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Abstract

Many researchers have observed numerous instances of clustering in nature. Many

creatures that have no central leadership still cluster for a variety of reasons. Individu-

als require information to determine their behavior. However, if the size of the cluster

grows large, global information is not accessible. Thus, clustered entities obtain in-

formation locally to determine their actions. This is called self-organization in cluster

intelligence. Self-organization is facilitated by direct and indirect information. In indi-

rect communication, the individual creature uses environmental changes to understand

its current state and determines its actions accordingly. On the other hand, direct com-

munication is a method of obtaining information using various sensory organs. In this

study, we examine trophallaxis, one of the direct communication methods.

Trophyallaxis is typically the method typically used by ants and bees. In the trophal-

lactic network system, individuals repeatedly bring food, which is passed from one

mouth to the other until every individual is filled, from the outside. This system does

not end with simply sharing food. As the creatures share their food, they obtain other

information they need. Thus, although ants do not have access to global information,

their activities appear to suggest they possess it. In such system, the entity bringing

the food from outside is called a forager, while the one in the nest receiving the food

is called a non-forager or recipient. Among real ants, the foragers deliver a random

variable based on the exponential distribution. Based on this fact, we conduct robot

simulations in which information is shared locally; however, we identify relationships

with global information and analyze the various dactors determining the global actions

selected by real ants.

We observe the robot simulations through various distributions, find the advantages of

the exponential distribution, and identify the best behavior for the foragers. Beyond

simply sharing food, trophallaxis involves one-to-one exchange between individuals.

We implement this in a multi-robot system by creating a situation in which robots clean

up pollutants, and do not end up merely sharing pollutants, but find the best behavior

of the recipients of the information when they deliver it. We provided the location

of the pollutant so that recipients of this information could move to that location and

receive the pollutant smoothly. Although this information is conveyed one-to-one, the

recipients are eventually observed moving in groups. This global action helps them to

efficiently eliminate the contaminants.
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FInally, we verify the effectiveness of the algorithm deployed in the robot simulation

by creating a cluster robot using a vibrating motor to implement a system that removes

contaminants and replicating the experimental set-up featuring in the robot simulation

using a real multi-robot system. In this system, we divided the trophallactic network

system into two categories, foragers and non-foragers, to demonstrate that every indi-

vidual in this system, regardless of the category they belong to, can achieve optimal

behavior through one-to-one information exchange. Our findings confirm the exchange

of location information, the clustering, and the resultant increase in the number of in-

teractions has a good effect on the swarm system.
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Chapter 1

Introduction

In recent years, there has been increased interest in multi-robot systems. Many re-

searchers have proposed a variety of methods of controlling multi-robot systems, and

accomplish desired tasks. To perform various tasks with multi-robot systems, it is nec-

essary to exchange infromation. The efficiency of robots performing the same task

is enhanced through the exchange of necessary information or objects, depending on

the task. This study examines the way robots in a multi-robot system exchange infor-

mation. Basically, all the robots give information to the central computer. The central

computer then organizes the information, and sends it out as global information, which

determines the next action. However, extensive research has been conducted on the

possibility of exchanging information in a multi-robot system without using a central

computer.

In a local exchange, it is important to know the information being exchanged, and the

robots sharing it. To identify the robots exchanging information, topology methods

(Ren and Atkins, 2007; Ren and Sorensen, 2008; Ma et al., 2016) are useful; usually,

neighbor-to-neighbor interaction is observed (Schmickl and Crailsheim, 2006). Once

the robots to exchange information are determined, the question of what information to

share and how to share it arises. The task to be performed determines the information

required. The success of the robots’ task is hinged on the selection of the information

or object to be exchanged and the robots to selected to share them. We consider how

the multi-robot system can benefit from the swarm it forms. We attempt to solve these

problems through using a bio-swarm.

1
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1.1 Trophallaxis as communication

The inspiration for swarm intelligence was drawn from social insects. Despite having

no central control, many social insects perform a variety of actions in a coordinated

manner. Through this behavior, many social insects derive various benefits for differ-

ent purposes. In swarm intelligence without centralized control, local communication

is an important factor. Self-organization is used to determine behavior through infor-

mation obtained through local communication. Of the various communication meth-

ods, we explored trophallaxis, a form of indirect communication. Trotrophallaxis is

a way of sharing nutrients with each other. The nutrients are passed from mouth to

mouth. However, It does not end at simply supplying nutrients.

By exchanging nutrients through trophallaxis, information on the total amount of nu-

trients needed for the nest can be indirectly obtained through the nutritional status and

the duration of the exchange. This allows foragers to fetch as much nutrients as they

desire. In a one-to-one exchange, executing the desired task brings great benefits to the

swarm. This is because going outside is very risky. It also means protecting the nest.

Further, social insects use trophallaxis, because performing the desired task ensures

that nutrition is provided to those who cannot go out. To perform this task efficiently,

a network is formed by delivering various information as well as nutrition, thereby

reducing minimizing unnecessary movements.

1.2 Motivation and Objective

In this dissertation, within the concept framework of swarm intelligence, we consider

the significance of trophallaxis as a means of communication and its benefits to the

swarm, which we then harness, and by applyt to multi-robot system applications. Many

social insects and animals share nutrients among themselves (Wilkinson, 1984; Isaac,

1978; Hölldobler, 1985). The ultimate aim is to ensure the survival of the entire com-

munity, not just the individual’s. Social insects reside in colonies. Within this con-

struct, the aim is to defend the colony against threats and store food. However, food

must come from outside the colony. Because food is sourced from dangerous environ-

ments, not all members find their own food; the task falls to some select members.

Thus, there are a variety of rules and methods to minimize the risks and ensure the task

is performed more efficiently (Bird et al., 2002).
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Among these social insects, bees and ants use the trophallaxis to exchange liquids

food. Trophyallaxis is a way of storing liquid foods in the stomach, and delivering

them from mouth to mouth to other agents in the colony. This process is described

in detail in Chapter 2. Observing trophallaxis among these social insects raises many

questions. In the case of bees, the waggle dance reveals the amount, direction, and

distance of the food. The waggle dance that is associated with trophallaxis is a method

through which the foragers that bring food into the colony communicate (Riley et al.,

2005; Thom et al., 2007; Wenner, 1962). The number of waggle dances depends on the

amount during trophallaxis (De Marco and Farina, 2001). Furthermore, the ants control

the time and number of exchanges during the trophallaxis, and bring the exact amount

of food needed in the colony. The implication of this is that besides passing on food,

the creatures share information necessary to performing their tasks more efficiently.

Trophallaxis is not limited to delivering food. Several experiments have confirmed that

trophallaxis often involves sharing information as well. We are interested in what in-

formation these social insects disseminate through trophallaxis and how they modify

their behavior accordingly. Trophallaxis can be seen as an act of sharing information as

well as sharing nutrition. This study is designed to verify trophallaxis can be deployed

for performing global tasks in multi-robot systems. The trophallaxis is basically aimed

at feeding. In other words, in a multi-robot system, the basic purpose is to be able to

share some material with each other. Each agent also shares the necessary informa-

tion for efficient sharing. We observe and analyze what information is shared and the

modification in the behavior of each agent based on this information.

1.3 Organization of dissertation

This paper dissertation consists of six chapters. Chapter 1 is the introduction; we ex-

plain the scope of the study, and the motivations and objectives. Chapter 2 is the back-

ground of the study. Our research is based on swarm intelligence. Swarm intelligence

refers to simple agents that perform global tasks by self-organization through local

communication without central control. Thus, efficiency in global tasks depends on

how well self-organization is performed.

Local communication between agents is important for self-organization. When infor-

mation is obtained through local communication, the agent moves based on the infor-
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mation. Thus, from each agent’s point of view, they seem to be free to act, but they

are moving for one purpose. This article examines the emergence and current appli-

cations of swarm intelligence, and explains the research requirements and direction.

Further, we provide a background on the trophallaxis. We will examine the definition

of trophallaxis and present the state of knowledge on it, its current application, and the

direction of future research.

Chapter 3 is the analyzes analysis of various aspects of robots based on actual trophal-

lactic network system. We define ants that bring food from the outside as foragers

and those that stay inside the nest as non-foragers. In ants’ trophallactic network sys-

tem, the exact amount of food needed by the non-foragers is brought inside. In other

words, when the nest is full of food, the foragers no longer go out. Thus, the system

goes beyond merely delivering food. In the process of delivering food, information and

feedback necessary for self-organization are obtained. There are studies that have pro-

gressed and analyzed the behavior of ants within this context (Robinson et al., 2009;

Greenwald et al., 2015). We analyze the factors required by ants to achieve their goals

most efficiently in a trophallactic network, and implement them in a multi-robot sys-

tem. In this chapter, we focuse on the behavior of foragers. From the actions of the

foragers, the reasons for the different methods the ants have chosen to achieve their

goal can be deduced; this suggests that ants can execute global tasks efficiently by

altering their behavior as required.

In Chapter 4, we examine how well a global task can be performed when the trophal-

lactic network system is extended to convey information rather than simply supply en-

ergy. In this chapter, a new global task is created. The global task aims to remove all the

contaminants in a contaminated area. In certain areas, these pollutants can be cleaned.

Therefore, the pollutants are brought from outside to the clean areas and cleaned up.

The robots going out are referred to as foragers, and those receiving the contaminants

in the clean area are the recipients. The task of each robot is to deliver contaminants

and exchange additional information. The additional information is the location infor-

mation. In Chapter 3, we observe the trophallactic network system from the perspective

of the forager. However, in Chapter 4, we interpret the view of the recipient. Recipi-

ents move in groups with the location information. We explain what happens when

you move in groups. Through the method detailed in Chapter 3, the foragers observe

the movement behavior of the recipients as they effectively perform global tasks. In

our study, we analyze and show the elements required by the recipients to efficiently
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perform the global task.

Chapter 5 shows the possibility that the trophallactic network system detailed in Chap-

ter 4 can be implemented with real robots and applied in real situations. We deploy

the trophallactic network system in a practical multi-robot system to ensure that each

robot can serve the intended purpose according to its capabilities when it is imple-

mented. The amount of pollutants delivered is determined by the brightness of the

LED. We implement the system using real robots, and observe the movements of the

recipients, and analyze the effects of these movements on the efficiency of the multi-

robot system. The mathematical modeling of real robotic information and movements,

information on situation implementation, and data are presented in detail in this chap-

ter. Although the system has been deployed in robot simulation, applying it in an actual

multi-robot system, and observing the movement of real robots may reveal other phe-

nomena. However, We demonstrated that the same movements and results are observed

when the experiment was repeated using real robots.

