform other tasks. In case of the harvesting task, the threshold values are

generally higher than others. This means that robots performing harvesting task will change

to transferring task easily if there is a little increasing in task need for the transferring task.

To evaluate the proposed task selection algorithm with regard to the effects of environ-

mental influences, we investigated the algorithm’s adaptability in response to changes in the

size of the foraging area. The radius of the harvesting area, which was 15 m in the original

experiment, was changed to 30 m, doubling the radius of an original area. Figure 5.14 shows

the proportion of robots assigned to each task. Due to the increasing size of the harvesting

arena, more robots were assigned to the harvesting task to balance the transfer rate among

sequential tasks. Under these environmental conditions, half as many as robots were needed

for the transferring task to handle objects in the transfer area. Depending on the environ-

121

0 10 20
0

20

40

Threshold of harvesting task

0 10 20
0

20

40

Threshold of transferring task

0 10 20
0

20

40

Threshold of storing task

(a)

1 2 3 4 5 6 7 8 9101112
0

20

40

Threshold of harvesting task

1 2 3 4 5 6 7 8 9101112
0

20

40

Threshold of transferring task

1 2 3 4 5 6 7 8 9101112
0

20

40

Threshold of storing task

(b)

1 2 3 4 5 6 7 8 910111213
0

20

40

Threshold of harvesting task

1 2 3 4 5 6 7 8 910111213
0

20

40

Threshold of transferring task

1 2 3 4 5 6 7 8 910111213
0

20

40

Threshold of storing task

(c)

Figure 5.13: One example of thresholds distributions for three tasks after simulation: (a)
thresholds of robots assigned to harvesting task; (b) thresholds of robots assigned to trans-
ferring task; and (c) thresholds of robots assigned to storing task.

mental situation, an adaptive task allocation within the swarm group autonomously regu-

lates task distribution for sequential tasks. In the experiment there was a delay in task alloca-

tion, but it eventually converged to the expected state with nh = 30/(3 + 9 + 30) = 71.4%,

nt = 9/(3 + 9 + 30) = 21.4%, and ns = 3/(3 + 9 + 30) = 7.1%.

In case some agents failed, are kidnapped or, disappear, the remaining agents should be

reassigned to a task depending on the current condition of the colony. Figure 5.15 shows the

adaptability of the swarm to change in the number of agents. With the same conditions as in

the original environment, all agents assigned to the storing were removed from the arena at

122

0 500 1000 1500 2000

Time steps

0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
h

a
rv

e
s
ti
n

g
 t

a
s
k

(a)

0 500 1000 1500 2000

Time steps

0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
tr

a
n

s
fe

ri
n

g
 t

a
s
k

(b)

0 500 1000 1500 2000

Time steps

0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

(c)

Figure 5.14: Results with following changes in harvesting area size: (a) proportion of robots
assigned to the harvesting task; (b) proportion of robots assigned to the transferring task;
and c) proportion of robots assigned to the storing task. The radius of the harvesting area is
changed from 15 m to 30 m.

0 500 1000 1500 2000

Time steps

0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
h

a
rv

e
s
ti
n

g
 t

a
s
k

(a)

0 500 1000 1500 2000

Time steps

0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
tr

a
n

s
fe

ri
n

g
 t

a
s
k

(b)

0 500 1000 1500 2000

Time steps

0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 o
f

ro
b

o
ts

 f
o

r
s
to

ri
n

g
 t

a
s
k

(c)

Figure 5.15: Results with changes in the number of robots: (a) proportion of robots assigned
to the harvesting task; (b) proportion of robots assigned to the transferring task; and c)
proportion of robots assigned to the storing task.

1,000 simulation time steps. Overall systems reacted appropriately. Figure 5.16 shows more

detailed analysis. Seven or eight robots were performing the storing task before the change,

and five robots performed the storing task after the change. After robots were disappeared,

the number of objects located in the transfer area increased temporarily. But after some

robots were assigned to storing task again, the system returned to a stable state. In case of

multiple tasks, the algorithm worked well.

123

0 500 1000 1500 2000

Time steps

0

5

10

15

N
u
m

b
e
r

o
f
ro

b
o
ts

 f
o
r

s
to

ri
n
g
 t
a
s
k

(a)

0 500 1000 1500 2000

Time steps

0

5

10

15

N
u
m

b
e
r

o
f
o
b
je

c
ts

 i
n
 t
ra

n
s
fe

r
a
re

a

(b)

Figure 5.16: Results with changes in the number of robots: (a) number of robots assigned
to the storing task; and (b) number of objects remaining in the transfer area.

5.4 Discussion

Several social insects use one of the task partitioning strategies based on bucket brigades in

their foraging tasks. These are easily observed in nature. A worker passes its load to one

of the unladen workers. There is no pre-determined transfer location between the departure

and the destination of the resource. Bucket brigades can take place in many situations such

as moving broods or food to the nest and moving garbage out of the nest. Bucket brigades

(BBs) is one of the multi-stage task partitioning methods shown in the foraging behaviors of

the seed-harvesting ant Messor barbarus, the African stink ant Pachycondyla tarsata, and

the grass cutting ant Atta vollenweideri In this section, we present the effect of BBs for a

multi-robot foraging task to study why task partitioning is used.

5.4.1 Task description

We test a foraging task with multiple robots under various environmental conditions to see

the effect of task partitioning. The goal of the robots is set to collect as many objects as

possible in a given time span among various demands. Robots are supposed to harvest

objects from the resource area and deliver them to a base station called the nest by imitating

social insects collecting food pellets from the resource.

The overall system performances of task partitioning and non-partitioning groups are

124

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

500

(a)

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450

500

(b)

Figure 5.17: Snapshot of simulation experiment: (a) one food source; and (b) four food
sources. The nest is represented by an empty circle at the center of a given area and four
food sources (squares) are located at each corner in a rectangular arena. Small circles and
triangles represent robots with different moving speeds. The speed of robots with circular
marks is twice as fast as robots with triangular marks. The empty figures of robots are
unladen and color-filled figures are laden robots carrying items.

compared by counting the total number of collected objects after a given amount of time.

We will often refer to the resource area as the food source, robots as agents, the base station

of robots as the nest, and collecting particles or objects in the resource area as collecting

food pellets to make the foraging task understood easily using a biological metaphor.

The foraging task is simulated in a rectangular arena as shown in Figure 5.17. The

arena has a size of 600 cm by 500 cm. The nest is represented by an empty circle located

at the center of the arena in the coordinates of (x, y) = (300, 250)cm. The size of the

nest entrance will change in the experiments to see the effect from its size. One square at a

corner or four squares located at each corner with a side length of 40 cm indicate the food

sources (reservoirs of objects). If robots arrive at a resource area, they pick up objects like

food pellets and return to the nest. After they reach the nest, they drop the carrying item at

the nest and then move to the resource area again to obtain another object. They repeat the

behavior in the simulation.

5.4.2 Robot behaviors

We test a swarm of robots running for the foraging task. For food transfer behavior, a

125

Algorithm 1 Robot behavior
while running do

if robot has no obstacle in front then
if the robot delivering the food object is in the nest area then

drop the carrying object
move to the resource area

else if the robot collecting an object is in the resource area then
pick up an object
move to the nest

else
if the robot has no object then

move to a food source
else

move to the nest
end if

end if
else

if object transfer is needed then
pass the carrying object or receive the object

else
avoid collisions with robots or obstacles

end if
end if

end while

pair of agents should come close within the vicinity on the trail. Then the two agents stay

for a while to complete the transfer instead of simulating releasing and grasping an object.

After transfer, the agents change their moving directions to their destination, to the food

source or to the nest. The behavior thus requires the food transfer delay.

Small circles and triangles shown in Figure 2 represent robots performing the forging

task with different moving speeds. Two different shapes represent varying speeds of robots.

The speed of the robots with circular marks is 2 cm per unit time step and the robots with

triangular marks move 1 cm every time step. That is, the former group of robots can move

twice as fast as the latter group. Empty circles or triangles indicate unladen robots moving

to the food source and color-filled robots are laden robots carrying an object from the source

to the nest. A robot can pick up one object at a time and after delivering it to the nest or

passing it to another robot, it can try to take another object.

The algorithm for the robot behavior is briefly explained in Algorithm 1. At the start of

126

the simulation, all robots are randomly located near the nest and move to the food source. If

there are multiple food sources, all robots are divided equally into subgroups and an equal

number of robots are assigned for each food source; each agent has its preferred food source.

To skip exploration process for food, we assume that each agent chooses a direct route to

one of food sources or to the nest. There will be chances to meet an obstacle or a robot

for food transfer before reaching the destination. The agent will choose obstacle avoidance

behavior or food transfer behavior depending on its current state.

To harvest food particles, robots head towards the food source and continue in a straight

line until they meet other robots or reach the destination. They may need to avoid colliding

with other robots on the trail. For collision avoidance, each robot uses infrared sensors

to read how close other robots or obstacles are positioned to them. The infrared proximity

sensors are uniformly spaced to cover 180◦ on the front side of robot. The detecting range of

the sensors is 2 cm and a robot can change its moving direction when the sensors detect any

obstacle within the vicinity. We set the turning angle to 10 degrees. For collision avoidance,

a robot turns right when the left sensors detect any obstacle with high intensity or turns left

when the right sensors detect any. To avoid collision, a robot moves in a curve at about 25%

of the maximum speed. Random noise 10% is added to the two wheel motor actions, and

the turning angle is affected by the two wheel motor actions. The robots deviate a little from

the direct route to their destination by changing the direction they head if they detect other

robots on the front side. This obstacle avoidance behavior has the highest priority among

robot behaviors.

There are a number of food pellets in the resource areas and no depletion occurs. Each

agent moves to one of the resource areas, picks up one pellet at a time, and delivers it to the

nest. It then tries to go back to the resource area to collect food again. Each agent shuttles

between a food source and the nest. If the agent is close enough to the center of the nest,

then it drops the carrying object. Similarly, if it is close enough to the resource center, then

it can pick up a food pellet.

If there is no collision avoidance, a robot moves with its maximum speed. The maxi-

mum forward speed of fast-moving robots is 2 cm per time step and half speed for slow-

moving robots. A robot is also mounted with GPS to monitor the current position relative to

the resource or the nest. We assume that the robot has the location information of resource

areas and the nest in advance. As a result, robots do not waste time in finding the nest or the

food sources. We assume that robots can distinguish fast-moving and slow-moving robots

with a vision camera, since each robot has its own marker light on the top, depending on its

127

Meet Laden
and Slower Robot

Meet Unladen

Nest

and Faster Robot

ObjectObject

Object Transfer

Find Object
Store Object

Find Store

 Food Source

Figure 5.18: Representation of robot behaviors using task partitioning based on the differ-
ence in moving speeds; the thick solid lines indicate a task partitioning strategy that an ob-
ject is transferred from the slower to the faster individual.

speed class.

5.4.3 Task selection mechanism

We used a task partitioning strategy inspired by ants’ task partitioning based on body size

[185, 7]. A large ant can take a food item from a smaller ant but not from a larger one, and

large ants are often faster than smaller ants. Here, the task partitioning strategy based on the

moving speeds of robots is briefly introduced in Figure 5.18.

A robot moves from a food source to the nest, carrying a food pellet. If a laden robot

meets an unladen robot moving to the food source at a faster speed, the laden robot passes

its currently carrying object to that unladen robot. We call this a BBs (bucket brigade

strategy). The BBs passing an object directly from a slower agent to a faster agent occurs

at this moment. The robot with the faster moving speed receives the object and transports it

to the nest instead of the robot with the slower moving speed. The robot passing the object

becomes unladen, and moves back to take another object in the resource area. If the laden

robot sees another robot with much faster speed, it passes the item again to the faster robot.

In our proposed task partitioning strategy, the food pellet is directly transferred from the

slower to the faster individual; we call it ascending-speed task partitioning or ascending-

order BBs. For comparison, we consider another task partitioning that is performed in an

opposite manner, that is, the object is transferred from the faster to the slower individual;

we call it descending-speed task partitioning or descending-order BBs.