We present the conclusions and future research directions in Chapter 6. The entities in a

trophallactic network system perform self-organization using a communication method

called trophallaxis to execute the desired global task. This is achieved in several steps.

First, the foragers examine the outside environment, and pass the information on to

the non-foragers alongside the desired substance. Following this, it is observed that the

recipients modify their movements according to the received information. We demon-

strate that the trophallactic network system is applicable to a real multi-robot system

to eliminate some of its complexities, as trophallaxis does not require a large system.

We suggest various situations that can be studied to further verify and improve the

effectiveness of trophallaxis for multi-robot system.





Chapter 2

Background

Our problem is complicated and difficult to solve everything with one robot. So many

researchers are trying to solve these problems using multi-robots instead of just one

robot. But with multi-robot there are new issues. In a multi-robot system, these is-

sues are addressed in such a way that the task can be performed most efficiently

and the swarm can benefit overall. Representative issues include how tasks are allo-

cated to each robot(task allocation) and how information or objects are shared between

robots(spreading information).

We are interested in how to share information or objects between robots. Multi-robots

need to share information with each other or exchange objects depending on their mis-

sion. There are two ways for robots to share information or objects they need. First of

all, the central system exists and transmits information of all robots or objects to the

central system that all robots know. And the central system provides information or ob-

jects to the robots they need. The next method is to share information or objects locally.

This means that robots can share tasks locally without knowing all the information.

Researchers attempt to solve this problem by sharing between robots rather than con-

trolling a multi-robot over a central system. Since it is more limited than sharing all

information or objects, it must be delivered with certain rules.

7
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Collective
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Collective decision - making
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Aggregation
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Coordinated motion
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Figure 2.1: Type of collective behaviors (modified from (Brambilla et al., 2013)).

2.1 What is the swarm intelligence

In 1989 Gerardo Beni and Jing Wang introduced the cellular robotic system(Beni,

1988). The cellular robotic system has several rules. The cellular robotic system con-

sists of a robot unit that moves autonomously. These robot units cooperate to achieve

global tasks. The key concepts of this system are distributed computing, molecular

computing, self-organization, and reliablility. Swarm intelligence exchanges informa-

tion with limited communication between adjacent robots without a central system.

Thus, swarm intelligence is less complex than controlling all robots with a central sys-

tem. The system is also very stable because it receives distributed control. In addition,

it has various advantages. In 1993, they first used the term swarm intelligence in ana-

lyzing cellular robotic systems (Beni and Wang, 1993). Robot intelligence and Robot

system intelligence is defined by unpredictability of improbable behavior.

Unpredictability is analyzed by statistical unpredictability, inaccessibility, undecid-

ability, intractability, and non-representability. This unpredictability results in differ-

ent forms of intelligence behavior. Like the cellular robotic system introduced above,

swarm intelligence(SI) is subset of artificial intelligence. SI has three properties (Blum

and Merkle, 2008). First, set of simple agents perform collective actions. Each agent

is not complicated. The SI then performs distributed control. In other words, there is

no global control and each agent acts. Finally, agents in SI determine their behavior

through self-organization. Self-organization is achieved by communicating between

adjacent agents. The communication methods are direct communication and indirect
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communication. Direct communication can be achieved by contacting each other using

vision or chemicals. On the other hand, indirect communication method is stigmergy.

Stigmergy was introduced by Grasse in 1959 (Grassé, 1959). This method uses the

environment to communicate. The same or different agents move in the same envi-

ronment, leaving some traces. By repeatedly leaving these traces, the environment is

strengthened. Agents get information from enhanced traces. As a result, SI can work

together to accomplish complex tasks or actions that each agent cannot resolve in this

way. And there is a big gain for the group. Such SI is basically common in nature.

We show what SI is in nature. Naturally occurring SI provide a solution for running

multi-robots.

2.1.1 Swarm intelligence in nature

We can easily see many insects and animals doing collective action. They do collective

action for a variety of reasons. Insects can think in a variety of ways depending on the

goal of group action. The first representative SI is division of labor or task allocation.

If several agents have collective actions and there are several tasks, they try to work

efficiently by distributing appropriate roles. This is an issue that needs to be addressed

in collective action. Representative insects that share roles with each other are ants.

Ants are insects that benefit the entire swarm through collective action. Ants have

workers who work. It also shows the different tasks among workers, which perform

their assigned tasks according to their age. Not only that, but it also flexibly changes

its roles according to circumstances and circumstances to work on collective behavior

(Sendova-Franks and Franks, 1993; Robinson et al., 2009).

Next is flocking, which is common in group behavior. Flocking is one of the common

behaviors of fish and birds. In the case of fish, I do schooling for various reasons.

They gain the advantage of predation by doing the schooling (Cushing and Jones,

1968). Another reason is due to hydrodynamical effects (Weihs, 1973). This effect

gains speed and stamina. In the case of dolphins, too, the crowd acts to increase the

rate of predation. They share the role of each other and increase the efficiency by

allowing them to hunt a large amount of food (Shiqin et al., 2009). These actions do

not exist and control the central system. Nor does a leader exist and lead everyone.

Insects or animals in collective action do not know the situation of large groups. For

this reason, you should judge yourself by using local information. A flock of fish and
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birds also acted by judging from the behavior of their peers. It’s a local judgment and

action, but when you look at it as a whole, it looks like you’re leading a group of

leaders who don’t exist and disperse. This flocking movement is seen in sheep as well

as fish and birds. We use only a few shepherd dogs to move large numbers of sheep

using sheep moving in groups. The movement of shepherd dogs and the movement of

herds of sheep is strongly related. As shepherd dogs get closer, the sheep try to move

closer. In other words, the mean value of the distance of each sheep away from the

center of the herd is smaller (King et al., 2012). Using this feature, shepherd dog’s

strategy was established to conduct efficient shepherding. Basically, it is to find a way

to accurately move the herd of sheep to the desired place by dividing it into herding,

covering, patrolling, and collecting (Lien et al., 2004, 2005; Lee and Kim, 2017).

This time, there is collective action that must be done for collective survival. Most

collective actions of insects and animals are related to survival. FIre ants do special

things to each other to survive natural disasters. Fire ants have the ability to float in

water. These red ants keep together by rafting together in the event of a flood (Mlot

et al., 2011). Fire ants build a raft to help keep the packs from scattering and create

air bags to get oxygen in the water. Finally, it will help you easily climb up when you

return to land after the flood. In order to prevent external threats like this, they may

collectively act as survival strategies, but internally, they act collectively to supply

energy. Energy supply is the most important for life. The most interesting part of this

paper is the foraging of behavior related to energy supply. All the insects and animals

in the group need different processes to get food and supply energy. First, workers

start searching to find out where their prey is. There are many risks outside, and not

all agents can get out. That is why some agents go out and search. When searching for

food, it informs agents in the colony of its location.

As a way of telling where you are, you can tell a bee through a waggle dance. The

optical flow method measures the distance and transmits the direction and distance to

the waggle dance duration (Esch et al., 2001; Riley et al., 2005; Grüter and Farina,

2009). Ants use the Stigmergy method, which leaves a mark on the environment dur-

ing indirection communication. The ant searches for a food source and returns to the

colony, leaving behind a pheromone. Then the other ants see the pheromone and go

to the food source to bring their food. When you bring food, if you still have food

left over phermones. If you leave pheromone, the traces of pheromone on the way will

be strengthened. These ant behaviors correspond to the representative ant colony opti-
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mazation(ACO) in the SI model. ACO is shown in detail in swarm intelligence models

in 2.1.2. Next, they help each other get food from the colony.

Among other things, special actions are taken by sharing liquid food. Both bees and

ants do the same thing, so that all agents in the colony are fed. That way the trophal-

laxis method is used. We use this trophallaxis to apply it to robots to solve complex and

difficult problems with collective behavior. This trophallaxis method is also discussed

in detail in Section 2.4. In addition to the behaviors described above, insects and ani-

mals get a variety of things through collective behavior. SI is an intelligence bahevior

like the collective behavior of these insects and animals. Many people use these actions

to solve many problems with multi-robots. We apply a variety of problems through the

trophallaxis model. In Section 2.1.2 we get help from the typical SI model so far.

2.1.2 Swarm intelligence models

SI acts for a large number of robots to achieve the same goal. Many researchers have

created a basic model for a particular situation among various group behaviors. Among

them, known models include ant colony optimiazation (ACO) and particle swarm op-

timization (PSO). These two models are mathematically organized so that agents mov-

ing in groups can move optimally. Indeed, insects and animals use a variety of sensory

organs, such as chemicals, vision, and smell, to conduct efficient collective behavior

with their own rules. However, without certain rules, multi-robot can’t have similar

collective behavior. For this reason, many researchers have pre-mathematically sum-

marized typical situations in order to establish rules. Many people will be able to bring

and apply mathematical models for similar situations. We look at ACO and PSO to see

what rules the mathematical model is based on. And finally, social insects play a role

in choosing one another. This requires some behavior that must be shared with each

other, such as trophallaxis. Therefore, we share the roles for some reason and look

closely at what information is needed.

2.1.2.1 Particle swarm optimization

Particle swarm optimization is a mathematical modeling of how birds and fish flock

(Ahmed and Glasgow, 2012). It was first introduced in 1995 by James Kennedy (Kennedy,

2010; Eberhart and Kennedy, 1995). PSO is treated as the swam of the particles. Par-



12 Chapter 2. Background

Figure 2.2: A visualization of the update on the location of the particles applied in par-

ticle swarm optimization. Particles move under three influences: inertia, aggregation,

and cognition. The influence of the three effects can be adjusted appropriately with

parameters to change the propensity of the particles.

ticle swarms are affected by neighboring particles. Thus, the swarm shape of the par-

ticles depends on how the neighboring positions are determined. Once the shape of

the neighboring particles is determined, they are constantly updated with the speed,

position and location of each neighboring particle.

vi := ωvi +ρ1 (Pi− xi)+ρ2 (Pg− xi)

xi := xi + vi

i f f (xi) > f (Pi) then Pi := xi

(2.1)

Initially, the speed and position are randomly set. The velocity is determined by three

terms. vi is a momentum term, ρ1 (Pi− xi) is a cognitive part, ρ2 (Pg− xi) is a social

part. The momentum term has the effect of keeping the current direction of movement.

The momentum term is also called inertia. A cognitive part means one’s own best

position. Finally, social part means the best position of the group. The effects of these

three terms determine the direction and velocity, which determines where the next

particle moves. The figure 2.2 visually shows the equation 2.1. In the case of ACO, they

helped to make the collective behavior optimal by leaving traces in the environment.

In other words, ACO corresponds to indirection communication. In the case of PSO,

on the other hand, it looks directly at the agents around it and decides its behavior.

As these behaviors come together, they create a collective action. PSO corresponds
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to direction communication. Indirection communication and direction communication

are essential elements of self-organization. SI is a self-organization through limited

communication, not central control, to achieve a global task.

2.1.2.2 DIvision of labor and Task allocation problem

Social insects perform various tasks such as foraging and nest defense. Hundreds of

thousands of insects share labor with each other. Some insects defend the nest and

some have tasks to bring food from the outside. Using these aspects of insects, en-

gineers similarly use multi-robots to perform a variety of complex tasks. In order for

multi-robot to efficiently perform a variety of complex tasks, several things must be

considered. What information do you need to perform tasks on a multi-robot system

first? What functions should each robot have? Finally, how do you allocate task allo-

cation?

These engineers consider task allocation issues in multi-robot systems centered on

questions. Task allocation was basically done through a centralized control system.

However, because a large number of robots must be controlled in noisy situations and

tasks must be performed in various environments, a centralized control system has be-

come a difficult algorithm. For this reason, many engineers are increasingly interested

in decentralized control systems rather than centralized control systems. A decentral-

ized control system is a system that performs various tasks through decentralized and

self-organization. This is a basic properties of swarm intelligence (figure 2.4). Using

this system, the problem of task allocation becomes a lot of motivation in biological

situations. Ants perform different tasks by dividing various roles in the situation of

bringing food. Ants are divided into forager and non-forager in colony. They quickly

switch roles depending on the colony’s nutritional status and body size, and perform

the given task (Blanchard et al., 2000). Foragers perform tasks that bring food from the

outside, and non-foragers perform tasks that receive food from the forager in the nest

and deliver food to other non-foragers. Foragers and non-foragers change tasks dynam-

ically depending on the situation. If an ant goes out to find food but finds it can’t move

alone if the food is large, the ant searching for an ant picks up an ant to nest with. The

selected ants move to the area where the food is located and bring the food to them

in cooperation (Robson and Traniello, 2002). In this way, ants distribute fluidly and

efficiently search. In addition, it allows you to perform the tasks of the main workers
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Figure 2.3: Threshold value for each agent’s task. (a) Fixed threshold value. (b) Flexible

threshold value.

in an emergency (Wilson, 1984). In this way, the ants have ants searching for food and

only ants that exist only in the nest. In addition, there are many cases of division of

labor by distributing tasks (Agrawal and Karsai, 2016; Ferrante et al., 2015; Ratnieks

and Anderson, 1999).

In this way, the researchers consider how to distribute tasks in a multi-robot system.

This is called a task allocation problem. Many researchers wonder how multi-robots

can distribute tasks under the given conditions to get the most efficiency. There have

been many ways to solve the task allocation problem. Typical methods include ratio

method and threshold method. First of all, the ratio method looks at the ratio of the task

to a certain bound of the robot and determines its role (Shehory and Kraus, 1998). Next

is the threshold room, which is now more commonly known. The threshold method is

that a given task sees it as a stimulus. Robots have a defined threshold for each task.

Change the task if the stimulus crosses the threshold at a given task and is different

from what is currently being done. Initially, when the threshold method was used, the

threshold value of each robot was set. Proceeding to the specified threshold value is

applied most efficiently only when the distribution of the whole task is known. But

more often we don’t know the percentage of tasks. In other words, it is good for the

robot to change the threshold fluidly and distribute it accordingly.

The figure 2.3 shows how to do this. Each task has a threshol value that the robot

has. When a task’s stimulus crosses the threshold, change to that task. There is a high

tendency to do tasks with low threshold values. This is because the threshold is low

because you are trying to run the task on a small stimulus. In addition, research has

been conducted to distribute work according to the situation by changing the threshold
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Figure 2.4: The properties of swarm intelligence. swarm intelligence basically requires

that each agent unit be simple and there is no central control. And the key to swarm

intelligence is self-organization. Self-organization sees a situation or takes information

from another agent and uses it to feed back its status and decide what to do next. There

are two ways of communication: direction communication and indirection communica-

tion. We are interested in the trophallaxis method of direction communication.

value flexibly. In reality, most multi-robots often suffer from changing tasks. Therefore,

it is not good to cause frequent task changes. Considering this point, a method of

calculating and changing the stimulus received for a certain period of time is proposed

instead of immediately changing the task in response to the stimulus (Lee and Kim,

2014). The solution to the task allocation problem known so far is that it is applied only

when the robot observes it directly in the area it can detect. If the robot communicates

locally, the detection distance will be longer, which will allow for more efficient task

changes. We looked into this possibility and carried out research of communication

network system that can be applied to task allocation. We propose network system and

show the change of robot’s movement according to information.

2.1.3 Properties of swarm intelligence and methods

SI is the basic theory for controlling multi-robots. However, in order to apply the model

of SI, it must have proper characteristics. The figure 2.4 shows the properties of SI. The

ability of each individual of the multi-agents of SI is simply configured. Agents can-

not solve all tasks by themselves. In fact, it is difficult to make one robot solve all

the tasks from simple task to complex task. That’s why a swarm of simple agents can

solve both simple and complex tasks. The most important property is that there is no
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central control. In SI, the multi-agents run their tasks freely and individually, with no

central control. How to control swarm through central control has many limitations. In

the case of the central control system, there is an area where communication is pos-

sible and all the information is received from the central control system. The greater

the amount of information, the more complex the system and the greater the chance of

delay. In SI, on the other hand, without a central control system, each agent obtains in-

formation through local communication and uses the environment and the information

it determines to determine the next action. Each agent judges and acts individually,

but one swarm resolves the same global tasks. Therefore, the behavior of each agent

depends on the method and information of communication, and the global tasks that

can be performed accordingly.

Because SI is bio-inspired artificial intelligence, communication methods and giving

information are also derived from the behavior of insects and animals. There are two

ways to communicate locally: Direction communication and Indirection communica-

tion. Direction communication refers to the way in which adjacent agents meet in per-

son and deliver information. This includes visual, chemical contact, and trophallaxis.

In the visual case, the agent visually informs the other agent and decides the behavior.

The chemical contact means the exchange of information by transferring chemicals

to other agents. The trophallaxis discussed in this paper also corresponds to direction

communication. The reason for this is discussed in section 2.4. On the other hand,

indirection communication is a way of exchanging information through different envi-

ronments, rather than in person.

Typical indirection communication is stigmergy. A stigmergy is a communication method

that does not give information directly to an agent but leaves information in the envi-

ronment so that other agents see and judge the changed environment and act. The

representative insect that communicates by the method of stigmergy is an ant. Typi-

cally there is an action to find the shortest path between nest building and food source

and nest (Dorigo et al., 2000). First of all, it is easy to see the pillars construction dur-

ing nest building. When the soil pellet is initially released by ants, other ants see the

changed environment. If another ant sees the soil pellets piled up, they pile up the soil

pellets they bring. Repeatedly, pillars are built. Initially, an ant lays out a soil pellet,

giving other ants information about where to build the pillars. This information does

not directly inform each other, but rather the ants get information by looking at the

environment where the soil pellets are stacked.
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Methods

Design methods

Analysis methods Microscopic models

Macroscopic models

Real – robot analysis

Behavior – based design methods

Automatic design methods

Figure 2.5: Design and analysis methods (modified from (Brambilla et al., 2013)).

The shortest path between food source and nest is found by ants leaving pheromone

in the path. As the ants continue to move through the food source and nest, the ants

move more and more along the shortest path. When ants move less on other paths,

pheromones disappear. On the contrary, the shortest route is stronger pheromone. There-

fore, the next ant to move will have a strong path for the phermones. As a result, if you

iterate over it, you will only be able to find it by moving to the shortest path. We ana-

lyze the trophallaxis, which is the direction communication among the properties of SI,

and show that the global task is performed by the trophallaxis communication method

in the system satisfying all properties of SI.

The figure 2.5 shows how to design and analyze SI (Brambilla et al., 2013). Behavior−
based design methods is a commonly used design method. The individual behaviors of

the robots are developed manually to create collective behaviors. This design requires

manual adjustments when errors occur. In the case of Automatic design methods, a

robot is developed to automatically generate behavior. It is mainly designed to learn

automatically through reinforcement learning and evolution. Microscopic models con-

siders each robot individually, analyzing robot-to-robot and robot-to-environment in-

teractions. The model analyzes and verifies the swarm robotics system through sim-

ulation. Macroscopic models considers the entire swarm robotics system. Individual

robots are models that do not take into account.

Finally, Real−robot analysis creates a real robot to verify that group behavior is valid.

Using real robots helps test how robust the swarm robotics system is against noise. Al-

though it has been verified by simulation, if you are weak in noise when you actually

run the algorithm, you will not see the desired collective behavior. In this way, the

design and verification of the swarm robotics system can be confirmed. Our swarm

robotics system is designed with Behavior−based design methods. Therefore, the op-



18 Chapter 2. Background

eration of the robot is individually adjusted. And we model it with Microscopic models

and focus on the robot-to-robot interaction. Since the trophallaxis network system is a

system in which group behavior is achieved by robot-to-robot interaction, Microscopic models

is appropriate. And we show that Real−robot analysis actually produces the same col-

lective behavior.

2.2 Swarm robotics

Swarm robotics is a new approach to the collective behavior of a large number of sim-

ple robots. It can explain the characteristics of the collective behavior of insects ob-

tained through observations (Şahin, 2004). It is basically based on creating a collective

action where each individual action performs a global task without a central system.

It has three characteristics: robustness, flexibility and scalability. It aims to perform

global tasks. In other words, even if individual behaviors go wrong for a moment, they

can continue if they achieve the goal of swarm. Therefore, it is robust compared to

other systems. The reason for the robustness is that even if one robot malfunctions,

the other robot compensates for it. It also operates with distributed control, not central

control. Central control causes all robots to malfunction if the central control mal-

functions. However, swarm robotics communicate locally to determine behavior, so

if a robot malfunctions, it does not affect other robots. Finally, because each robot is

simple, it is less likely to have errors than a complex robot.

Another feature is flexibility, which allows you to easily change global tasks by chang-

ing the behavior of each robot. Finally, there is scalability. Increasing the number of

robots makes it easy to scale up the group. Many researchers use robots to explain vari-

ous SI. Harvard-made killobots were used to simulate various group actions. Represen-

tatively, the formation control creates the desired shape and shows that the algorithm

induces the desired collective behavior (Rubenstein et al., 2012, 2014; Rubenstein and

Nagpal, 2010). Another case is to use swarm robotics to extinguish an internal fire

(Penders et al., 2011). As such, we can easily reproduce the collective behavior of

insects with the characteristics of these swarm robotics, explain the reason for the be-

havior, and apply and verify for any goal.
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2.2.1 Distributed network system

There are studies to solve many problems with multi-robots. Most of these multi-robot

systems perform tasks at the discretion of individual robots, not central control. At

this time, the robots exchange information with each other to perform tasks more ef-

ficiently. First, formation control is a task of a representative swarm robot. Formation

control can be operated to the desired formation only if you know the location of

each other. Information necessary here becomes positional information of each other.