In the foraging task, if a laden robot comes close to an unloaded robot, task partitioning

occurs by passing the object being carried to the other robot; the speed of the receiver robot

128

is higher in ascending BBs and lower in descending BBs. The results of the two groups,

ascending-order BBs and descending-order BBs, are compared with a no-transfer group

under various experimental conditions. For a no-transfer group (non-partitioning group),

each robot picks up an object, moves to the nest, and drops the object at the nest without

transferring to another robot.

We can consider another type of BBs in which a laden robot can pass the food item to

any unladen robot that it meets on the trail, regardless of the robot speed. We call this no-

order BB. We will compare the above BBs with no-order BBs to see whether the moving

speed of agents is an important factor. The speed of robots can be chosen as one of two

levels or multi-level. Initially we will test two levels of speed, high and low, for robot

movements and later we will compare the performances with two levels and five levels of

speed in robots.

5.4.4 Results with various environmental conditions

We simulate various experimental cases by changing the size of the nest entrance, the num-

ber of food sources, and the number of foraging robots. Then we analyze the effect of the

BB process to reduce the traffic jam near the nest entrance. In addition, for comparison

between partitioned tasks and non-partitioned tasks, we apply a task transition delay that

is inevitable in the object transfer process. A robot should spend some delay time passing

object to another robot in their interaction. We will check if the occurrences of collision

avoidance decrease with task partitioning, and if task partitioning exhibits a better perfor-

mance than non-partitioning with a no-transfer job.

Performance evaluation

Generally, the foraging performance is influenced by several factors: the number of food

sources, the task transfer time between a pair of agents, the size of the nest entrance and the

number of agents. Task partitioning does not always provide the best performance. Accord-

ing to our experimental results, which strategy will be helpful depends on the environmen-

tal conditions. Under the condition of heavy traffic congestion, task partitioning with BBs

significantly improves the foraging performance and a fine-grained level of moving speeds

in agents, i.e., more diverse characteristics of agents, can help the division of labor to some

degree by setting up the object transfer between different speed levels of agents.

129

The performances of foraging task using various methods are evaluated by counting the

number of collected objects at the nest depending on the object-transfer delay. We tested

varying transfer delays, ranging from 0 to 100 time units at intervals of 20 time units. One

simulation runs for 10,000 time steps and ten trials are tested for each experimental case to

evaluate the average performance and its variance.

In addition, we provide the analysis of variance (ANOVA) models for statistical signif-

icance. Without any date transformation, a three-way ANOVA analysis was selected to in-

vestigate the effects of different factors (task partitioning method, size of nest entrance, and

the number of robots) and their interactions among them. The statistical data is obtained

correspond to the total number of collected food pellets of each food transfer delay time.

The aim is to determine the differences and similarities among task partitioning methods in

various experimental cases.

Size of nest entrance

In the first experiment, we tested varying sizes of the nest entrance in the foraging task with

twelve robots. Here, we use only one food source located at (510, 375) cm (see Figure

2(a)). The radius of the nest entrance is set to 40 cm for a wide entrance and 20 cm for a

narrow entrance. The performance is measured with the total number of collected objects

at the nest. Figure 5.19 shows the averaged performance over ten trials with two task par-

titioning strategies and the no-transfer strategy with narrow and wide entrances of the nest,

respectively. Dash-dot lines indicate no-transfer groups, that is, non-partitioning groups.

Solid lines and dash lines display the results with ascending-order BBs and descending-

order BBs groups, respectively. Figure 5.20 shows the results of performing a multiple

comparison of the group means in Figure 5.19.

From the result, we see that the performances of the narrow nest entrance are worse

than those of the wide nest entrance (see Figure 5.20(a)) and as the food transfer delay

increases, the performances become worse and they linearly decrease in most of cases. This

is an expected result because task partitioning groups should spend some amount of time on

passing food, which delays food delivery to the nest. With a wide nest entrance, the foraging

performance improves since the food pellets can be easily stored at the nest area by less

traffic congestion, regardless of the applied strategies. Task partitioning groups, ascending-

order BBs and descending-order BBs, have better performances than the non-partitioning

group with a short food transfer time. If the food transfer time exceeds 60 time units, the

130

0 20 40 60 80 100
90

100

110

120

130

140

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Food transfer delay (time unit)

nest entrance=40, no−transfer

nest entrance=40, descending−order BBs

nest entrance=40, ascending−order BBs

(a)

0 20 40 60 80 100
90

100

110

120

130

140

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Food transfer delay (time unit)

nest entrance=20, no−transfer

nest entrance=20, descending−order BBs

nest entrance=20, ascending−order BBs

(b)

Figure 5.19: Results of collected objects using 12 robots with task partitioning strategies
and a non-partitioning strategy (blue solid line: ascending-order BBs, green dash line:
descending-order BBs, red dash-dot line: no-transfer); one food source is available: (a)
the radius of the nest entrance is 40 cm for a wide entrance; and (b) the radius of the nest
entrance is 20 cm for a narrow entrance (the curves show the average performance with
95% confidence intervals by assuming t-distribution)

task partitioning becomes worse; see the cross point between the performance curves of

the task partitioning groups and the non-partitioning group. The narrow nest entrance often

allows for a larger transfer delay limit, which means that the task partitioning groups are

more effective and efficient in collecting food with the narrow entrance.

Ascending-order BBs have a little worse performance than descending-order BBs (but

not statistically significant for large transfer delays). With a single food source, ascending-

order BBs have heavy traffic congestion at the source area since high-speed robots reach

the source area early and then directly return to the nest in the first round without any

food transfers. Slow robots reach the source later and the traffic congestion at the source

area becomes intense. In contrast, slow robots with descending-order BBs receive the food

items from high-speed robots in the first round while the high-speed robots with food are

returning to the nest, and then the slow robots change direction towards the nest, which can

reduce the traffic jam at the source. It ultimately increases the performance.

With a short object-transfer delay (for example, 20 time units), the performances of both

ascending-order BBs and descending-order BBs are better than the no-transfer group in the

above experiment with a single resource The allowable delay limit may change depending

on the simulation environment. Nevertheless, we can say that task partitioning groups may

131

109 110 111 112 113 114

method=ascending

method=descending

method=no transfer

2 groups have population marginal means significantly different from descending

(a)

100 105 110 115 120 125

delay=100

delay=80

delay=60

delay=40

delay=20

delay=0

5 groups have population marginal means significantly different from delay=0

(b)

109 110 111 112 113 114

method=ascending

method=descending

method=no transfer

2 groups have population marginal means significantly different from descending

(c)

109 110 111 112 113 114

method=ascending

method=descending

method=no transfer

2 groups have population marginal means significantly different from descending

(d)

Figure 5.20: Performance results with four food resources (blue solid: ascending-order
BBs, green dash: descending-order BBs) and non-partitioning group (red dash-dot); the
radius of the nest is 20 cm (narrow entrance): (a) 12 robots; (b) 20 robots; (c) 40 robot; and
(d) 60 robots

Table 5.1: ANOVA table for the results (T:Task partitioning strategy, S:Size of nest entrance,
and F:Food transfer delay)

Source Sum of Squares Degree of freedom Mean Squares F P-Value
T 840.9 2 420.43 58.25 2.4517E-22
S 2624.4 1 2624.4 363.6 6.9791E-55
F 10274.3 5 2054.85 284.69 3.1768E-116

T+S 106.4 2 53.2 7.37 0.0007
T+F 6092.9 10 609.29 84.41 4.9974E-84
S+F 66.5 5 13.31 1.84 0.104

T+S+F 123.7 10 12.37 1.71 0.0766
Error 2338.6 324 7.22
Total 22467.6 359

have improved foraging performances compared to the non-partitioning group, if a short

task transition delay in the food transfer is available.

132

Table 5.1 summarizes the ANOVA results clearly showing dependent and independent

variables. The ANOVA table shows that except the interaction between size of nest entrance

and food transfer time, all others factors including second-order interactions are significant

(p-value<5%). The p-value of each factor is extremely small enough to conclude that the

mean responses are significantly.

Multiple food sources

We tested multiple food resources instead of a single source. Figure 5.21 shows the results

of four food sources with 12, 20, 40, and 60 robots. The number of foraging robots is con-

stant, but the number of food sources increases four times. The nest entrance is narrow with

a radius of 20 cm. With four food sources, robots are divided equally into four sub-groups

and each sub-group is assigned to one of four food sources. The number of robots moving

to a food source decreases as the number of food sources increases. In this environment, the

traffic congestion on the trail greatly decreases, but more traffic jams can occur at the nest

area.

In the previous experiments, task partitioning groups have decreasing performances as

the food transfer delay increases. Similar patterns are observed with multiple food sources

as in Figure 5.21(a)-(b). The overall system performance improves with either ascending-

order BBs or descending-order BBs with a short transfer delay. The effect with multiple

resources is more greatly observed with the task partitioning methods, compared with the

non-partitioning method. With more food sources, there are more chances to meet other

robots near the nest area, but fewer chances near the food source areas or on the trail. With

a narrow nest entrance, a traffic jam is found more often at the nest area with more food

resources. Multiple food sources, however, distribute a group of robots to resources in

different directions. Thus, task partitioning becomes more effective with multiple resources

if a limited food-transfer time is available, e.g. less than 60 time units. With descending-

order BBs, the task transfer occurs near the nest and the performance is relatively lower

than the performance of ascending-order BBs. Table 5.2 shows the ANOVA results. Similar

pattern with the previous ANOVA table is observed that only except the interaction between

the number of robots and food transfer delay, all others factors are significant (p-value<5%).

Increasing the number of robots changes the pattern of foraging performance in the same

environment with the fixed food sources and the constant size of nest entrance (see Figure

133

0 20 40 60 80 100
100

200

300

400

500

600

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Food transfer delay (time unit)

robots=12, no−transfer

robots=12, descending−order BBs

robots=12, ascending−order BBs

(a)

0 20 40 60 80 100
100

200

300

400

500

600

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Food transfer delay (time unit)

robots=20, no−transfer

robots=20, descending−order BBs

robots=20, ascending−order BBs

(b)

0 20 40 60 80 100
100

200

300

400

500

600

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Food transfer delay (time unit)

robots=40, no−transfer

robots=40, descending−order BBs

robots=40, ascending−order BBs

(c)

0 20 40 60 80 100
100

200

300

400

500

600
N

u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Food transfer delay (time unit)

robots=60, no−transfer

robots=60, descending−order BBs

robots=60, ascending−order BBs

(d)

Figure 5.21: Performance results with four food resources (blue solid: ascending-order
BBs, green dash: descending-order BBs) and non-partitioning group (red dash-dot); the
radius of the nest is 20 cm (narrow entrance): (a) 12 robots; (b) 20 robots; (c) 40 robot; and
(d) 60 robots.

5.21(c),(d)). Task partitioning groups show a very different pattern of performances unlike

the previous experiments. Ascending-order BBs always exhibit better performance than

the non-partitioning group, and descending-order BBs have the worst performance among

the three strategies regardless of the task transfer delay. The average number of objects

collected with 60 robots over varying object transfer delays is 337, 249 and 511 for the

non-partitioning group, descending-order BBs and ascending-order BBs, respectively. The

average performance compared to the non-partitioning group is improved by up to 152%

with ascending-order BBs, and is decreased to 73.8% with descending-order BBs.

134

Table 5.2: ANOVA table for the results (T:Task partitioning strategy, N:Number of robots,
and F:Food transfer delay)

Source Sum of Squares Degree of freedom Mean Squares F P-Value
T 681260.6 2 340630.3 1270.98 5.2976E-225
N 4127309.2 3 1375769.7 5133.35 0.0000
D 231759.7 5 46351.9 172.95 9.7105E-117

T+N 1447170 6 241195 899.96 2.1862E-310
T+D 142205.4 10 114220.5 53.06 1.3260E-77
N+D 6514.7 15 434.3 1.62 0.0634

T+N+D 17774 30 592.5 2.21 0.0003
Error 7173668.2 648 268
Total 6827661.6 719

We observe the traffic congestion near the nest area greatly increases with a large num-

ber of robots. With the descending-order BBs the food transfer often occurs near the nest,

which degrades the performance. During the object transfer between a pair of agents, the

agents pause at the current position waiting for the completion of object transfer without

moving at all. Neighboring agents consider those agents waiting for object transfer as obsta-

cles and need to spend some additional time for collision avoidance. It then aggravates the

traffic jam, and the foraging performance becomes worse than that of the non-partitioning

group. In contrast, with the ascending-order BBs, food transfer often occurs on the trail.