There is a lot of information to share the location information of all robots with each

other. Thus, even if the robots share information locally, they can create the desired

formation. At this time, a study of formation control using a topology method was

introduced as a method of determining robots to be shared with each other (Ren and

Sorensen, 2008).

Next comes a task to solve the patrolling algorithm problem. patrolling alogorithm

is an algorithm for finding the hamiltonian cycle. The hamiltonian cycle is the path

through all the vertices only once. It takes a long time to find a route. In order to solve

this problem, it shows that not only one robot but several robots saves time (Hong

et al., 2019). Creating a hamiltonian cycle locally can result in overlapping vertices.

In order to prevent this, it is important that the robots do not overlap with each other.

When each robot completes the hamiltonian cycle and informs it, it combines to form

one large hamiltonian cycle. It shows that the task can be performed more efficiently

and quickly when the task is executed by using more than one robot.

The task I’ll introduce is Simultaneous localization and mapping (SLAM). SLAM is

the method used to get the map. The robot collects and displays sensor data using a

sensor to obtain a map. It takes a lot of time if the area we have to get is large. In order

to improve this, a study was conducted to obtain a map using several robots instead of

one (Tuna et al., 2014). The multi-robot SLAM presented in this paper shows a system

that maps the role of a robot in real time. The map information obtained by the robot

should be received by the server and synthesized for our viewing. However, because

the distance to receive information is limited, the paper has set up a robot that receives

information in the middle to overcome it. In other words, the robot has a robot explorer

that collects map information and a relay that receives and transmits information in the

middle.

Finally, the task for QoS Routing. Among them, the victim detection system refers to a
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system that finds and rescues victims with a robot. It shows that such a system becomes

more efficient with several robots instead of one robot (Sugiyama et al., 2006). In this

paper, the ad hoc network is used to drive the system. An ad hoc network is where each

robot temporarily opens a network. Unlike the SLAM introduced, each robot receives

information while performing tasks. It also introduces communication using topology

rather than hoc network in QoS routing system (Wang et al., 2013)

2.3 Spreading information problem

In Swarm robotics, information exchange is the most important factor in carrying out

the desired task. There are some things to consider when exchanging information.

First, we need to consider what information the robot needs to proceed with the task.

Next, we need to think about how all the robots can quickly share the information they

need. From these two perspectives, many researchers have been working to solve the

problem.

An important element of Swarm robotics is the exchange of information. It is im-

portant to select and exchange the necessary information to proceed with the task.

Providing all the information is good for the task, but it is not easy to handle all the

information. Therefore, in delivering information, it is effective to select and compress

necessary information to deliver the information. Mathematical quantification is infor-

mation theory. Information theory studies quantification, storage and communications.

The theory of information was proposed by Claude Shannon in 1948 (Shannon, 1948).

Information theory is based on probability and statistics. In information theory, the

goal is to convey as much information as possible. In information theory, it is a branch

of mathematics that determines how much data can be sent to a channel. The num-

ber of bits is determined by the information entropy, but the greater the information

entropy, the higher the uncertainty. Figure 2.6 (a) shows the block diagram of the com-

munication system and (b) shows the change in entropy H when there are two events.

For example, if the coin has a probability p of 0.2 when face up and face down, the

probability of face up is 0.8, which is 1-p. At this time, entropy H is as follows.

H =−(plogp+qlogq)

q = 1− p
(2.2)

In the equation 2.2 it is not defined when p is 0 or 1. Therefore, when p is 0 or 1, H
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Figure 2.6: Communication system and entropy according to probability. (a) Block di-

agram of communication system(modified from Shannon (1948)). (b) If there are two

events, the equation of entropy is H = -(p log p + q log q). It represents the required

entropy (bits) according to the probability. If p is 0 or 1, H is defined as 0.

is defined as 0. In this case, H has a maximum value when p is 0.5. Based on this,

it is widely used to make a communication system that delivers information. Current

multi-robot system exchanges a lot of information and proceeds tsak desired. You can

do this by sending all the information to get the task you want, but sending a lot of

information increases uncertainty and makes the data complex and time-consuming.

Thus, we do not need to send data that is not needed or can be inferred. As an example,

if you send a word, you can see that if the first received data is ’q’, then ’u’ will come

out. Therefore, the word containing ’q’ can be known without receiving data in ’u’.

This inference within itself can reduce the number of bits needed to send information

and reduce uncertainty. Our research identifies and identifies information that can help

you perform tasks effectively when performing tasks in a multi-robot system.

Next, when information is selected, it must be quickly shared by all robots. The en-

vironment changes in real time, so you can’t get the results you want if you don’t

share information quickly. Therefore, many researchers have been working to spread

the data quickly on moving media to solve this problem. Initially, it was an issue to cal-

culate the cover time with fixed nodes. Calculate and analyze the end-to-end delay in

the network (Yu and Kim, 2010; Saifullah et al., 2014). But the nodes that receive the

data often move. Since then, research has been done on moving nodes. When sending

data from the base station, all users should be able to receive the data. At this point, I

started thinking about spreading all the information quickly with the minimum delay.

To experiment and verify this, we need to model the motion of the nodes. There was

also research to model the movement of nodes as closely as possible to reality.
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The current modeling model is the ”Smooth Random Mobility Model.” The model

made more realistic modeling by considering the speed and direction of the node and

by moving past values rather than being influenced only by the present. Based on this

modeling, there are studies that have been conducted to evaluate and rapidly spread

information when there are moving nodes. In this method, not only the information sent

from the base station is directly received but also the information is shared between

users so that the first user can transfer the information to other users. This is called

device-to-device communication, and the addition of this method allows us to spread

information faster (Choi et al., 2013, 2014).

To date, research has focused on the existence of a central control system and the

sending of information from that system. However, in a multi-robot system, it is often

impossible to install a central control system due to various problems such as envi-

ronmental problems, a large amount of data, and algorithmic complexity. We use a

trophallactic network system to show how robots in the role of external objects can

take action and share information quickly and achieve their goals efficiently. Rather

than simply sharing information quickly, we analyze how robots should behave in or-

der to fulfill their desired purpose and apply it to applications.

2.4 Trophallaxis

Social insects are the most important factor in maintaining life. To get food, you have

to go outside the colony and search. But going out and searching for food is dangerous.

Also, all agents cannot go out to protect the colony. For these reasons, some agents go

out and search for food, and others protect the colony. At this time, the searching agents

should bring food from agents in the colony. It is possible to bring about common food

and store it in colony. But for liquid food it is not possible to store it in colony. In this

case, the trophallaxis method is used to allow all agents to eat liquid food. In some

cases, trophallaxis can be used to deliver food, even if it is not liquid.

Trophallaxis is defined as the direct transfer of alimentary liquids, including suspended

particulates and derivatives from one nestmate to another via regurgitation or anal feed-

ing (modified from (Wilson et al., 1971)). Agents leaving the colony store food in their

stomachs from the food source and bring it to the colony. When agents return to feed

other insects, they take out the food stored in their stomach and deliver it to their
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(a) (b)

Figure 2.7: The cascade of trophallaxis. (a) When a donor delivers to recipients, the

recipients receive the donor role and deliver it to other recipients. (b) The donor delivers

food directly to all recipients (modified from (Suárez and Thorne, 2000)).

mouths. Agent that deliver food directly is called donor or forager, and agent that re-

ceive food indirectly is called recipients or non-forager. When these foragers deliver to

non-foragers, there is a way to deliver them directly to all non-foragers, while there are

ways to deliver only to some non-forgers and non-foragers fed to other non-foragers

(Suárez and Thorne, 2000).

The figure 2.7 shows how foragers can deliver food to non-foragers by trophallaxis.

social insects take advantage of the group by choosing the appropriate strategy based

on their goals. Whether foragers deliver directly to all non-foreagers or to some non-

foragers, the goal of using trophallaxis is the same. After all, social insects try to sur-

vive by all their members eating and receiving energy. However, there are questions

about the social insects that are fed by the trophallaxis method. Basically, there is no

central control system in the community of social insects. In other words, foragers do

not know how many members of the colony are present and how much food they have.

However, foragers bring in the amount of food needed for colony. This action is of

interest to us. This is the question we are interested in. In addition, energy supply is

linked to life. Therefore, it is important that there is no member who does not eat for a

long time. We analyze how food should be delivered and in what quantity. We describe
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in detail in section 2.4.2 what the trophallaxis system means as the SI system.

2.4.1 Trophallaxis in nature

Insects or animals using the trophallaxis method are easily found. Typically bees and

ants use trophallaxis (Korst and Velthuis, 1982). In the case of bees, there is a paper

that observed trophallaxis through jelly. Bees each have a role. There is a worker who

distributes food directly and there is a nurse who acts as a relay. Workers vary in their

protein needs, absorption and utilization depending on their age and functional status.

Workers use this to produce proteins and supply them to nurses. (Crailsheim, 1990).

This balances the protein balance. Subsequently, experiments were conducted and the

process of trophallaxis showed how food delivery varies with age (Crailsheim, 1992).

In this way, the trophallaxis method among bees allows the entire community to obtain

nutrients rather than to live alone. In the process of doing this, they act in such a way

that the groups all benefit from their own rules, rather than creating and delivering

them without rules. Not only bees, but also ants are representative social insects that

share nutrients using trophallaxis.

Ants forager take food from above and bring it to the non-foragers when they return

to nest (Cassill and Tschinkel, 1995). Feinerman Ofer observed the traophallaxis of

ants using infrared cameras and barcodes (Greenwald et al., 2015). The experiment

proceeded as follows. In the case of feeding, liquid food was used, and color dye was

added so that it could be seen by an infrared camera. The experimental environment

was partitioned and the proper entrance was made to distinguish the nest from the

outside. A group of queen ants was placed in the nest for feeding outside. First, the

foragers go out and look for food. The forager finds prey and feeds back to nest. The

forager takes out the food and delivers it to other ants. After that, more foragers come

out of the nest with their food. At this time, you can see that the food source is directly

moved. This is possible because of the route left to phermones. Non-foragers fed by

foragers move and deliver food when they encounter other ants. This is the same as

figure 2.7 (a). Over time, all the ants in the nest will be fed and the number of outgoing

forager will be reduced. These experiments allowed us to look closely at the trophal-

laxis of ants. In chapter 3, we analyze the trophallaxis system of ants under the same

circumstances as swarm robotics via Microscopic models. The trophallaxis behavior

of bees and ants is expected to help control multi-robot. To use it correctly, you need
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(a) (b)

Figure 2.8: Example of social insect’s trophallaxis. (a) Trophallaxis of ants ((Greenwald

et al., 2018)). (b) Trophallaxis of honey bees ((Farina and Grüter, 2009)).

rules and mathematical models for the model, such as ACO and PSO.