The traffic congestion near the nest is not intense, and it improves the foraging performance

to a large extent.

Number of robots

From the above experiments, we see that task partitioning is not always the best choice.

However, it could obtain an improved performance under the limited condition that there

is a short food transfer delay between a pair of robots, or there are multiple food sources

available. We tested varying numbers of robots with a single source or four food sources.

More robots can cause more intense traffic jams and we observed a positive effect of task

partitioning.

We considered task partitioning methods and non-partitioning method under various

parameter conditions; the number of robots, the number of food sources, and the size of the

nest entrance. The object transfer time is fixed to 50 time units and the number of robots

ranges from 10 to 100. Figure 5.22 shows the performance results. When there is a single

135

20 40 60 80 100
0

20

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Number of robots

no−transfer

descending−order BBs

ascending−order BBs

swarm performance model

20 40 60 80 100
0

20

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Number of robots

no−transfer

descending−order BBs

ascending−order BBs

swarm performance model

(a)

20 40 60 80 100
0

100

200

300

400

500

600

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Number of robots

no−transfer

descending−order BBs

ascending−order BBs

swarm performance model

20 40 60 80 100
0

100

200

300

400

500

600
N

u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Number of robots

no−transfer

descending−order BBs

ascending−order BBs

swarm performance model

(b)

Figure 5.22: Performance results for collected objects depending on number of robots: (a)
a single food source; and (b) four food sources. Object transfer time is set to 50 time units,
and left and right plots represent narrow and wide entrances of the nest, respectively (the
curves show the average performance with 95% confidence intervals (t-distribution)).

source available with more than 20 robots, the performance of descending-order BBs is

always better than the other methods regardless of the size of the nest entrance (see Figure

5.22(a)). However, when the number of food sources is changed to four, this tendency

changes drastically as shown in Figure 5.22(b).

Ascending-order BBs with a narrow nest entrance show significant improvement in

some cases regardless of the delay time for object transfer. As the number of robots in-

creases up to 60 robots, ascending-order BBs show two to three times better performance

than the non-partitioning group, while descending-order BBs show a worse performance

136

than the non-partitioning group. However, with a wide nest entrance, similar performances

are observed, regardless of task partitioning strategies. It seems that the density of robots,

especially near the nest, is a very critical factor for choosing the appropriate strategy.

According to a model of swarm performance [80], we can evaluate the swarm perfor-

mance depending on the swarm size. We applied the model to our foraging task. As shown

in Figure 5.22, the model (square marks) can be fitted to the empirical data. We note that

the performance of the non-partitioning group is closely fitted to the swarm performance

model, since the model assumes the swarm system without cooperation.

5.4.5 Analysis

We have seen that task partitioning can be effective depending on the environmental condi-

tions. In addition, how robots interact with each other influences the BBs (bucket brigades).

Importantly, traffic congestion is deeply related to task partitioning strategies and the con-

gestion patterns are changed according to the task partitioning strategies. We note that task

partitioning may not always be the best choice in a given environment. The performance

relies on many environmental conditions such as the size of the nest entrance, the number of

routes to move around the nest as a result of several food sources, or the size of the swarm.

We show the effect of the task partitioning strategies in more detail.

To see the effect of traffic jams on the foraging performance, we first observed a distri-

bution of collision occurrences for each experiment. Figures 5.23 and 5.24 show locations

where collision avoidance occurs when the number of robots is 60, the object-transfer delay

is set to 50 time units, and the nest entrance is tested with a radius of 20 cm and 40 cm,

respectively. Figure 5.23 displays collision occurrences when there is only one food source.

With a single source, most robots are trapped near the food source and collisions are mostly

found near the food source regardless of the nest entrance size. However, the collision pat-

terns with descending-order BBs over a narrow nest entrance are quite different from those

with the other methods. Many collisions are additionally found near the nest. With this

strategy, robots moving faster arrive at the food source earlier and pass their food pellets

to robots moving slower and closer to the nest. Before the traffic jam near the food source

becomes heavy, there are more opportunities for robots to escape the traffic jam area, and

more objects can be transported to the nest. Thus, descending-order BBs mostly have better

foraging performance as shown in Figure 5.22(a) regardless of nest entrance size.

With a single food source, the descending-order BBs have significantly better perfor-

137

(a)

(b)

Figure 5.23: Distribution of collision occurrences with a single food source and 60 robots;
the object transfer time is set to 50 time units: (a) radius of nest entrance is 20 cm (narrow
nest entrance); and (b) radius of nest entrance is 40 cm (wide nest entrance) (left: no-transfer
method, middle: descending-order BBs, right: ascending-order BBs).

mance than the ascending-order BBs. The ascending-order BBs are similar to or even

worse than the non-partitioning group although it is not statistically significant. A heavy

traffic jam is observed near the food source with this method, since there is only one food

source available. However, when there are four food sources with narrow nest entrance,

the pattern of collision occurrences is completely changed (see Figure 5.24). Collisions

are frequently observed on the trail at the initial stage, and as time goes on, the collisions

mostly occur at a central location around the nest. More food sources lead to several routes

converging at the nest and the traffic jam becomes heavy around the nest. Most collisions

are found near nests with narrow entrances, especially with descending-order BBs and the

non-partitioning method as shown in Figure 5.24 and Figure 5.25.

Yet with ascending-order BBs, collisions are spread throughout the trail and near the

food sources, but not near the nest. The traffic jam near the nest is lower and agents have

more chances to transport food pellets from the food source to the nest. Figure 5.25 shows

cumulative collision occurrences along the trail with 60 robots. We can see that the traffic

138

(a)

(b)

Figure 5.24: Distribution of collision occurrences with four food sources and 60 robots; the
object transfer time is set to 50 time units: (a) radius of nest entrance is 20 cm (narrow nest
entrance); and (b) radius of nest entrance is 40 cm (wide nest entrance) (left: no-transfer
method, middle: descending-order BBs, right: ascending-order BBs).

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

Distance from the nest

N
u

m
b

e
r

o
f

c
o

ll
is

io
n

 o
c
c
u

rr
e

n
c
e

s

(a)

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

Distance from the nest

N
u

m
b

e
r

o
f

c
o

ll
is

io
n

 o
c
c
u

rr
e

n
c
e

s

(b)

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

Distance from the nest

N
u

m
b

e
r

o
f

c
o

ll
is

io
n

 o
c
c
u

rr
e

n
c
e

s

(c)

Figure 5.25: Cumulative collision occurrences along the trail: (a) non-partitioning group;
(b) descending-order BBs; and (c) ascending-order BBs. 60 robots are tested for four food
sources, and the nest entrance has a radius of 20 cm.

jam near the nest is lower with ascending-order BBs, compared with descending-order BBs

and the non-partitioning methods. The total number of cumulative collision occurrences is

inversely proportional to the number of collected objects.

For a non-partitioning group with no object transfer, collisions mostly occur near the

139

(a)

(b)

Figure 5.26: Location of object transfer occurrences with 60 robots: (a) one food source;
and (b) four food sources. The object transfer delay is set to 50 time units and the nest
entrance has a radius of 20 (left: descending-order BBs, right: ascending-order BBs).

nest and some collisions are found near the food source area. For descending-order BBs,

more collisions are observed near the nest than the non-partitioning group. With the two

methods, the food-collecting performance degrades due to traffic jams at the nest. The

descending-order BBs exhibit an even worse performance than the non-partitioning method.

With the method, fast agents pick up a food pellet in the resource area and pass it to slow

agents, and slow agents should drop it at the nest area. They begin to stagger around the

nest and experience traffic jam. Fast agents tend to come close to the nest to pass the food

pellet to slow agents. Many agents get together near the nest and a lot of collisions occur.

Figure 5.26 shows the location of object transfer occurrences with ascending-order BBs

and descending-order BBs for one food source or four food sources, respectively. With

140

(a) (b)

Figure 5.27: Distribution of slow and fast agents with ascending-order BBs; the object
transfer delay is set to 50 time units and the nest entrance has a radius of 20 with four food
sources: (a) slow robots; and (b) fast robots.

descending-order BBs, object transfers mostly occur near the nest and agents are also con-

gested near the nest area, irrespective of the number of food sources. This tendency with

descending-order BBs aggravates the traffic jam even more than with the non-partitioning

group in some cases. In contrast, with ascending-order BBs, object transfer occurrences are

distributed uniformly on the trail for multiple food sources, but the occurrence-spreading

effect is weak for a single food source.

We can easily see object transfers near the nest in Figure 5.26(b). With ascending-order

BBs, fast agents receive an object from slow agents and deliver it to the nest. The object

transfers occur almost everywhere on the trail. For ascending-order BBs, collisions near

the nest are greatly reduced and collisions are spread almost uniformly across the trail and

a little higher density is found near the food source areas, since some fast agents waiting

for object transfer come close to the resource area. As a result, the ascending-order BBs

improve the foraging performance significantly with more food sources and more robots.

With a wide nest entrance, collisions rarely occur near the nest for any case as shown in

Figure 5.24(b). The effect of the nest entrance size can be observed in figures. The traffic

jam is shifted from the nest area to the food source areas, as the entrance size increases.

Figure 5.27 shows a distribution of slow and fast agents observed during a given time

span with ascending-order BBs for four food sources. Slow agents move near the food

sources to pick up food pellets, and fast agents tend to shuttle to deliver food between slow

141

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Distance between nest and food source

no−transfer

descending−order BBs

ascending−order BBs

(a)

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

Distance between nest and food source

no−transfer

descending−order BBs

ascending−order BBs

(b)

Figure 5.28: Number of collected objects in relation to the distance between the nest and
the food source: (a) a single food source; and (b) four food sources; the nest has a radius of
20 cm, there are 60 robots, and the object-transfer delay is set to 50 time units.

agents and the nest. As a result, fast agents frequently cover most of the trail parts between

food sources and slow agents if there is no much collision among robots. This is consistent

with the pattern of object transfer occurrences shown in in Figure 5.26. With descending-

order BBs, most of agents are crowded near the nest, leading to heavy traffic jam.

Figure 5.28 shows the number of collected objects in relation to the distance between

the nest and the food sources. With a single food source, descending-order BBs show the

best performance regardless of the distance. The performances with the three methods are

not much changed and the same patterns are observed even with long distances. With four

food sources, ascending-order BBs show the best performance. As the distance between

the nest and the food source becomes shorter, the traffic jam near the nest worsens and

ascending-order BBs helps reduce the traffic jam, thus improving the overall foraging per-

formance. The performance of ascending-order BBs is significantly better than the other

methods within a limited distance. It is deeply related to whether the delay time due to the

traffic jam exceeds the object transfer delay between a pair of agents. With a long distance

between the nest and a food source, the traffic jam rarely happens and there is no bucket

brigade effect.

We observed the total time spent on food delivery for each robot with task partitioning.

The overall performance is influenced by three types of behaviors: food transfer, moving on

the trail and collision avoidance. We can easily infer that extra time is needed for food trans-

142

no−transfer descending−order ascending−order
0

20

40

60

80

100

P
ro

p
o

rt
io

n
 o

f
c
o

n
s
u

m
e

d
 t

im
e

Transfer Delay

Moving

Collision Avoidance

(a)

no−transfer descending−order ascending−order
0

20

40

60

80

100

P
ro

p
o

rt
io

n
 o

f
c
o

n
s
u

m
e

d
 t

im
e

Transfer Delay

Moving

Collision Avoidance

(b)

Figure 5.29: Proportion (%) of time spent in three behavior components with (a) one food
source and (b) four food sources; the nest has a radius of 20 cm, there are 60 robots, and the
object-transfer delay is set to 50 time units.

fer with task partitioning methods. Figure 5.29 shows a distribution of the average amount

of time spent on each behavior. The red-colored, blue-colored and white-colored bars rep-

resent the consumed time for food transfer, moving and collision avoidance, respectively.

Task partitioning groups spend some time on the food transfer behavior, but more time on

the moving behavior depending on strategies and environmental conditions. In particular,

descending-order BBs have a lengthy moving time in the experiments with one food source

as shown in Figure 5.29(a) and ascending-order BBs have a lengthy moving time with four

food sources as shown in Figure 5.29(b). The overall foraging performance in terms of

how many objects are collected is directly related to the above temporal performance. The

efficiency is strongly related to more time being spent on the moving behavior and less time

on collision avoidance.

So far we assumed two levels of speed movement for robots, high or low. We inves-

tigated whether a greater variety of robot characteristics can affect the BBs performance.

That is, robots can have fine-grained levels of speed for their movement; five levels are

tested here. The ascending-order BB with two levels of speed (1 or 2 cm per time unit) or

five levels of speed (1 cm, 1.25 cm, 1.5 cm, 1.75 cm or 2 cm per time unit) was applied. The

BBs with different speed orderings have been tested. In this experiment, another strategy

with no-order BBs was tested in task partitioning. For no-order BBs, object transfer occurs

unconditionally between a pair of robots. If a laden robot carrying a food pellet meets an

143

no−transfer descending ascending no−order
0

50

100

150

200

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

no−transfer descending ascending no−order
0

50

100

150

200

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

(a)

no−transfer descending ascending no−order
0

100

200

300

400

500

600

N
u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

no−transfer descending ascending no−order
0

100

200

300

400

500

600
N

u
m

b
e
r

o
f
c
o
lle

c
te

d
 f
o
o
d
 p

e
lle

ts

(b)

Figure 5.30: Comparison results for the non-partitioning method, ascending-order BBs,
descending-order BBs and no-order BBs: (a) one food source; and (b) four food sources.
Sixty robots were tested and the object transfer time is set to 50 time units. Robots have
two-level speeds (left) or five-level speeds (right).

unladen robot, it passes the item being carried regardless of the speed of the robots.

Figure 5.30 shows the comparison results for the non-partitioning method, ascending-

order BBs, descending-order BBs and no-order BBs. As shown in Figure 5.30(a), five levels

of speed in robots can significantly improve the foraging performance for ascending-order

BBs with a single food source. No-order BBs maintain almost the same performance re-

gardless of the speed level. For four food sources, only descending-order BBs significantly

improve the foraging performance with five levels of speed in robots (see Figure 5.30(b)).

No-order BBs exhibit the best performance for a single source, but not for four food sources.

Frequent task changes occur with this approach, and this may degrade the performance due

144

to the food-transfer delay. For four food sources, ascending-order BBs show the best per-

formance regardless of the speed levels. With this method, more fine-grained speed levels

have no effect on the foraging performance.

We note that multi-level task partitioning by speed levels has a positive effect on re-

ducing traffic jams and improves the foraging performance in most of cases. The diverse

characteristics of robots can further distribute the robots under traffic congestion throughout

the trail with a bucket brigade, and thus a bucket brigade can reduce the traffic congestion.

Furthermore, ordering the robots based on the environmental situation greatly influences

the foraging performance. Ascending-order BBs help diminish the traffic jam near the nest

area.

From the simulation experiments, we can say that if the total amount of food-transfer

time between a pair of agents is much smaller than the total collision delay due to a traffic

jam, task partitioning can be a good choice in the foraging task. This might explain why

several social insects use task partitioning to deliver materials or food for their colony’s

survival. Generally, many social insect colonies consist of a number of members so that the

entrance of a colony nest always suffers from heavy traffic jams. However, for protection

against attacks from their enemies, the insects want to maintain a small entrance size as

possible. We have seen that task partitioning provides an efficient organization system for

the foraging task with a narrow entrance of the nest. Task partitioning plays an effective

role in the foraging performance, especially with heavy traffic congestion. The above re-

sults may support the hypothesis that task partitioning strategies can improve the foraging

performance for the colony’s survival.

In spite of the benefit of task partitioning, many ants rarely use BBs (bucket brigades) on

their entire pheromone trail. Their trail for food delivery is relatively long and there is not

much intense traffic congestion. This is similar to a situation where a small number of agents

run to deliver objects in our experiments. In that case, the non-partitioning method is better

for the foraging performance than task partitioning methods. With the non-partitioning

method, each agent can simply take an object in a resource area and return to the nest,

carrying the item without transferring it to another agent. This will prevent any delays in

the object transfer between agents. Task partitioning may possibly be needed in the nest

cave of ant underground, where the path is very narrow and a large traffic jam is expected.

A traffic jam near the central area is often observed in an environment with multiple

resources, several routes converging to the nest, and a narrow nest entrance. In that situation,

the foraging performance can be greatly improved by task partitioning based on ascending-

145

order BBs where the object is transferred from the slower to the faster agent. We found

that the proposed approach distributes agents from the overcrowded region near the nest to

the trail, thus reducing the traffic jam. Interestingly, it was reported that seed-harvesting

ants take bucket brigades similar to ascending-order BBs, that is, workers are sequenced

from slower ants (near the food source) to faster ants (near the nest) [185]. Anderson et al.

(2002) argued that under the following two assumptions, a sequence of individuals from the

smallest (nearest to the source) to the largest (nearest the nest) can be generated as a self-

organized process: 1) larger ants are faster than smaller ants and 2) a large ant can take a

food item from a smaller ant but not from a larger one. Also, leaf-cutter ants Atta colombica

demonstrate that post-transfer transportation speeds are significantly faster than pre-transfer

[8]. Our experimental results are consistent with biological data found in social insects.

5.5 Summary of Chapter 5

In this chapter, we propose a self-organized method to allocate a swarm of agents to per-

form sequential subtasks. A complex task can be decomposed into a series of subtasks to

be performed sequentially. Each individual agent performs one of multiple tasks with ac-

cording to simple behavioral rules and local information about neighboring agents. Even

for multiple sequential subtasks, we show that the proposed response threshold model can

be applied to regulate the proportion of agents in order to meet the task demands for each

subtask. Without the help of a history queue, instant information is used. Robot’s individ-

ual perception is regulated by the relative difference between the number of tasks not com-

pleted and the number of robots performing the corresponding subtask. Various experimen-

tal results show that the proposed method satisfies the characteristics of swarm intelligence:

robustness, scalability, and flexibility.

Sequential tasks are common in nature, and we demonstrate the effect of a task parti-

tioning strategy called bucket brigade that uses the direct transfer of materials or food be-

tween a pair of workers. We propose a task partitioning strategy based on agents’ moving

speeds for the foraging task. It was observed that M. barbarus is generally sequenced from

slowest (near the food source) to fastest (near the nest) as a bucket brigade arrangement

[185]. We test various environmental conditions and compare the performances between

task partitioning groups and non-partitioning groups. Our results, we show that task parti-

tioning may not always be the best solution for foraging performance. However, when there

146

is a transfer bottleneck at a central location, such as at the entrance of the nest, task parti-

tioning can be an effective strategy for reducing the traffic jam and improving the overall

foraging performance of a group.

147

Chapter 6

Conclusions

In this chapter, the contributions of this thesis are presented and suggestions for future work

are provided.

6.1 Contribution

The goal of the proposed methods is to determine how the individuals in a swarm are al-

located to each subtask in order to maximize the overall system performance. Generally,

global information about the surrounding environment is needed. However, in multi-agent

systems without a centralized solution, a self-regulated decision-making strategy is needed.

Each agent only uses its own effectors and sensors, and determines which task should be

performed with only a limited view of the environment. Emergent coordination algorithms

that use only local sensing and no direct communication between agents are very attractive

because they are robust and scalable. In this dissertation, swarm intelligence has been ap-

plied to design a task allocation problem for swarm robotic systems. Each individual robot

has equal capability to execute tasks, and the goal is to make each individual robot select an

optimal task based on its local information. No communication (or only local communica-

tion) between robots is available.

The concept of swarm intelligence has served as an inspiration to collective robotics and

several social insects are the source of that inspiration due to their self-organization and self-

148

regulation capabilities in colonies. We derive task selection function based on the response

threshold model. Each robot autonomously decides whether to switch between tasks using

the local information available to it individually. In addition, we propose a new response

threshold update algorithm, in which an individual perception is regulated by the relative

difference between task need and the number of agents performing tasks. The desired task

allocation within the group is obtained from the behavior of the individual agents in a self-

organized manner. Repetitive and continuous task selection leads to a desired group-level

task distribution. Transition rates are regulated adaptively depending on the environment,

producing rapid produces fast convergence to the desired state and a little task transition

at the equilibrium state. We also show that this process can lead to convergence to the

equilibrium of task allocation distribution.

We also demonstrate the effect of a task partitioning strategy, in which objects are trans-

ferred directly between agents. In our simulations, we investigated bucket brigade strategies

for the foraging task and found that traffic congestion is an important factor that influences

foraging performance. Ordering agents with respect to speed level for bucket brigades sig-

nificantly influences foraging performance. In an environment with multiple resources, sev-

eral routes converging to the nest, and a narrow nest entrance, the bucket brigade sequenced

from the slowest agents (near the food source) to the fastest agents (near the nest) can par-

ticularly improve the performance in regions with traffic congestion near the nest. Gen-

erally, many social insect colonies consist of a number of members, and the entrances of

colony nests always suffer from heavy traffic congestion. Our experimental results support

the hypothesis that several social insects use one of these task partitioning strategies based

on bucket brigades in their foraging tasks. The main contributions of this thesis are

Swarm intelligence based task allocation algorithm Based on the response threshold

model, this thesis presents a task allocation method without a centralized solution.

Enhancement to the algorithm Based on local information about task need and task type

assigned to neighboring agents, the results shows that the algorithm performs better than

the results only using task need.

Proofs of equilibrium task distribution This thesis presents a mathematical model for the

algorithms to improve the theoretical base and to explain convergence behaviors.

Various simulations demonstrate an effect of a task partitioning strategy The results

149

shed light on why several social insects used various task partitioning method.

6.2 Further work

The proposed method can be extended to more complex problems and further studies could

be performed to improve performance.

Changeable task allocation strategy: Leaf-cutting ants use various strategies to handle

materials such as food and garbage [83, 39]. When an ant finds a food source, it selects

one of three strategies. The first strategy is to simply return to the nest, carrying the food

by itself; in this case, the ant has no task partitioning strategy. The second strategy is for

the forager ant to directly pass the carried food to another ant. Finally, the third possible

strategy is for the ant to drop the carried food in the middle of a pheromone trail so that

other moving ants can bring it to the nest through indirect transfer. These ants freely change

their strategies, and this could be a possible extension of the work. It would be interesting to

investigate an automatic method to improve performance depending on the environmental

situation.

Physiology analysis: Task allocation among member in a group is shown well in this dis-

sertation and there are many related studies pertaining to this topic. However, most studies

concern how they define an improved task selection function and obtain a proper threshold.

There is no consideration about how the threshold value is regulated and a specific task is

selected in a physiology aspect. Spiking neural network could be a good solution to this

problem [132].

Desynchronized response threshold model: Various simulation results show that a swarm

using the proposed method is able to adaptively allocate individuals to sequential subtasks,

and we can conclude that the method is adaptive as the robots successfully re-distribute the

agents to subtasks even if the environmental conditions change. This model functions well

if the threshold value fluctuates; however, if the threshold value is completely same or very

close, this may cause oscillatory phenomena that induce a tipping effect. Accounting for

oscillatory phenomena could improve performance.

150

References

[1] Mohammad Amin Adibi and Jamal Shahrabi. A clustering-based modified variable

neighborhood search algorithm for a dynamic job shop scheduling problem. The

International Journal of Advanced Manufacturing Technology, 70(9-12):1955–1961,

2014.

[2] William Agassounon and Alcherio Martinoli. Efficiency and robustness of threshold-

based distributed allocation algorithms in multi-agent systems. In The first interna-

tional joint conference on Autonomous agents and multiagent systems: part 3, pages

1090–1097. ACM, 2002.

[3] Devanshu Agrawal and Istvan Karsai. The mechanisms of water exchange: the regu-

latory roles of multiple interactions in social wasps. PloS one, 11(1):e0145560, 2016.

[4] Jean-Marc Amé, José Halloy, Colette Rivault, Claire Detrain, and Jean Louis

Deneubourg. Collegial decision making based on social amplification leads to

optimal group formation. Proceedings of the National Academy of Sciences,

103(15):5835–5840, 2006.