2.4.2 Trophallaxis network system

We have been able to observe the actual trophallaxis of insects through the experiments

of many researchers. In communities where trophallaxis is applied, exchange is carried

out locally and all behavior is determined by the behavior of each individual. The only

thing you do to feed the members of every nest is to deliver the food you bring. In

other words, each member does nothing but simple things. The size of this group is very

large. For example, ants have hundreds of ants in a nest. This means that no information

is available about members of all communities. Thus, this community cannot have

central control. Each member’s behavior is determined by trophallaxis. The foragers

decide whether they need to go for more food or not, simply by trophallaxis. This

means that it is becoming self-organization. At this time, trophallaxis is the action that

helps self-organization.

The trophallaxis acts as a communication that shares information with each other. As

you can see in figure 2.1, all of the conditions of SI are satisfied. This means we can

access this system from the perspective of SI. The most important element in SI is

self-organizaion. If self-organization is not done well, each member generates an error,

and if the error is large, the desired group behavior cannot be achieved. Examples of

self-organization of social insects include moving large leaves and finding the shortest

paths (Garnier et al., 2007). The trophallaxis not only meets and delivers food but
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also provides information. Therefore, it can be regarded as direction communication

(Charbonneau et al., 2013). Thus, the group naturally forms a network.

The trophallaxis network system is formed by many social insects (Fewell, 2003). As

mentioned in section 2.4, all members are at risk of finding food. And members must

defend their colonies. The result is a naturally formed network system. The fact that

trophallaxis is a means of communication also means that it also serves to convey

information (Waters and Fewell, 2012). The information that can be obtained from

trophallaxis is first the amount of crop load each other can get. We don’t know exactly

how much food you need. However, when your stomach is full, you will feel full, and

you will know whether you have eaten enough food or not. This is also related to the

time of exchange. The longer the exchange time, the more I still need a lot of food and

try to get more food. They use this information to coordinate basic tasks related to the

feeding process and to connect with different groups (Farina and Núñez, 1993). Not

only feeding, but also obtaining other information to help them perform more efficient

group actions. In chapter 4, we show how not only feeding but also other information

can accomplish the task we want when used by the trophallaxis method.

2.4.3 Application

Many robots are produced to perform various tasks by simulating the behavior of social

insects. The trophallaxis network system is also used for warm robotics. The trophal-

laxis is basically communication between the robot-to-robot or agent-to-agent. There-

fore, when operating a multi-robot, it proceeds in a manner that delivers information

or materials locally without central control. We introduce swarm robotics that perform

missions by applying the trophallaxis network system. First, there is a robot that per-

forms the task of dumping dirty materials in the trophallaxis network system method.

(Schmickl and Crailsheim, 2008). This robot informs neighboring robots of its status.

The information that can be given includes information about whether dirty material

is in the vicinity, whether or not there is a material to be delivered, and dump informa-

tion. The robot obtains the corrected parameters and proceeds with the corresponding

actions. Repeating this locally will cause the dirty task to be moved to the global task

dump.

Another robot transfers energy in line with the purpose of trophallaxis (Kubo and Mel-

huish, 2004; Schioler and Ngo, 2008). Robots always follow battery problems. When
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Figure 2.9: The trophallactic contact time associated with the number of trophallaxis.

The number of offering contacts varies depending on the short and long contacts. In

general, the shorter contacts, the higher the number of offering conacts. With this infor-

mation, foragers decide what to do when they bring food.(Farina and Grüter, 2009)

running a multi-robot, the battery problem is fatal. Because when the number of robots

increases, it needs a lot of charging stations to fill them up. Charging the robot in a

limited charging station takes a lot of time. Power distribution using the trophallaxis

method has the potential to solve this problem. When exchanging such power, the

power consumed by itself is also a problem to consider. If the consumption is large

when receiving power, the power of the group continues to be seen. The trophallaxis

network system is an essential system for the efficient energy supply of social insects.

Using such a system has a great influence on the performance of multi-robots.

2.4.4 Inforamtion of trophallaxis

We do not end with the role of trophallaxis in providing nutrients to each other. The

goal is that all community members have nutrition. Social insects collect information

that can be obtained during trophallaxis in order to supply nutrients efficiently. As the

trophallaxis begins to feed on the nest, the interaction time, interaction rate, and crop

load change, and this information changes the behavior of the foragers. (Wainselboim

and Farina, 2000; Farina and Núñez, 1993, 1995) The volume of the interaction is also
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reduced. This information is a past experience when the forager goes back to get food

from the food source. Experience has shown that past harvesting times will vary and

predict the amount of nested prey. This information controls the foragers’ behavior out

of the nest. Social insects change their information by looking at the amount of food

they have and based on it, they decide their behavior. We analyze in Chapter 3 how

to simulate this information by means of robot simulations of how this information

relates to the amount of nested prey.

2.5 Summary of Chapter2

In this chapter, we introduce the basic background of swarm intelligence. And we

show the trophallaxis behavior of the social insect we are interested in. Social insects

are acting in groups and in various ways to benefit the community. The trophallaxis

network system is one of them. The trophallaxis network system is a self-organization

system. Each behavior is determined using the trophallaxis method, which is one of

direction communication. There is more information about this trophallaxis network

system and how it affects the community. And various multi-robot applications are also

introduced.



Chapter 3

Analysis of trophallactic network

system using multi-robots

In this chapter, we implemented an ant trophallactic network system using robot simu-

lation. The effectiveness of the robot simulation demonstrates that it behaves similarly

to a real ant network. A robot that brings food from a food source is called a forager,

and a robot that moves within a nest is called a non-forager. The amount of food ex-

changed is randomly determined by the an exponential distribution, and acts on the

basis of local information but behaves as if observing global information as a whole.

All the robots are fed as the colony state converges to its maximum value. We demon-

strate how food inflow, interaction volume, interaction rate, maximum distance from

entrance, and the number of interactions are related.

This result implies that the forager determines the food inflow as only the amount of the

opponent ant’s food, but indirectly includes the information of the colony state. In this

chapter, we demonstrate the same behavior when applying mathematical modeling of

real ants to robot simulation and reveal how the system is varies by changing variables

that cannot be changed among real ants.

We also examine the system from various perspectives. The system demonstrates dif-

ferent effects depending on the number of foragers, the speed of non-foragers, and the

distribution that determines the interaction volume. The system is evaluated according

to the speed of filling, how well the robots are distributed, and the number of interac-

tions. As a result, the robots can be operated by setting parameters according to the

purpose of the system. We also confirms why ants determine the interaction volume by

29
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Figure 3.1: Robot simulation. The blue robots are represent non-foragers, and while the

black robots is represent foragers. The small circle of robots represents the maximum

amount of food, while. the star shape represents food source. (a) The total number of

robots is 30, and the forager : non-forager ratio is 1 : 5., (b) The total number of robots

is 60, and the forager : non-forager ratio is 1 : 11.

exponential distribution. The reason is that foragers often give a large amount of food

to non-foragers because they bring the food from the food source. Then, non-foragers

are not be able to feed evenly; however, non-foragers exchange their food with each

other and alleviate this problem. Therefore, exponential distribution is the best way to

quickly fill the colony and feed all the ants evenly as evidenced by. our results show

this. The one of these reseaches is publisged (Kim and Kim, 2019).

3.1 Simulation

3.1.1 Trophallactic network system

A trophallactic network system refers to a system in which ants interact with each other

through their mouths. Not all ants leave to find food sources, and each ant moves in a

shared role. We divided the role of ants into two broad categories. First, we observed

the food source outside and divided it into a forager that brought the food to the nest

and a non-forager that traveled while feeding the food from the nest. Real ants find their

way via pheromones when an initial forager comes in search of food. The foragers then

move directly to the food source along the pheromone pathway to retrieve the food. The
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foragers then return to the nest and feed the non-foragers. Repeatedly, the total amount

of food in the nest increases. Using this method, the amount of food required the nest

can be accurately obtained.

In this study, we constructed a robot simulation using MATLAB. We assume that ants

are robots and that pheromone paths are constructed. Thus, robots move directly to the

location of the food and return to the nest immediately. Our point of observations are

of the food inflow and the colony state of the nest, and. we analyze the type of system

that it is according to this change.

3.1.2 Environment

The configuration of the simulation is similar to that of real ants presented in a previous

paper, as illustrated in Figure 3.1. First, the size of the arena is 45 (cm) in width and 30

(cm) in length. The x-coordinates of the arena are -30 to 15, while the y-coordinates is

are -15 to 15. At the point where the x-coordinate is -15, there is a wall that separates

the nest from the outside. The entrance is from (-15, -14) to (-15, -5). In the initial

stage, all robots are created on the nest side, and the foragers are selected in the order

closest to the entrance.

For example, if there are two foragers, they in the order closest to the entrance. Because

forager that if the fall so far produced in nest center and entrance takes coming with the

food outside due to collision avoidance robot moves to the entrance is a long time to

come back to the nest forager they have a food has no information when delivering the

food. It is important to observe if this determines the food inflow. There are two types

of robots: a forager and a non-forager. A forager is black, and while a non-forager is

blue. The red star shape represents food outside the nest, which is provided infinitely

without restrictions. The robot is observed by a camera from above.

3.1.3 Robot

The size of the robot is a circular shape with a radius of 0.4, and. the sensor detection

range is 1. The robot has eight sensors from −90◦ to 90◦. A circle with a radius of 0.3

indicates the maximum amount of food that can be stored by the robot. When the robot

eats its food, it is displayed as a circle with a filled red circle. The amount of food that

the robot stores is counted from 0 to 0.3. If it eats as much as 0.1, a radius of 0.1 and
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(a) (b)

Figure 3.2: State diagram of forager and non-forager. The state is changed in the di-

rection of the arrow. (a) Forager’s state diagram. The forager’s state consists of Initial,

System, Avoid, Exchange, Nest, and Getting. The state changes according to the situa-

tion. (b) Non-forager’s state diagram. The non-forager’s state consists of Initial, System,

Avoid, and Exchange. The non-forager’s state is simpler than the forager’s state. be-

cause non-foragers only move within the nest..

a red filled circle appear. We confirmed that the robot delivered the food well. Robots

behave differently according to forager and non-forager. Figure 3.2 demonstrates that

state changes as situation of forager and non-forager.