[5] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully

asynchronous multifrontal solver using distributed dynamic scheduling. SIAM Jour-

nal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[6] Christos Ampatzis, Elio Tuci, Vito Trianni, and Marco Dorigo. Evolution of signal-

ing in a multi-robot system: Categorization and communication. Adaptive Behavior,

16(1):5–26, 2008.

[7] C Anderson, Jacobus Jan Boomsma, and JJ Bartholdi III. Task partitioning in insect

societies: bucket brigades. Insectes Sociaux, 49(2):171–180, 2002.

151

[8] C. Anderson and J.L.V Jadin. The adaptive benefit of leaf transfer in Atta colombica.

Insectes Sociaux, 48:404–405, 2001.

[9] C Anderson and FLW Ratnieks. Task partitioning in insect societies: novel situations.

Insectes sociaux, 47(2):198–199, 2000.

[10] Ronald C Arkin, Tucker Balch, and Elizabeth Nitz. Communication of behavorial

state in multi-agent retrieval tasks. In Robotics and Automation, 1993. Proceedings.,

1993 IEEE International Conference on, pages 588–594. IEEE, 1993.

[11] Gürdal Arslan, Jason R Marden, and Jeff S Shamma. Autonomous vehicle-target as-

signment: A game-theoretical formulation. Journal of Dynamic Systems, Measure-

ment, and Control, 129(5):584–596, 2007.

[12] M Emin Aydin and Ercan Öztemel. Dynamic job-shop scheduling using reinforce-

ment learning agents. Robotics and Autonomous Systems, 33(2):169–178, 2000.

[13] Gianluca Baldassarre, Stefano Nolfi, and Domenico Parisi. Evolving mobile robots

able to display collective behaviors. Artificial life, 9(3):255–267, 2003.

[14] Saptarshi Bandyopadhyay, Soon-Jo Chung, and Fred Y Hadaegh. Inhomogeneous

markov chain approach to probabilistic swarm guidance algorithm. In 5th Int. Conf.

Spacecraft Formation Flying Missions and Technologies, 2013.

[15] Ralph Beckers, Jean-Louis Deneubourg, Simon Goss, and Jacques M Pasteels. Col-

lective decision making through food recruitment. Insectes sociaux, 37(3):258–267,

1990.

[16] Madeleine Beekman, Amy L Gilchrist, Michael Duncan, and David JT Sumpter.

What makes a honeybee scout? Behavioral Ecology and Sociobiology, 61(7):985–

995, 2007.

[17] Randall D Beer and John C Gallagher. Evolving dynamical neural networks for

adaptive behavior. Adaptive behavior, 1(1):91–122, 1992.

[18] Gerardo Beni. From swarm intelligence to swarm robotics. Swarm robotics, pages

1–9, 2005.

152

[19] Spring Berman, Ádám Halász, M Ani Hsieh, and Vijay Kumar. Optimized stochastic

policies for task allocation in swarms of robots. IEEE Transactions on Robotics,

25(4):927–937, 2009.

[20] Samuel N Beshers and Jennifer H Fewell. Models of division of labor in social

insects. Annual review of entomology, 46(1):413–440, 2001.

[21] SN Beshers, ZY Huang, Y Oono, and GE Robinson. Social inhibition and the

regulation of temporal polyethism in honey bees. Journal of Theoretical Biology,

213(3):461–479, 2001.

[22] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: from natural

to artificial systems, volume 4. Oxford university press New York, 1999.

[23] Eric Bonabeau, Andrej Sobkowski, Guy Theraulaz, and Jean-Louis Deneubourg.

Adaptive task allocation inspired by a model of division of labor in social insects.

In BCEC, pages 36–45, 1997.

[24] Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. Quantitative study

of the fixed threshold model for the regulation of division of labour in insect so-

cieties. Proceedings of the Royal Society of London. Series B: Biological Sciences,

263(1376):1565–1569, 1996.

[25] Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. Fixed response thresh-

olds and the regulation of division of labor in insect societies. Bulletin of Mathemat-

ical Biology, 60(4):753–807, 1998.

[26] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swram

robotics:a review from the swarm engineering perspective. Swarm Intelligence,

7(1):1–41, 2013.

[27] Barry L Brumitt and Anthony Stentz. Dynamic mission planning for multiple mobile

robots. In Robotics and Automation, 1996. Proceedings., 1996 IEEE International

Conference on, volume 3, pages 2396–2401. IEEE, 1996.

[28] Arne Brutschy, Giovanni Pini, Carlo Pinciroli, Mauro Birattari, and Marco Dorigo.

Self-organized task allocation to sequentially interdependent tasks in swarm robotics.

Autonomous agents and multi-agent systems, 28(1):101–125, 2014.

153

[29] Nicholas W Calderone and ROBERT E Page Jr. Temporal polyethism and be-

havioural canalization in the honey bee, Apis Mellifera. Animal behaviour,

51(3):631–643, 1996.

[30] Ken Caluwaerts, Mariacarla Staffa, Steve N’Guyen, Christophe Grand, Laurent

Dollé, Antoine Favre-Félix, Benoˆıt Girard, and Mehdi Khamassi. A biologically

inspired meta-control navigation system for the psikharpax rat robot. Bioinspiration

& biomimetics, 7(2):025009, 2012.

[31] Scott Camazine. Self-organization in biological systems. Princeton University Press,

2003.

[32] Alexandre Campo and Marco Dorigo. Efficient multi-foraging in swarm robotics. In

Advances in Artificial Life, pages 696–705. Springer, 2007.

[33] Alexandre Campo, Simon Garnier, Olivier Dédriche, Mouhcine Zekkri, and Marco

Dorigo. Self-organized discrimination of resources. PLoS One, 6(5):e19888, 2011.

[34] Mike Campos, Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. Dy-

namic scheduling and division of labor in social insects. Adaptive Behavior, 8(2):83–

95, 2000.

[35] Junwei Cao. Self-organizing agents for grid load balancing. In Grid Computing,

2004. Proceedings. Fifth IEEE/ACM International Workshop on, pages 388–395.

IEEE, 2004.

[36] Y Uny Cao, Alex S Fukunaga, and Andrew Kahng. Cooperative mobile robotics:

Antecedents and directions. Autonomous robots, 4(1):7–27, 1997.

[37] David Castanon and Cynara Wu. Distributed algorithms for dynamic reassignment.

In Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, volume 1,

pages 13–18. IEEE, 2003.

[38] Eduardo Castello, Tomoyuki Yamamoto, Yutaka Nakamura, and Hiroshi Ishiguro.

Task allocation for a robotic swarm based on an adaptive response threshold model.

In Control, Automation and Systems (ICCAS), 2013 13th International Conference

on, pages 259–266. IEEE, 2013.

[39] JM Cherrett. The foraging behaviour of atta cephalotes l.(hymenoptera, formicidae).

The Journal of Animal Ecology, pages 387–403, 1968.

154

[40] Vincent A Cicirello and Stephen F Smith. Wasp nests for self-configurable factories.

In The fifth international conference on Autonomous agents, pages 473–480. ACM,

2001.

[41] Vincent A Cicirello and Stephen F Smith. Wasp-like agents for distributed factory

coordination. Autonomous Agents and Multi-agent systems, 8(3):237–266, 2004.

[42] Colin W Clark and Marc Mangel. The evolutionary advantages of group foraging.

Theoretical population biology, 30(1):45–75, 1986.

[43] Margaret J Couvillon, Jennifer M Jandt, NHI Duong, and Anna Dornhaus. Ontogeny

of worker body size distribution in bumble bee (bombus impatiens) colonies. Eco-

logical entomology, 35(4):424–435, 2010.

[44] Iain D Couzin and Nigel R Franks. Self-organized lane formation and optimized

traffic flow in army ants. Proceedings of the Royal Society of London B: Biological

Sciences, 270(1511):139–146, 2003.

[45] Iain D Couzin, Jens Krause, Nigel R Franks, and Simon A Levin. Effective leadership

and decision-making in animal groups on the move. Nature, 433(7025):513–516,

2005.

[46] Rongxin Cui, Ji Guo, and Bo Gao. Game theory-based negotiation for multiple robots

task allocation. Robotica, 31(06):923–934, 2013.

[47] Yash Daultani, Sushil Kumar, Omkarprasad S Vaidya, and Manoj K Tiwari. A supply

chain network equilibrium model for operational and opportunism risk mitigation.

International Journal of Production Research, 53(18):5685–5715, 2015.

[48] E De Margerie, S Lumineau, C Houdelier, and MA Richard Yris. Influence of a

mobile robot on the spatial behaviour of quail chicks. Bioinspiration & biomimetics,

6(3):034001, 2011.

[49] Alan Oliveira de Sá, Nadia Nedjah, and Luiza de Macedo Mourelle. Distributed

efficient localization in swarm robotic systems using swarm intelligence algorithms.

Neurocomputing, 172:322–336, 2016.

[50] Nazlı Demir, Utku Eren, and Behçet Açıkmeşe. Decentralized probabilistic den-

sity control of autonomous swarms with safety constraints. Autonomous Robots,

39(4):537–554, 2015.

155

[51] Cl Detrain and JM Pasteels. Caste differences in behavioral thresholds as a basis for

polyethism during food recruitment in the ant, pheidole pallidula (nyl.)(hymenoptera:

Myrmicinae). Journal of insect behavior, 4(2):157–176, 1991.

[52] Gianni Di Caro and Marco Dorigo. Antnet: Distributed stigmergetic control for

communications networks. Journal of Artificial Intelligence Research, 9:317–365,

1998.

[53] M Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony Stentz. Market-

based multirobot coordination: A survey and analysis. Proceedings of the IEEE,

94(7):1257–1270, 2006.

[54] Marco Dorigo. Optimization, learning and natural algorithms. Ph. D. Thesis, Po-

litecnico di Milano, Italy, 1992.

[55] Marco Dorigo, Gianni Di Caro, and Luca Maria Gambardella. Ant algorithms for

discrete optimization. Artificial life, 5(2):137–172, 1999.

[56] Marco Dorigo, Dario Floreano, Luca Maria Gambardella, Francesco Mondada, Ste-

fano Nolfi, Tarek Baaboura, Mauro Birattari, Michael Bonani, Manuele Brambilla,

Arne Brutschy, et al. Swarmanoid: a novel concept for the study of heterogeneous

robotic swarms. IEEE Robotics & Automation Magazine, 20(4):60–71, 2013.

[57] Frederick Ducatelle, Gianni A Di Caro, Carlo Pinciroli, Francesco Mondada, and

Luca Gambardella. Communication assisted navigation in robotic swarms: self-

organization and cooperation. In Intelligent Robots and Systems (IROS), 2011

IEEE/RSJ International Conference on, pages 4981–4988. IEEE, 2011.

[58] Karthik Elamvazhuthi, Vaibhav Deshmukh, Matthias Kawski, and Spring Berman.

Mean-field controllability and decentralized stabilization of markov chains, part i:

Global controllability and rational feedbacks. IEEE Conference on Decision and

Control (CDC), 2017.

[59] Nourhan Elsayed and Khaled Al-Wahedi. Utilizing task partitioning for self-

organized allocation of partially sequential tasks. In Systems, Man, and Cybernetics

(SMC), 2015 IEEE International Conference on, pages 3030–3035. IEEE, 2015.

[60] M. Erbas, A. Winfield, and L. Bull. Embodied imitation-enhanced reinforcement

learning in multi-agent systems. Adaptive Behavior, 22(1):31–50, 2013.

156

[61] Maria Pia Fanti, Agostino Marcello Mangini, and Walter Ukovich. A quantized

consensus algorithm for distributed task assignment. In Decision and Control (CDC),

2012 IEEE 51st Annual Conference on, pages 2040–2045. IEEE, 2012.

[62] Eliseo Ferrante, Ali Emre Turgut, Edgar Duéñez-Guzmán, Marco Dorigo, and Tom

Wenseleers. Evolution of self-organized task specialization in robot swarms. PLoS

computational biology, 11(8):e1004273, 2015.

[63] Eliseo Ferrante, Ali Emre Turgut, Edgar Duenez-Guzman, Marco Dorigo, and Tom

Wenseleers. Evolution of self-organized task specialization in robot swarms. PLos

Computational Biology, 11(8):e1004273, 2015.

[64] Jennifer H Fewell and Susan M Bertram. Division of labor in a dynamic environment:

response by honeybees (apis mellifera) to graded changes in colony pollen stores.

Behavioral ecology and sociobiology, 46(3):171–179, 1999.

[65] TD Fitzgerald and SC Peterson. Cooperative foraging and communication in cater-

pillars. BioScience, pages 20–25, 1988.

[66] Harold G Fowler and SW Robinson. Foraging by atta sexdens (formicidae: Attini):

seasonal patterns, caste and efficiency. Ecological Entomology, 4(3):239–247, 1979.

[67] Simon Garnier, Christian Jost, Raphaël Jeanson, Jacques Gautrais, Masoud Asad-

pour, Gilles Caprari, and Guy Theraulaz. Aggregation behaviour as a source of col-

lective decision in a group of cockroach-like-robots. In ECAL, volume 3630, pages

169–178. Springer, 2005.

[68] Veysel Gazi and Kevin M Passino. A class of attractions/repulsion functions for

stable swarm aggregations. International Journal of Control, 77(18):1567–1579,

2004.

[69] Brian P Gerkey and Maja J Matarić. A formal analysis and taxonomy of task al-

location in multi-robot systems. The International Journal of Robotics Research,

23(9):939–954, 2004.

[70] A. Giagkos and Myra S Wilson. Swarm intelligence to wireless ad hoc networks:

adaptive honeybee foraging during communication sessions. Adaptive Behavior,

21(6):501–515, 2013.

157

[71] Fatma Pinar Goksal, Ismail Karaoglan, and Fulya Altiparmak. A hybrid discrete

particle swarm optimization for vehicle routing problem with simultaneous pickup

and delivery. Computers & Industrial Engineering, 65(1):39–53, 2013.

[72] Dani Goldberg and Maja J Mataric. Design and evaluation of robust behavior-based

controllers for distributed multi-robot collection tasks. In Robot teams: From diver-

sity to polymorphism. Citeseer, 2001.

[73] David E Goldberg. Genetic algorithms in search, optimization, and machine learning,

1989. Reading: Addison-Wesley, 1989.

[74] Harry Goldingay and Jort van Mourik. Distributed sequential task allocation in for-

aging swarms. In Self-Adaptive and Self-Organizing Systems (SASO), 2013 IEEE 7th

International Conference on, pages 149–158. IEEE, 2013.

[75] Deborah M Gordon. The organization of work in social insect colonies. Nature,

380(6570):121–124, 1996.

[76] Roderich Groß, Shervin Nouyan, Michael Bonani, Francesco Mondada, and Marco

Dorigo. Division of labour in self-organised groups. In From Animals to Animals

10: Proceedings of the Fourth International Conference of Simulation of Adaptive

Behavior, pages 426–436. Springer, 2008.

[77] Qinglin Guo and Ming Zhang. A novel approach for multi-agent-based intelligent

manufacturing system. Information Sciences, 179(18):3079–3090, 2009.

[78] Martin T Hagan, Howard B Demuth, Mark H Beale, et al. Neural network design.

Pws Pub. Boston, 1996.

[79] Adám Halász, M Ani Hsieh, Spring Berman, and Vijay Kumar. Dynamic redistri-

bution of a swarm of robots among multiple sites. In 2007 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2320–2325. IEEE, 2007.

[80] Heiko Hamann. Towards swarm calculus: Urn models of collective decisions and

universal properties of swarm performance. Swarm Intelligence, 7(2-3):145–172,

2013.

[81] Heiko Hamann, Istvan Karsai, and Thomas Schmickl. Time delay implies cost on

task switching: A model to investigate the efficiency of task partitioning. Bulletin of

mathematical biology, 75(7):1181–1206, 2013.

158

[82] Julia Handl and Bernd Meyer. Ant-based and swarm-based clustering. Swarm Intel-

ligence, 1(2):95–113, 2007.

[83] Adam G Hart and Francis LW Ratnieks. Task partitioning, division of labour and

nest compartmentalisation collectively isolate hazardous waste in the leafcutting ant

atta cephalotes. Behavioral Ecology and Sociobiology, 49(5):387–392, 2001.

[84] Manfred Hartbauer and Heiner Römer. A novel distributed swarm control strategy

based on coupled signal oscillators. Bioinspiration & biomimetics, 2(3):42, 2007.

[85] D Hernández, H Trejo, and E Ordoñez. Development of an exploration land robot

using low-cost and open source platforms for educational purposes. In Journal of

Physics: Conference Series, volume 582, page 012007. IOP Publishing, 2015.

[86] DJ Hoare, Jens Krause, Nina Peuhkuri, and J-GJ Godin. Body size and shoaling in

fish. Journal of Fish Biology, 57(6):1351–1366, 2000.

[87] Bert Hölldobler and Edward O Wilson. The ants. Harvard University Press, 1990.

[88] Bert Hölldobler and Edward O Wilson. The superorganism: the beauty, elegance,

and strangeness of insect societies. WW Norton & Company, 2009.

[89] M Ani Hsieh, Ádám Halász, Spring Berman, and Vijay Kumar. Biologically in-

spired redistribution of a swarm of robots among multiple sites. Swarm Intelligence,

2(2):121–141, 2008.

[90] Jinwen Hu, Lihua Xie, Jun Xu, and Zhao Xu. Multi-agent cooperative target search.

Sensors, 14(6):9408–9428, 2014.

[91] Zhi-Yong Huang and Gene E Robinson. Regulation of honey bee division of labor

by colony age demography. Behavioral Ecology and Sociobiology, 39(3):147–158,

1996.

[92] Yusuke Ikemoto, Toru Miura, and Hajime Asama. Adaptive division of labor control

for robot group. In 2009 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 2409–2414. IEEE, 2009.

[93] Aleksandar Jevtić and Alvaro Gutiérrez. Distributed bees algorithm parameters

optimization for a cost efficient target allocation in swarms of robots. Sensors,

11(11):10880–10893, 2011.

159

[94] Long Jin and Shuai Li. Distributed task allocation of multiple robots: A control

perspective. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016.

[95] C. Jones and M.J. Mataric. Adaptive division of labor in large-scale minimalist multi-

robot systems. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings.

2003 IEEE/RSJ International Conference on, volume 2, pages 1969–1974. IEEE,

2003.

[96] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement

learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[97] Nidhi Kalra and Alcherio Martinoli. Comparative study of market-based and

threshold-based task allocation. In Distributed autonomous robotic systems 7, pages

91–101. Springer, 2006.

[98] Anshul Kanakia, John Klingner, and Nikolaus Correll. A response threshold sigmoid

function model for swarm robot collaboration. In Distributed Autonomous Robotic

Systems, pages 193–206. Springer, 2016.

[99] Peter Karlson and Martin Lüscher. ‘pheromones’: a new term for a class of biologi-

cally active substances. 1959.

[100] Istvan Karsai and Gabor Balazsi. Organization of work via a natural substance:

regulation of nest construction in social wasps. Journal of Theoretical Biology,

218(4):549–565, 2002.

[101] Istvan Karsai and Andrew Runciman. The ‘common stomach’as information source

for the regulation of construction behaviour of the swarm. Mathematical and Com-

puter Modelling of Dynamical Systems, 18(1):13–24, 2012.

[102] Istvan Karsai and Thomas Schmickl. Regulation of task partitioning by a “common

stomach”: a model of nest construction in social wasps. Behavioral Ecology,

22(4):819–830, 2011.

[103] István Karsai and John W Wenzel. Productivity, individual-level and colony-level

flexibility, and organization of work as consequences of colony size. Proceedings of

the National Academy of Sciences, 95(15):8665–8669, 1998.

[104] Istvan Karsai and John W Wenzel. Organization and regulation of nest construction

behavior in metapolybia wasps. Journal of Insect Behavior, 13(1):111–140, 2000.

160

[105] Akshay Kashyap, Tamer Başar, and Ramakrishnan Srikant. Quantized consensus.

Automatica, 43(7):1192–1203, 2007.

[106] James Kennedy. Particle swarm optimization. In Encyclopedia of machine learning,

pages 760–766. Springer, 2011.

[107] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

The international journal of robotics research, 5(1):90–98, 1986.

[108] Ehsan Khosrowshahi-Asl, Majid Noorhosseini, and Atieh Saberi Pirouz. A dynamic

ant colony based routing algorithm for mobile ad-hoc networks. Journal of Informa-

tion Science and Engineering, 27(5):1581–1596, 2011.

[109] Jungyun Kim, Seong Youb Chung, and Hyun Joong Yoon. Multi-agent-based

scheduling methods for hybrid cellular production lines in semiconductor industry.

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineer-

ing Manufacture, 228(12):1701–1712, 2014.

[110] Min-Hyuk Kim, Hyeoncheol Baik, and Seokcheon Lee. Response threshold model

based uav search planning and task allocation. Journal of Intelligent & Robotic Sys-

tems, 75(3-4):625–640, 2014.

[111] Oran Kittithreerapronchai and Carl Anderson. Do ants paint trucks better than chick-

ens? markets versus response thresholds for distributed dynamic scheduling. In

Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, volume 2, pages

1431–1439. IEEE, 2003.

[112] Jens Krause and Graeme D Ruxton. Living in groups. Oxford University Press, 2002.

[113] Michael JB Krieger and Jean-Bernard Billeter. The call of duty: Self-organised task

allocation in a population of up to twelve mobile robots. Robotics and Autonomous

Systems, 30(1):65–84, 2000.

[114] Michael JB Krieger, Jean-Bernard Billeter, and Laurent Keller. Ant-like task alloca-

tion and recruitment in cooperative robots. Nature, 406(6799):992–995, 2000.

[115] Thomas H Labella, Marco Dorigo, and Jean-Louis Deneubourg. Division of labor

in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Au-

tonomous and Adaptive Systems (TAAS), 1(1):4–25, 2006.

161

[116] Michail G Lagoudakis, Evangelos Markakis, David Kempe, Pinar Keskinocak, An-

ton J Kleywegt, Sven Koenig, Craig A Tovey, Adam Meyerson, and Sonal Jain.

Auction-based multi-robot routing. In Robotics: Science and Systems, volume 5,

page 343C350. Rome, Italy, 2005.

[117] James S Langer. Instabilities and pattern formation in crystal growth. Reviews of

Modern Physics, 52(1):1, 1980.

[118] Wonki Lee and DaeEun Kim. Adaptive division of labor in multi-robot system using

visual information. In International Symposium on Distributed Autonomous Robotic

Systems, pages 234–235. Springer, 2014.

[119] Wonki Lee and DaeEun Kim. Adaptive division of labor in multi-robot system with

minimum task switching. In The Fourteenth International Conference on the Synthe-

sis and Simulation of Living Systems, pages 750–756. MIT Press, 2014.

[120] Wonki Lee and DaeEun Kim. Dynamic scheduling for job shop problem based on

wasps colony algorithm. In International Symposium on Distributed Autonomous

Robotic Systems, pages 194–195. Springer, 2014.

[121] Wonki Lee and DaeEun Kim. Task partitioning based on response threshold model in

robot harvesting task. In The Fourteenth International Conference on the Synthesis

and Simulation of Living Systems, pages 759–760. MIT Press, 2014.

[122] Wonki Lee and DaeEun Kim. Desynchronization based response threshold model

for task allocation in multi-agent systems. In The First International Symposium on

Swarm Behaviors and Bio-Inspired Robotics, pages 153–154, 2015.

[123] Wonki Lee and DaeEun Kim. Desynchronization-based task allocation in multi-agent

systems. In International Technical Conference on Circuits Systems, Computers and

Communications, pages 508–509, 2015.

[124] Wonki Lee and DaeEun Kim. Dynamic task allocation using a pheromone-based

approach in factory domain applications. In Web Intelligence and Intelligent Agent

Technology (WI-IAT), 2015 IEEE/WIC/ACM International Conference on, volume 2,

pages 174–177. IEEE, 2015.

162

[125] Wonki Lee and DaeEun Kim. Local interaction of agents for division of labor in

multi-agent systems. In International Conference on Simulation of Adaptive Behav-

ior, pages 46–54. Springer, 2016.