A forager behaves according to six states: initial, system, exchange, obstacle avoid-

ance, getting, and nest. First, all the states of the robot are initialized. It then proceeds

to the system state. In the system state, it is determined whether there is an obstacle or

another robot, and the next action is selected. The forager detects the closest obstacle in

the sensor range and determines whether it is ant. If it is not an ant, an action is selected

with an obstacle avoidance state. If it is a robot, it selects an action according to the

condition. If the forager is more prevalent than the opponent robot, and the opponent

robot is not in exchange, then an action in the exchange state is selected. Otherwise,

consider the action an obstacle avoidance state.

If there are no obstacles around the forager and the food is full, the forager moves in

the nest randomly. However, if the food is not full, the forager moves to the entrance.
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When it leaves the nest, it selects an action in the getting state. The getting state moves

directly to where the food is located and collects food up to the maximum storage size.

When the forager has filled up its food, it chooses to act in the nest state. It then returns

to the nest and travels around in the nest to exchange. This is repeated continuously.

If the forager goes outside and brings food, it is aware of any obstacles and avoids

collision. Moving while considering collision avoidance is also part of the getting and

nest states.

A non-forager selects actions according to four states: initial, system, exchange, and

obstacle avoidance. The initial state initializes the state of the robot, as with the forager.

The behavior is selected as a system state. In the system state, the non-forager verifies

whether there is an obstacle. If there is an obstacle, it verifies whether the object is a

robot. If it is not a robot, it avoids the obstacle in the avoidance state by selecting an

action. However, if the obstacle is another robot, the non-forager has more food than

the opponent robot, and the opponent robot is not in exchange, then the exchange state

action is selected. If there is no obstacle, the non-forager moves randomly within the

nest. This is performed repeatedly.

3.1.3.1 Object avoidance

Obstacle avoidance is an important action for preventing conflicts; therefore, it is per-

formed first. The robot uses an IR sensor to automatically detect obstacles. The maxi-

mum distance of the IR sensor is 1.5. An obstacle is avoided when the distance between

robot is less than 1.5 as detected by the IR sensor. There are eight IR sensors from−90◦

to +90◦ of the robot. If only the sensors between −90◦ and 0◦ detect an object, it is

deemed that there is an obstacle on the left side.

Similarly, if the sensor is detects an object between 0◦ and +90◦, it recognizes that

there is an object on the right side. If there is no obstacle, the left wheel and right

wheel speed of the robot change randomly from 0 to 10. However, when an obstacle

is detected, the obstacle is controlled by changing the linear speed and rotation speed

depending on the location of the obstacle.The rotation speed is defined as (+) counter-

clockwise and (-) clockwise.

For example, if there is an obstacle on the left, then the straight forward speed is +10

and the rotation speed is -5. Assuming that there is an obstacle on the right side, the

straight forward speed is -10 and the rotation speed is +5. If obstacles are detected on
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Algorithm 1 Forager Algorithm
forager state← Initial

while running do
if f orager state = Initial then

forager state← System

else if f orager state = System then
if obstacle then

if obstacle = ant then
if Morethantheopponent robot then

forager state← Exchange

else
forager state← Avoid

end if
else

forager state← Avoid

end if
else if Lack o f f ood then

forager state← Getting

else
Randomly move

end if
else if f orager state = Exchange then

if Exchangeis possible then
Give the opponent robot food

end if
forager state← Avoid

else if f orager state = Avoid then
Avoid obstacle

forager state← System

else if f orager state = Getting then
Go to the food source

if Arrivethe f ood source then
Get food

forager state← Nest

end if
else if f orager state = Nest then

Go to the nest

if Arrivethenest then
forager state← System

end if
end if

end while
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Algorithm 2 Non-forager Algorithm
forager state← Initial

while running do
if f orager state = Initial then

forager state← System

else if f orager state = System then
if obstacle then

if obstacle = ant then
if Morethantheopponent robot then

forager state← Exchange

else
forager state← Avoid

end if
else

forager state← Avoid

end if
else

Randomly move

end if
else if f orager state = Exchange then

if Exchangeis possible then
Give the opponent robot food

end if
forager state← Avoid

else if f orager state = Avoid then
Avoid obstacle

forager state← System

end if
end while

both the right and left sides, the straight forward speed is 0 and the rotation speed is

-5, so that the robot can rotate in place. Each time the sensor is checked, the robot

moves according to the detected sensor. Avoiding obstacles is important for preventing

collisions between different robots. Therefore, avoidance must first be determined and

other actions should be taken if the obstacle is determined to be safe.
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3.1.3.2 Exchange

Exchange is a behavior in which robots exchange food with each other. Specifically, a

robot that stores more food delivers it to a robot that stores less food. If the robot does

not have the amount that it must to deliver, or if the robot receiving the food can not

accept the delivered amount, no trade is made. The size of the food inflow is determined

based on an exponential distribution. When the robots perform an exchanged with each

other, they are randomly determined according to the remaining amount to be received.

Again, this signifies that the amount of food the robot receives is more important than

the amount of food it receives. Food inflow is described in more detail later in the

chapter.

3.2 Method

Our method is based on that in Greenwald et al. (2018). We define fi(t) as the total

amount of food that forager i-robot delivers to the nest. fi(t) is determined by the

exchange between a forager and non-forager, and the total amount of food delivered to

the nest is called the colony state and is defined as F(t).

F(t) =
N

∑
i=1

fi(t) (3.1)

Equation (3.1) demonstrates the relationship between fi(t) and F(t). N is the total

number of foragers. If no food is delivered, F(t) becomes 0. However, If the nest is

full, F(t) becomes 1. The value of fi(t) increases when a forager delivers food to a non-

forager, and decreases when a non-forager delivers food to a forager. Foragers decide

to leave the nest according to the amount of food they store; however, non-foragers do

not leave the nest. This property has a large impact on determining the colony state.

The amount of the forager’s food is irregular because the foragers obtain food from

a food source. Thus, it is difficult to determine whether the colony state is filled with

the amount that the forager delivers. As a result, fi(t) is determined by the exchange

of between a forager and non-forager, and the sum of fi(t) determines the colony state

F(t).

It is necessary to understand how fi(t) is determined to perform a robot simulation.

fi(t) is determined when the i-robot exchanges food with another non-forager robot.



3.2. Method 37

We therefore define pi(m) as the amount of food that the i-robot exchanges with other

non-forager robots. pi(m) is determined based on the forager i-robot. If the forager

delivers food to a non-forager, the nest’s food has accumulatesd. Therefore, it has a a

(+) value. In contrast, if a non-forager delivers food to a forager, it has a value of (-)

because it is not delivered to the nest. Additionally, d fi(t)
dt is defined as the time-average

flow, and relates with pi(m).

d fi

dt
=

1
δ

m1+δ

∑
m=m1

pi(m) (0≤ m1 ≤M−δ) (3.2)

Equation (3.2) illustrates how the value of d fi
dt is defined. M is the total length of pi(m),

while. δ means represents the average intervals. That is, when performing an exchange,

the i-robot records the amount of food exchanged and obtains the average as δ intervals.

pi(m) is saved when a forager exchanges food with a non-forager. Therefore, pi(m) has

an impulse function because it changes instantaneously. Figure 3.3 demonstrates that

pi(m) has an impulse function.

The time-average flow, d fi
dt , obtained by using (Equation 3.2) is plotted against the

colony state F(t). It can be seen that d fi
dt decreases as F(t) approaches 1. This signifies

that if the colony state F(t) is reduced, the amount of food delivered on average is

also reduced. In other words, because there are no more robots to deliver food, the

interaction volume is reduced. These results suggest that the robot simulations are

similar to those presented by Greenwald et al. (2018). As a result, it is suitable that the

mathematical model obtained by observation of actual ants in the chapter.

The global flow must also be identified. Time-average global flow is defined as dF
dt ,

which is determined by d fi
dt . The relationship between the two values is as follows:.

dF
dt

=
n(t)

∑
i=1

d fi

dt
(3.3)

Equation (3.3) illustrates the relationship with d fi
dt , where. n(t) represents the number

of foragers that start exchanging food at t seconds. In the paper by Greenwald et al.

(2018), d fi
dt exhibits a tendency to decrease according to F(t) and dF

dt , and after all

foragers participate. The same tendency is represented in the robot simulation results.

All situations are determined by pi(m). The interaction volume ν is the amount of food

to be exchanged, and the relationship between pi(m) and ν is as follows:

pi(m) =

{
−ν (I f f orager is f ed)

ν (I f f orager f eeds)
(3.4)
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Figure 3.3: Interaction volume when exchanged and Relationship between colony state

and time-average flow (a) Interaction volume when during an exchange between a for-

ager and non-forager. p(m) appears as an impulse function because the value exists

only at the moment of exchange. (b) Time-average flow calculated by (equation 3.2).

As colony state F(t) increases, the time-average flows decreases.

This value of ν is determined by an exponential probability density function (PDF),

and this is used to determine the amount of food to be exchanged. The form of the

exponential PDF is as follows.

p(ν|c) = λce−λcν (3.5)

where c represents the crop load, and λc depends on the crop load. The exponential

PDF is determined according to the value of λc and randomly determines the value of

ν according to this distribution. When the value of ν is determined, the value of pi(t)

is also determined by (equation 3.4). For this reason, the form of the exponential PDF

is important. The main factor that determines the graph is λc, which is determined by

crop load c. The relationship between λc and c is as follows:

λc =
λ0

C0− c
(3.6)

where c is c f orager or crecipient . c f orager refers to the crop load of the forager, while

crecipient refers to the crop load of the robot receiving the food. In actual real ants, λc is

more affected by crecipient than c f orager, and we must ensure that the same effect occurs

when performing robot simulation.

Our results indicate that λc is more affected by crecipient than c f orager (see Figure 3.4). In

the case of c f orager, the value of λc does not change significantly. In contrast, the value



3.3. Simulation Results 39

0.4 0.6 0.8

Recipient s Crop State, c
recipient

0

50

100

150

c

(a)

0.5 0.6 0.7 0.8 0.9

Forager s Crop State, c
forager

0

50

100

150

c

(b)

Figure 3.4: Changes in λc according to crop load. (a) Relationship between λc and

crecipient . As crecipient increases, λc also increases. (b) Relationship between λc and

c f orager. Even if c f orager changes, λc remains constant. The crop load of forager,

c f orager, does not affect λc.

of λc increases as crecipient increases. In other words, the crop load of the receiving

robot is more important than the crop load of the robot when exchanging food. Based

on this, we performed a robot simulation and verified the observed tendency. We not

only observed a similar tendency to the appearance of a real ant, but also identified its

characteristics by changing variables that normally can not be changed.

3.3 Simulation Results

3.3.1 Trophallactic Network System in Robot Simulation

First, we had to ensure that the robot system was similar to a real ant system. In the

paper Greenwald et al. (2018), an actual ant was observed, and a graph was plotted.

Based on this, we evaluated the similarity of our robot simulation to real ants. Each

parameter had to be determined. Among real ants, non-foragers have a low mobility

in the nest, where the ants move little or a short distance. Therefore, we set the speed

of non-foragers to a low value. The maximum amount of food that each robot can

hold is 0.3, and once it is exchanged, it does not change even if it meets another robot

immediately. After a certain period of time, the food is exchanged again.

According to the paper Greenwald et al. (2018), the forager leaves when it has slightly
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: Sequential progress of the simulation. Filled red circles represent the

amount of food stored by each robo, and their radius is equal to the amount of food.

Foragers are generated at regular intervals:. (a) t = 200 s, (b) t = 1,000 s, (c) t = 2,000

s, (d) t = 3,000 s, (e) t = 4,000 s, (f) t = 5,000 s, (g) t = 6,000 s, (h) t = 7,000 s, (i) t =

8,000s .

less than half the total amount of food that can be stored when leaving the forager. For

example, if the total storage amount is 0.3, the forager will leave when it is between

0.1 and 0.15. We set the forager robot to leave when the amount of food was less than

40% of the total. The number of total robots was 20, and the number of foragers was

5. For the foragers, the λ0 value was reduced to reflect the characteristics of delivering

more food, while for the non-foragers, the λ0 value was increased to reflect the char-

acteristics of delivering less food. In this case, our results are similar to the those real

ants
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Our simulation moves the five foragers to a food source outside and returns them to the

nest to deliver the food to non-foragers. Figure 3.5 illustrates the sequential progress.

Initially, there is no food. However, foragers obtain food from the food source, return

to the nest, and deliver the food to the non-foragers they meet. When the forager’s feed

is too low, the forager returns to the food source and obtains food. This is repeated.

When enough time has passes, all non-foragers in the nest are fed. In other words,

colony state F(t) converges to 1. Real ants obtain information locally and determine

ν. However, foragers do not know the amount of food required by all non-foragers, but

bring back as much food as they require. As a result, the forager appears to behave as if

we has access to global information, colony state F(t). To confirm this, we examined

the relationship with colony state F(t) sequentially.

3.3.2 Interaction volume and rate

In the current system, it is important how much food the forager and non-forager de-

liver during an exchange. In other words, the characteristics of the system depend on

the value of interaction volume, ν. The time the forager feeds and feeds other non-

foragers is also affected. We used robot simulation to determine how these two param-

eters are related to the colony state, F(t).

The results are illustrated in Figure 3.6 and reveal that. the iInteraction volume de-

creases as F(t) increases. In addition, the figure illustrates the interaction volume aver-

age of five foragers. The convergence of the colony state to a value of 1 indicates that

the forager can no longer deliver food. These results reflect the characteristics of real

ants. The reciprocal of the time taken for a forager to feed two feeds in succession is

defined as the interaction rate. That is, it refers to the time taken for the forager to make

an exchange with the next non-forager based on the first exchange with a non-forager.

A low interaction rate signifies that it takes a long time. The closer the colony state

is to 1, the lower the amount of food that non-foragers can receive. The forager must

deliver the food and feed the non-foragers; however, the surroundings are full and it

therefore takes more time to deliver.

Our results indicate that as the colony state F(t) increases, the interaction rate de-

creases. However, there is a difference between real ants and the robot simulation.

When a forager leaves through the entrance, it sees the difference in the amount of

food the foragers have. Real ants appear to have a similar amount of food when they
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Figure 3.6: Linear relationship between interaction volume and interaction rate accord-

ing to colony state. (a) Each point is an average of five foragers (mean± std). As colony

state F(t) increases, the interaction volume decreases. Linear fit y(F) =−0.1942∗F+

0.2020 (R2 = 0.9127). (b) Each point is the average of five foragers. As colony state F(t)

increases, the interaction rate decreases. Linear fit y(F) = −0.0021 ∗F + 0.0016 (R2

= 0.9699).

leave. The difference between real ants and robots stems from obstacle avoidance. In

the case of a real ant, it is not as important to recognize and avoid the same ant as

an obstacle because real ants cross other ants and are not significantly affected when

if they hit one another. In contrast, obstacle avoidance is very important for robots.

Therefore, if there is another robot in the vicinity, the robot it is unable to leave. If

the robot believes that the other robot is small, then it can leave; however, it can not

leave by other robots and continues to exchange. The colony state F(t) is between 0.2

and 0.3, which means that there are many non-foragers that do not have food. For this

reason, it can be exchanged until it approaches zero. This can lead to various forms in

a dynamic situation. If a forager is not disturbed by the obstacles, then you it can exit

through the entrance with a similar crop load.

3.3.3 Crop State and Food Inflow

It is important for robots to have all the food in the a trophallactic network system.

Therefore, it is important to examine the graph of crop load, crop state, and food inflow

of the forager proceeds to confirm that the robot simulation is effective. Figure 3.7

presents a graph of crop load, crop state, and food inflow. First, the crop state is fi(t)
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Figure 3.7: Various relationships between forager’s crop load, colony state and food in-

flow. (a) The blue line represents colony state F(t), while the remaining lines represent

the amount of food that each forager delivers to the nest. (b) The blue line represents

the time-average global flow dF
dt . The remaining lines represent the time-average flow

d fi
dt of each forager. The time-average global flow dF

dt , increases until all foragers start

exchanging with non-foragers. After that, it continues to decrease. (c) Crop load of any

forager. When exchanging, the crop load increases or decreases. If arriving at the food

source, the forager is fed. Then, the crop load of the forager has a maximum value (0.3).

(d) The recipients are non-foragers in interactions with foragers (blue line). All workers

are all foragers (red line). As the colony state, F(t), increases, foragers interact with all

non-foragers.

and the colony state is F(t) for each forager. The colony state F(t) has a normalization

from 0 to 1. Here, 0 signifies that the foragers did not deliver the food, while if 1

signifies that, the foragers delivered the food and the non-foragers in the nest are full.

As illustrated in the figure, the colony state approaches 1, which indicates that the



44 Chapter 3. Analysis of trophallactic network system using multi-robots

foragers fed the nest well. We set up a total of five foragers and simulated them, and

the five graphs of fi(t) demonstrate that all foragers fed the nest effectively. The total

amount of food delivered to the nest varies for various reasons, such as the situation

of the robot and the amount of food it delivers. By (equation 3.1), the colony state is

determined by the sum of each fi(t).

We then verified the relationship between the time-average flow d fi
dt and time-average

global flow dF
dt to the colony state F(t). According to Greenwald et al. (2018), d fi

dt

should exhibit a tendency to decrease with increasing colony state F(t). dF
dt tends to

increase until all foragers participate in the exchange and then decrease (Figure 3.7

[b] - blue line). We plotted a graph based on the data obtained from the robot simu-

lation. When we exchanged it by judging it locally, oscillation occurred; however, it

demonstrated a tendency to decrease as a whole. The time-average global flow dF
dt also

had properties similar to those of real ants. In the robot simulation, all foragers do not

initially go to the food source to make the environment similar to the real ants. This is

why a forager exchanges food at different times. In other words, foragers do not ex-

change food at the same time, but rather, they exchange it at some interval. In the robot

simulation, the interval increases up to the time of participation and then decreases

continuousl.

Figure 3.7 (c) illustrates the change in the amount of food a single forager possesses.

A forager’s crop load is reduced or increased when exchanged for with non-foragers.

When fed, it decreases, and when fed, it increases. When a forager travels to the food

source and feeds on it, it rises to its maximum. Real ants may have more or less food.

That is, when they bring food from a food source, it arrives in irregular quantities.

However, in our robot simulation, the maximum amount of food that the robot can have

is fixed, and can not be higher. In the crop load graph of the forager, the portion of the

maximum feed that rises is the food source. In the current simulation, the maximum

value is 0.3; thus, the part that rises to 0.3 in the graph is where the forager feeds in the

food source. This value thus indicates that foragers bringing food from a food source

and effectively exchange it with non-foragers.

Figure 3.7 (d) is a graph comparing a non-forager directly exchanging food with a for-

ager and the crop load of all non-foragers. The recipient line represents the robot that

exchanges directly with the forager, while the workers line represents all non-foragers.

The colony state F(t) is small in two cases, and as it increases, the difference decreases.

Initially, it means that foragers are not equally distributed to all non-foragers. Foragers
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are more likely to exchange with non-foragers near the entrance when they enter the

nest. For this reason, the probability of exchanging with only those non-foragers in-

creases until the non-foragers near the entrance are completed. Because the mobility

of non-foragers is not high in the current situation, there is not much exchange between

non-foragers. Thus, after some time, the non-foragers near the entrance fill up, and the

foragers move around. Then, as it happens to exchange with other non-foragers, the

same applies for non-foragers and all non-foragers that exchange directly with for-

agers over time. This is demonstrated by our results.

3.3.4 Number of Interactions, Max Distance from Entrance and Bal-

ance

The number of interactions is the number of forager exchanges. Our results reveal a

linear relationship with colony state F(t) (Figure 3.8 [a]). This result implies that as the

colony state F(t) converges to 1, the number of interactions increases. In addition, as

the colony state F(t) increases, the foragers enter the nest deeply. Because the mobility

of non-foragers is low, the exchange of non-foragers is low as well. Therefore, they first

exchange with a non-forager close to the entrance, and when non-foragers close to the

entrance begin to kick in a certain amount of time, they enter and begin to trade with

non-foragers that lack food. Therefore, as the amount of food in the nest increases, it

becomes deeper.