[126] Wonki Lee and DaeEun Kim. Adaptive stochastic strategies to regulate division of

labor in multi-agent systems (submitted). Swarm Evolutionary Computation, 2017.

[127] Wonki Lee and DaeEun Kim. Autonomous shepherding behaviors of multiple target

steering robots. Sensors, 17(12):2729, 2017.

[128] Wonki Lee and DaeEun Kim. Dynamic scheduling using a pheromone-based app-

rocah in multi-agent systems (submitted). Applied Soft Computing, 2017.

[129] Wonki Lee and DaeEun Kim. Handling interference effects on foraging with bucket

brigades. Bioinspiration & Biomimetics, 12(6):066001, 2017.

[130] Wonki Lee and DaeEun Kim. History-based response threshold model for division

of labor in multi-agent systems. Sensors, 17(6):1232, 2017.

[131] Wonki Lee and DaeEun Kim. Personal biometric identification using multi-cycle ecg

waveform pattern (submitted). Sensors, 2017.

[132] Wonki Lee and DaeEun Kim. Spike response threshold model for task allocation in

multi-agent systems. In Robot and Human Interactive Communication (RO-MAN),

2017 26th IEEE International Symposium on, pages 1165–1168. IEEE, 2017.

[133] Wonki Lee and DaeEun Kim. Task allocation in multi-stage sequential task using

swarm robotics (preparing). IEEE access, 2017.

[134] Wonki Lee and DaeEun Kim. Task partitioning to sequential interdependent tasks in

swarm of robots (submitted). Swarm Intelligence, 2017.

[135] K. Lerman. A model of adaptation in collaborative multi-agent systems. Adaptive

Behavior, 12(3-4):187–197, 2004.

[136] Kristina Lerman and Aram Galstyan. Mathematical model of foraging in a group of

robots: Effect of interference. Autonomous Robots, 13(2):127–141, 2002.

[137] Kristina Lerman and Aram Galstyan. Mathematical model of foraging in a group of

robots: Effect of interference. Autonomous Robots, 13(2):127–141, 2002.

163

[138] Kristina Lerman, Chris Jones, Aram Galstyan, and Maja J Matarić. Analysis of dy-

namic task allocation in multi-robot systems. The International Journal of Robotics

Research, 25(3):225–241, 2006.

[139] Reinhard H Leuthold, O Bruinsma, and A van Huis. Optical and pheromonal orienta-

tion and memory for homing distance in the harvester termite Hodotermes mossam-

bicus (Hagen). Behavioral ecology and sociobiology, 1(2):127–139, 1976.

[140] Stuart S Levine, Ian FG King, and Robert E Kingston. Division of labor in polycomb

group repression. Trends in biochemical sciences, 29(9):478–485, 2004.

[141] Paweł Lichocki, Danesh Tarapore, Laurent Keller, and Dario Floreano. Neural

networks as mechanisms to regulate division of labor. The American Naturalist,

179(3):391–400, 2012.

[142] Wenguo Liu, Alan FT Winfield, Jin Sa, Jie Chen, and Lihua Dou. Towards energy

optimization: Emergent task allocation in a swarm of foraging robots. Adaptive

behavior, 15(3):289–305, 2007.

[143] Yanfei Liu and Kevin M Passino. Stable social foraging swarms in a noisy environ-

ment. IEEE Transactions on automatic control, 49(1):30–44, 2004.

[144] Steven KC Lo. A collaborative multi-agent message transmission mechanism in

intelligent transportation system–a smart freeway example. Information Sciences,

184(1):246–265, 2012.

[145] F Lopez, C Agbogba, and I Ndiaye. Prey chain transfer behaviour in the african stink

ant Pachycondyla tarsata Fabr. Insectes Sociaux, 47(4):337–342, 2000.

[146] Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan Abdullah, and Chai

Chompoo-inwai. An ant colony optimization for dynamic job scheduling in grid

environment. International Journal of Computer and Information Science and Engi-

neering, 1(4):207–214, 2007.

[147] Elise L Mansfield, Frini Karayanidis, Sharna Jamadar, Andrew Heathcote, and

Birte U Forstmann. Adjustments of response threshold during task switching: a

model-based functional magnetic resonance imaging study. The Journal of neuro-

science, 31(41):14688–14692, 2011.

164

[148] Magdalene Marinaki and Yannis Marinakis. A glowworm swarm optimization algo-

rithm for the vehicle routing problem with stochastic demands. Expert Systems with

Applications, 46:145–163, 2016.

[149] Alcherio Martinoli, Kjerstin Easton, and William Agassounon. Modeling swarm

robotic systems: A case study in collaborative distributed manipulation. The Inter-

national Journal of Robotics Research, 23(4-5):415–436, 2004.

[150] Alcherio Martinoli, Auke Jan Ijspeert, and Francesco Mondada. Understanding col-

lective aggregation mechanisms: From probabilistic modelling to experiments with

real robots. Robotics and Autonomous Systems, 29(1):51–63, 1999.

[151] Maja J Matarić. Learning social behavior. Robotics and Autonomous Systems,

20(2):191–204, 1997.

[152] Maja J Mataric. Using communication to reduce locality in distributed multiagent

learning. Journal of experimental & theoretical artificial intelligence, 10(3):357–

369, 1998.

[153] T William Mather and M Ani Hsieh. Macroscopic modeling of stochastic deploy-

ment policies with time delays for robot ensembles. The International Journal of

Robotics Research, page 0278364911401442, 2011.

[154] T William Mather and M Ani Hsieh. Synthesis and analysis of distributed ensemble

control strategies for allocation to multiple tasks. Robotica, 32(2):177–192, 2014.

[155] Michalis Mavrovouniotis, Changhe Li, and Shengxiang Yang. A survey of swarm

intelligence for dynamic optimization: algorithms and applications. Swarm and Evo-

lutionary Computation, 2017.

[156] Hans Meinhardt. Models of biological pattern formation. 1982.

[157] Papoutsidakis Michail, Piromalis Dimitrios, Neri Filippo, and Camilleri Michel. In-

telligent algorithms based on data processing for modular robotic vehicles control.

WSEAS Transactions on systems, 13:242–251, 2014.

[158] Marvin L Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,

1967.

165

[159] Francesco Mondada, Edoardo Franzi, and Paolo Ienne. Mobile robot miniaturisation:

A tool for investigation in control algorithms. In Proceedings of the Third Interna-

tional Symposium on Experimental Robotics, volume 200, pages 501–513. Springer,

1994.

[160] László Monostori, József Váncza, and Soundar RT Kumara. Agent-based systems

for manufacturing. CIRP Annals-Manufacturing Technology, 55(2):697–720, 2006.

[161] Sérgio Monteiro and Estela Bicho. Attractor dynamics approach to formation con-

trol: theory and application. Autonomous Robots, 29(3):331–355, 2010.

[162] RE Morley and C Schelberg. An analysis of a plant-specific dynamic scheduler. In

NSF workshop on dynamic scheduling, pages 115–122, 1993.

[163] Richard Morley. Painting trucks at general motors: The effectiveness of a

complexity-based approach. Embracing Complexity: Exploring the application of

complex adaptive systems to business, pages 53–58, 1996.

[164] Mehdi Moussaı̈d, Dirk Helbing, and Guy Theraulaz. How simple rules determine

pedestrian behavior and crowd disasters. Proceedings of the National Academy of

Sciences, 108(17):6884–6888, 2011.

[165] Peter B Cech Moyle and J Joseph. Fishes: an introduction to ichthyology. Number

597 MOY. 2004.

[166] Satyasai Jagannath Nanda and Ganapati Panda. A survey on nature inspired meta-

heuristic algorithms for partitional clustering. Swarm and Evolutionary computation,

16:1–18, 2014.

[167] Ian Newton. The migration ecology of birds. Academic press, 2010.

[168] Stefano Nolfi and Dario Floreano. Evolutionary robotics: The biology, intelligence,

and technology of self-organizing machines. MIT press, 2000.

[169] Ernesto Nunes and Maria L Gini. Multi-robot auctions for allocation of tasks with

temporal constraints. In AAAI, pages 2110–2116, 2015.

[170] Rehan O’Grady, Anders Lyhne Christensen, and Marco Dorigo. Swarmorph:

multirobot morphogenesis using directional self-assembly. IEEE Transactions on

Robotics, 25(3):738–743, 2009.

166

[171] Esben H Østergaard, Gaurav S Sukhatme, and Maja J Mataric. Emergent

bucket brigading: a simple mechanism for improving performance in multi-robot

constrained-space foraging tasks. In Proceedings of the fifth international confer-

ence on Autonomous agents, pages 29–30. ACM, 2001.

[172] Rehan O’Grady, Carlo Pinciroli, Anders Lyhne Christensen, and Marco Dorigo. Su-

pervised group size regulation in a heterogeneous robotic swarm. Proceedings of

ROBOTICA, pages 113–119, 2009.

[173] Liviu Panait and Sean Luke. Cooperative multi-agent learning: The state of the art.

Autonomous agents and multi-agent systems, 11(3):387–434, 2005.

[174] Lynne E Parker. Alliance: An architecture for fault tolerant multirobot cooperation.

Robotics and Automation, IEEE Transactions on, 14(2):220–240, 1998.

[175] Marie-Hélène Pillot, Jacques Gautrais, Patrick Arrufat, Iain D Couzin, Richard Bon,

and Jean-Louis Deneubourg. Scalable rules for coherent group motion in a gregarious

vertebrate. PloS one, 6(1):e14487, 2011.

[176] Carlo Pinciroli. The swarmanoid simulator. Bruxelles: UniversitéLibre de Bruxelles,

2007.

[177] Giovanni Pini, Arne Brutschy, Mauro Birattari, and Marco Dorigo. Interference

reduction through task partitioning in a robotic swarm. In Proceedings of the

sixth International Conference on Informatics in Control, Automation and Robotics–

ICINCO, pages 52–59, 2009.

[178] Giovanni Pini, Arne Brutschy, Marco Frison, Andrea Roli, Marco Dorigo, and Mauro

Birattari. Task partitioning in swarms of robots: An adaptive method for strategy

selection. Swarm Intelligence, 5(3-4):283–304, 2011.

[179] Giovanni Pini, Arne Brutschy, Carlo Pinciroli, Marco Dorigo, and Mauro Birattari.

Autonomous task partitioning in robot foraging: an approach based on cost estima-

tion. Adaptive behavior, 21(2):118–136, 2013.

[180] Giovanni Pini, Arne Brutschy, Carlo Pinciroli, Marco Dorigo, and Mauro Birattari.

Autonomous task partitioning in robot foraging: an approach based on cost estima-

tion. Adaptive behavior, 21(2):118–136, 2013.

167

[181] Giovanni Pini, Arne Brutschy, Alexander Scheidler, Marco Dorigo, and Mauro Bi-

rattari. Task partitioning in a robot swarm: Object retrieval as a sequence of subtasks

with direct object transfer. Artificial Life, 20(3):291–317, 2014.

[182] G Polverino, N Abaid, V Kopman, S Macrı̀, and M Porfiri. Zebrafish response to

robotic fish: preference experiments on isolated individuals and small shoals. Bioin-

spiration & biomimetics, 7(3):036019, 2012.

[183] Francis LW Ratnieks and C Anderson. Task partitioning in insect societies. Insectes

sociaux, 46(2):95–108, 1999.

[184] John H Reif and Hongyan Wang. Social potential fields: A distributed behavioral

control for autonomous robots. Robotics and Autonomous Systems, 27(3):171–194,

1999.

[185] J.L. Reyes and F. Fernández-Haegar. Sequential co-operative load transport in the

seed-harvesting ant Messor barbarus. Insectes Sociaux, 46:119–125, 1999.

[186] Jeanne Robert L. The evolution of the organization of work in social insects. Moni-

tore Zoologico Italiano-Italian Journal of Zoology, 20(2):119–133, 1986.

[187] ANJA Robinson. Dietary supplements for reproductive conditioning of crassostrea

gigas kumamoto (thunberg). i. effects on gonadal development, quality of ova and

larvae through metamorphosis. Journal of Shellfish Research, 11:437–437, 1992.

[188] J Röschard and F Roces. Cutters, carriers and transport chains: distance-dependent

foraging strategies in the grass-cutting ant atta vollenweideri. Insectes Sociaux,

50(3):237–244, 2003.

[189] Erol Şahin. Swarm robotics: From sources of inspiration to domains of application.

In International workshop on swarm robotics, pages 10–20. Springer, 2004.

[190] Mohsen Amini Salehi, Hossein Deldari, and Bahare Mokarram Dorri. Balancing load

in a computational grid applying adaptive, intelligent colonies of ants. Informatica,

33(2), 2009.

[191] Thomas Schmickl and Heiko Hamann. Beeclust: A swarm algorithm derived from

honeybees. Bio-inspired Computing and Communication Networks, pages 95–137,

2011.

168

[192] Thomas Schmickl and Istvan Karsai. Sting, carry and stock: How corpse availabil-

ity can regulate de-centralized task allocation in a ponerine ant colony. PloS one,

9(12):e114611, 2014.

[193] Thomas Schmickl and Istvan Karsai. How regulation based on a common stomach

leads to economic optimization of honeybee foraging. Journal of theoretical biology,

389:274–286, 2016.

[194] Thomas Schmickl, Ronald Thenius, and Karl Crailsheim. Swarm-intelligent foraging

in honeybees: benefits and costs of task-partitioning and environmental fluctuations.

Neural Computing and Applications, 21(2):251–268, 2012.

[195] Miguel Schneider-Fontán and Maja J Mataric. A study of territoriality: The role of

critical mass in adaptive task division. In From Animals to Animals 4: Proceedings

of the Fourth International Conference of Simulation of Adaptive Behavior, pages

553–561. MIT Press, 1996.

[196] Thomas D Seeley. Division of labor between scouts and recruits in honeybee forag-

ing. Behavioral Ecology and Sociobiology, 12(3):253–259, 1983.

[197] Thomas D Seeley. The wisdom of the hive: the social physiology ofhoney bee

colonies. Cambridge, MA: Harvard UniversityPress, 1995.

[198] Cheng Shao and Dimitrios Hristu-Varsakelis. Cooperative optimal control: broaden-

ing the reach of bio-inspiration. Bioinspiration & biomimetics, 1(1):1, 2006.

[199] Dylan A Shell and Maja J Mataric. On foraging strategies for large-scale multi-robot

systems. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 2717–2723. IEEE, 2006.

[200] Weiming Shen and Douglas H Norrie. Agent-based systems for intelligent manufac-

turing: a state-of-the-art survey. Knowledge and information systems, 1(2):129–156,

1999.

[201] Xiao-Ning Shen and Xin Yao. Mathematical modeling and multi-objective evolu-

tionary algorithms applied to dynamic flexible job shop scheduling problems. Infor-

mation Sciences, 298:198–224, 2015.

[202] Stephen L Smith and Francesco Bullo. Monotonic target assignment for robotic

networks. Automatic Control, IEEE Transactions on, 54(9):2042–2057, 2009.

169

[203] Andrei P Sommer, Dan Zhu, Tim Scharnweber, and Hans-Joerg Fecht. On the social

behaviour of cells. Journal of Bionic Engineering, 7(1):1–5, 2010.

[204] William M Spears, Diana F Spears, Jerry C Hamann, and Rodney Heil. Distributed,

physics-based control of swarms of vehicles. Autonomous Robots, 17(2):137–162,

2004.

[205] Valerio Sperati, Vito Trianni, and Stefano Nolfi. Self-organised path formation in a

swarm of robots. Swarm Intelligence, 5(2):97–119, 2011.

[206] Anton Stabentheiner, Helmut Kovac, and Robert Brodschneider. Honeybee colony

thermoregulation–regulatory mechanisms and contribution of individuals in depen-

dence on age, location and thermal stress. PLoS One, 5(1):e8967, 2010.

[207] Jan-Philipp Steghofer, Jörg Denzinger, Holger Kasinger, and Bernhard Bauer. Im-

proving the efficiency of self-organizing emergent systems by an advisor. In Engi-

neering of Autonomic and Autonomous Systems (EASe), 2010 Seventh IEEE Interna-

tional Conference and Workshops on, pages 63–72. IEEE, 2010.

[208] Liselotte Sundstrom. Sex allocation and colony maintenance in monogyne and

polygyne colonies of formica truncorum (hymenoptera: Formicidae): the impact of

kinship and mating structure. The American Naturalist, 146(2):182–201, 1995.

[209] V Suresh and Dipak Chaudhuri. Dynamic scheduling—a survey of research. Inter-

national Journal of Production Economics, 32(1):53–63, 1993.

[210] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning. MIT

Press, 1998.

[211] Ronald Thenius, Thomas Schmickl, and Karl Crailsheim. Optimisation of a

honeybee-colony’s energetics via social learning based on queuing delays. Connec-

tion Science, 20(2-3):193–210, 2008.

[212] Guy Theraulaz, Eric Bonabeau, and JN Denuebourg. Response threshold reinforce-

ments and division of labour in insect societies. Proceedings of the Royal Society of

London. Series B: Biological Sciences, 265(1393):327–332, 1998.

[213] Daxin Tian, Junjie Hu, Zhengguo Sheng, Yunpeng Wang, Jianming Ma, and Jian

Wang. Swarm intelligence algorithm inspired by route choice behavior. Journal of

Bionic Engineering, 13(4):669–678, 2016.

170

[214] Chris Tofts. Algorithms for task allocation in ants.(a study of temporal polyethism:

theory). Bulletin of Mathematical Biology, 55(5):891–918, 1993.

[215] John Toner and Yuhai Tu. Flocks, herds, and schools: A quantitative theory of flock-

ing. Physical review E, 58(4):4828, 1998.

[216] Sahar Trigui, Anis Koubaa, Omar Cheikhrouhou, Habib Youssef, Hachemi Ben-

naceur, Mohamed-Foued Sriti, and Yasir Javed. A distributed market-based algo-

rithm for the multi-robot assignment problem. Procedia Computer Science, 32:1108–

1114, 2014.

[217] Richard T Vaughan, Brian P Gerkey, and Andrew Howard. On device abstractions

for portable, reusable robot code. In Intelligent Robots and Systems, 2003.(IROS

2003). Proceedings. 2003 IEEE/RSJ International Conference on, volume 3, pages

2421–2427. IEEE, 2003.

[218] Kirk P Visscher and Reuven Dukas. Honey bees recognize development of nest-

mates’ ovaries. Animal Behaviour, 49(2):542–544, 1995.

[219] Markus Waibel, Dario Floreano, Stéphane Magnenat, and Laurent Keller. Division of

labour and colony efficiency in social insects: effects of interactions between genetic

architecture, colony kin structure and rate of perturbations. Proceedings of the Royal

Society of London B: Biological Sciences, 273(1595):1815–1823, 2006.

[220] Markus Waibel, Laurent Keller, and Dario Floreano. Genetic team composition and

level of selection in the evolution of cooperation. IEEE Transactions on Evolutionary

Computation, 13(3):648–660, 2009.

[221] Joanne H Walker and Myra S Wilson. Task allocation for robots using inspiration

from hormones. Adaptive Behavior, 19(3):208–224, 2011.

[222] Akira Watanabe and Kimihisa Takeda. The change of discharge frequency by ac

stimulus in a weak electric fish. Journal of Experimental Biology, 40(1):57–66, 1963.

[223] Wilson. The insect societies. Cambridge, Massachusetts, USA, Harvard University

Press, 1971.

[224] Edward O Wilson. The relation between caste ratios and division of labor in the ant

genus pheidole (hymenoptera: Formicidae). Behavioral Ecology and Sociobiology,

16(1):89–98, 1984.

171

[225] Mark L Winston. The biology of the honey bee. Harvard University Press, 1991.

[226] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. A survey and analysis of multi-

robot coordination. International Journal of Advanced Robotic Systems, 10(12):399,

2013.

[227] Jianyi Yang, Ruifeng Ding, Yuan Zhang, Maoqin Cong, Fei Wang, and Guoan Tang.

An improved ant colony optimization (i-aco) method for the quasi travelling sales-

man problem (quasi-tsp). International Journal of Geographical Information Sci-

ence, (ahead-of-print):1–18, 2015.

[228] Jin-hui Yang, Liang Sun, Heow Pueh Lee, Yun Qian, and Yan-chun Liang. Clonal

selection based memetic algorithm for job shop scheduling problems. Journal of

Bionic Engineering, 5(2):111–119, 2008.

[229] Yongming Yang, Changjiu Zhou, and Yantao Tian. Swarm robots task allocation

based on response threshold model. In Autonomous Robots and Agents, 2009. ICARA

2009. 4th International Conference on, pages 171–176. IEEE, 2009.

[230] Payam Zahadat and Thomas Schmickl. Division of labor in a swarm of autonomous

underwater robots by improved partitioning social inhibition. Adaptive Behavior,

24(2):87–101, 2016.

[231] Ouarda Zedadra, Nicolas Jouandeau, Hamid Seridi, and Giancarlo Fortino. Multi-

agent foraging: state-of-the-art and research challenges. Complex Adaptive Systems

Modeling, 5(1):3, 2017.

[232] Dandan Zhang, Guangming Xie, Junzhi Yu, and Long Wang. Adaptive task assign-

ment for multiple mobile robots via swarm intelligence approach. Robotics and Au-

tonomous Systems, 55(7):572–588, 2007.

[233] Rui Zhang and Cheng Wu. Bottleneck machine identification method based on con-

straint transformation for job shop scheduling with genetic algorithm. Information

Sciences, 188:236–252, 2012.

[234] Yingfeng Zhang, George Q Huang, Shudong Sun, and Teng Yang. Multi-agent based

real-time production scheduling method for radio frequency identification enabled

ubiquitous shopfloor environment. Computers & Industrial Engineering, 76:89–97,

2014.

172

국문요약

군집지능을이용한다중개체시스템에서의

적응적임무할당

자연계에서군집현상은오래전부터관측되어왔으며,다수의개체들이협동과분업

화과정으로생존에더욱유리하도록진화되어왔다는것은이미널리알려진사실이다.

개체간의많은상호작용은복잡한네트워크와같지만,단일개체가수행하기어렵거나

불가능한임무를제한된능력을가진개체들이몇가지행동규칙을사용하여조직적으

로 협동하여 수행합니다. 각 개체가 전문화된 임무를 동시에 여러 장소에서 개별적으

로 수행함으로써, 단일개체에 의존한 시스템보다 작업의 효율성과 유연성을 확보할 수

있으며, 한 개체의 고장이나 오류가 전체 임무 수행에 큰 영향을 미치지 않아 안정적인

목표달성을기대할수있다.

본연구에서는군집지능기반응답임계모델을이용하여주위환경의제한적인정보

를이용하여개별개체들이주어진임무의요구량에비례하여각임무에능동적으로적

응하는모델을제안한다. 각개체는모든임무에대해응답임계값을가지고있으며,각

173

임무의요구정도와임계값을고려하여임무선택함수의결과가높은임무를수행하게

된다. 임계값을 잘 조절하는 것이 중요하며, 임무에 대한 정보뿐만 아니라 이를 수행하

는주변개체의임무정보를활용하여각개체는특정임무에대한전문화경향을가지게

된다. 이러한 전문화 경향을 통해 임무 전환을 최소화하면서 원하는 작업 분업 비율을

달성하며수학적인모델링을통해수렴성도증명하였다.

다양한 실험 결과를 통해 집단 구성원의 비율 또는 작업 요구의 변화와 같은 환경

변화에서의 적응 능력을 입증하였으며, 임무 변환에 부가적인 시간이나 에너지를 필요

로 하는 경우, 응답 임계 모델을 활용하면 성능을 높일 수 있을 것으로 기대된다. 또한,

순차적 작업 할당에서의 다양한 실험을 통해 공통 구역에 병목 현상이있는 경우 작업

분할이교통체증을줄이고,전체시스템의인성능을향상시키는데효과적인전략이될

수 있음을 보여준다. 본 연구의 결과는 많은 사회 곤충들이 생존의 확률을 높이기 위해

다양한임무할당전략을사용한다는가설을뒷받침한다.

핵심되는말 : 임무할당,다중개체시스템,군집지능,응답임계모델,수렴성,전문성

174