We have also confirmeded that the system is evenly distributed. Figure 3.8 (c) demon-

strates how to maintain balance over time. We identified the variance of non-foragers to

distinguish them. The large variance of non-foragers signifies that non-foragers do not

feed equally, while a small variance signifies that non-foragers feed equally. Initially,

there is an imbalance as the forager exchanges with a non-forager. Thus, non-foragers

is increased. As time passes, the colony state F(t) becomes 1, which signifies that non-

foragers have all of their food. Thus, non-foragers have a smaller dispersion value as

they obtain food. As the mobility of non-foragers is not high, the balance is dependent

on the foragers. It is important to evaluate how quickly the colony state F(t) increases

and how uniformly non-foragers are distributed to determine the kind type of system

that the robot simulation is. The average signifies how full the non-foragers are and is

used to confirm that the nest is full so that it has been evenly fed, or that it is evenly

distributed by exchanging with each other. We can see that the figure 3.3.5 (d) is evenly
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Figure 3.8: (a) Relationship between number of interactions and colony state. As the

colony state F(t) increases, the number of interactions linearly increases. (b) Relation-

ship between maximum distance from the entrance and colony state. As the colony

state F(t) increases, the foragers enter the nest deeply. (c) Representation of mean

and variance of non-foragers. Over time, the crop load of non-foragers is evenly dis-

tributed. (d) Balance is the relationship with the colony state. If all robots are full or

empty, non-foragers’ variance (balance) is 0. Except for this case, the graph shows the

distribution of food that possessed by non-foragers.

distributed according to the feeding state of the non-forager. It clearly shows whether

it is evenly distributed.
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3.3.5 Relationship with mobility of non-forager

A system should be built according to its purpose. For example, it should be decided

whether they should obtain the food sufficiently fast enough or not very well so that

there are no robots that can not obtain food. We determined the characteristics of the

system from these two perspectives. Among the various factors, the mobility of non-

foragers greatly affects the system. The larger the non-forager mobility, the larger the

dynamic element. The mobility of non-foragers in a nest is not large among real ants,

and. even queen ants are at rest. We set parameters to create a similar situation, and

have confirmed that a similar trend occurs. However, when implemented as a robot,

mobility can be changed. Thus, we verified how the results change according to the mo-

bility of non-foragers. Figure 3.9 reveals the changes in the colony state F(t), balance,

maximum distance from the entrance, and number of interactions caused by changes

in non-forager mobility. The speed of the forager was set to 15, and the speed of the

non-forager was changed. The speed of the non-forager was observed in four cases: a

halt state, a state slower than a forager, a forager-like speed, and a speed faster than a

forager. In the case of the colony state F(t), the higher the velocity, the faster the de-

crease in variance. In other words, a high speed indicates that all robots are fed evenly.

In a static state, because it is fed only by foragers, the variance cannot easily decrease

unless the foragers exchange with all non-foragers. This can also been seen in Figure

3.9 (d). As a result, the higher the speed, the faster the colony state grows, and all the

robots are distributed evenly as they receive food.

We also observed how the maximum distance from the entrance and the number of

interactions affect the speed of non-foragers. Figure 3.9 (b) illustrates that the maxi-

mum distance from the entrance tends to be larger as the velocity decreases. If a non-

forager is stopped, an exchange begins with non-foragers near the entrance. Because

non-foragers can not exchange, non-foragers in the nest do not receive food if the for-

ager does not come directly to deliver the food. Therefore, after the maximum amount

of food for the non-forager nearest to the entrance is reached, the food is delivered to

non-foragers inside the nest. This is confirmed by our results. Initially, it is filled from

near the entrance, and when it is filled to a certain extent, it shows that it goes deeper

into the nest. In contrast, as the speed increases, non-foragers near the entrance and

non-foragers within the nest often change. Because non-foragers are exchanged, not

all non-foragers near the entrance are fed; however, all non-foragers are fed as they

are distributed to other non-foragers. For this reason, non-foragers near the entrance
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Figure 3.9: Tests of four cases (v = 0, 5, 15, 20). (a) Colony state F(t). As v is increases,

the colony state quickly increases. (b) Mmaximum distance from the entrance. The

smaller the speed, the larger the maximum distance from the entrance. (c) Having food

evenly means that the variance is small. If v is big large, it becomes equalized quickly.

(d) The higher the speed, the smaller the variance.

are in a state in which they can continue to feed. Therefore, even if foragers do not

enter the nest deeply, they can continue to deliver food. For foragers to enter deeply,

the non-foragers should be in a state in which they are nearly full and the foragers must

be able to move around in the nest.

3.3.6 Relationship with the number of foragers

The role of the foragers is important for filling the colony state, F(t). We observed

how the number of foragers affected the system. In the case of real ants, there are not
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Figure 3.10: Results based on the number of foragers. (a) Colony state F(t). As the

number of foragers increases, the colony state quickly converges. However, the three

cases (number of foragers = 4, 6, 8) are similar. (b) The larger the number of foragers,

the smaller the number of interactions. (c) Graphs of the balance. The larger the number

of foragers, the more evenly the food is distributed. The case with two foragers has

a similar balance at all times. (d) displays the smallest variance when there are two

foragers. The balance is seen according to the state of the non-forager.

many foragers relative to the total number of ants. We confirmed the reason for this in

terms of the rate and balance of increasing the colony state. Figure 3.3.5 illustrates the

number of graph changes for the forager. We set the speed of the non-forager to 3 to

reduce the dynamic factor. Because the speed increases and the mobility of the non-

forager increases, the effect of the number of foragers can not be determined because

the situation changes with each execution of the simulation.

The colony state F(t) increases as the number of foragers increases. However, when
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the number of foragers is greater than six, there is little difference. In addition, it can

be seen that the larger the number of foragers, the more uniform the distribution is.

Except for the case in which there are two foragers, the number of foragers generally

reduces the number of interactions. When we examine each element, it can be seen

that the better the number of foragers, the better the effect. However, the number of

foragers does not increase among real ants. Thus, there appears to be a reason other

than our theory. An ant swarm is heavily influenced by the queen ants, and the number

of foragers is also significantly affected by the queen ant (Hee et al., 2000). Biolog-

ically, even if non-foragers distribute evenly, perform fewer interactions, and fill the

nest quickly, ants do not choose this method for another reason. However, if absolute

goals are related to this, it is theoretically better to increase the number of foragers.

However, from the perspective of balance, it is favorable when the number of foragers

is 2.

3.3.7 Diverse distribution

When a forager and a non-forager perform an exchanged, the amount delivered to the

system, changes the system. We confirmed the type of patterns that appeared depending

on the distribution. The distributions we applied were a uniform distribution, gaussian

distribution, and exponential distribution. We compared it with the case in which the

probability was not applied. λ follows equation (3.6).

p(ν|c) =

{
λc (0≤ ν≤ 1

λc
)

0 otherwise
(3.7)

Equation (3.7) shows a uniform probability density function (PDF). We determined the

maximum value according to λc and the value of ν randomly between the values. The

uniform distribution has the same probability of a small value and large.

p(ν|c) = λc√
2π

e−0.5(λcν)2
(ν≥ 0) (3.8)

Equation (3.8) presents a gaussian PDF. The mean is fixed at 0 and the variance de-

pends on the value of λc. For example, if the amount of food fed by the relative robot

is small, λc decreases and the variance increases. The larger the variance, the higher

the probability that a larger value will be obtained, which produces a larger amount of

deliver food. In contrast, when the relative amount of food of the relative robot is large,
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λc increases and the dispersion decreases. The probability is then increased to a value

close to zero, producing a small amount.

ν =
1
λc

=
C0− c

λ0
(3.9)

Equation (3.9) is an equation that follows when robots instantly give deliver food with-

out applying a probability. The value is determined according to the amount of remain-

ing food of the opponent robot, and it delivers exactly that amount. In other words, it

this signifies that the opponent robot knows exactly what it requires. Figure 3.11 illus-

trates the variation according to the distribution. The number of foragers is equal to

5, and the speed of non-foragers is set to 3 to reduce the dynamic factor. The position

of the robot is also in the same state. In colony state F(t), the uniform distribution is

slower to fill the nest than in other cases.

However, the uniform distribution is more evenly distributed than the other cases. Be-

cause the uniform distribution is smaller than the average, the colony is smaller, but

the variance is similar. This signifies that the colony state increases relatively slowly

increases, but non-foragers are evenly distributed. Figure 3.11 (d) provides additional

details. It indicates that the uniform distribution is the most evenly distributed, while

the gaussian distribution is the most unevenly distributed.

A difference also appeared in the number of interactions. The case that no probability

was applied was the smallest, while the second smallest was the number of the gaus-

sian distribution. The gaussian distribution and exponential distribution cases filled

the colony quickly but did not distribute it evenly. In the case of uniform distribution

and no probability, the colony filled up slowly but evenly. However, in the case of the

uniform distribution, the number of interactions was large, and when the probability

was not applied, the number of interaction was generally small. However, balance and

interaction numbers are influenced by non-forager exchanges, and we may thus not

be able to reflect features directly in the distribution. Thus, in practice, non-foragers

are perform exchanges, but non-foragers do not perform exchanges to determine the

characteristics of the distribution.

There is a significant difference for each distribution when there is no exchange. In the

case of the exponential distribution, the colony increases rapidly and the number of

interactions is the smallest. However, it appears to be the most uneven distribution. In

the uniform distribution, the colony increases slowly and the number of interactions is

large; however, it is evenly distributed. This phenomenon is explained in the following
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Figure 3.11: Results based on distribution when exchanging food with non-foragers.

The distribution types is are uniform, gaussian, and exponential. ’No probability’ signi-

fies that the interaction volume applies without probability. uniform PDF reflects (equa-

tion 3.7), while gaussian PDF reflects (equation 3.8). exponential PDF reflects (equation

3.5), while ’No probability is reflects (equation 3.9). (a) Colony state F(t). In a uniform

distribution, the colony state F(t) increases more slowly than in other cases. (b) The

number of interactions is the smallest in the exponential distribution. ’No probability’

is the smallest; however, a real ant does not know exactly what the opponent wants.

Therefore, the ants select an exponential distribution because the colony is the fastest

and the number of the interactions is smallest. (c) Graphs of balance. The type of distri-

bution does not affect in the variance of all non-foragers. However, a uniform distribution

has a smaller mean value than the other cases, but the variance values are similar. This

signifies that the colony state is increased while being evenly distributed. (d) Uniform is

distributed evenly while Gaussian is distributed the most unevenly.
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Figure 3.12: Results according to a distribution when there is no exchange between

non-foragers. The distribution types is are uniform, gaussian, and exponential. ’No

probability’ signifies that interaction volume applies without probability. Uniform PDF

represents (equation 3.7), while gaussian PDF represents equation (3.8). Exponen-

tial PDF represents (equation 3.5), while ’No probability is represents (equation 3.9).

(a) Colony state F(t). In a uniform distribution, the colony state F(t) increases more

slowly than different other cases. In contrast, the colony state F(t) is the fastest when it

is exponential. (b) The number of interactions is the smallest in an exponential distribu-

tion among distributions. (c) The type of distribution does not affect in the variance of

all non-foragers. However, the uniform distribution has a smaller mean value than the

other cases, but the variance values are similar. This signifies that the colony state is in-

creased while being evenly distributed. (d) The uniform distribution is evenly distributed.

In contrast, the exponential distribution is the most unevenly distributed. ’No probability’

is also evenly distributed.
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section.

3.4 Discussion

We analyzed an ant trophallactic network system from various perspectives by imple-

menting a robot simulation. The trophallactic network of real ants was analyzed in a

previous paper Greenwald et al. (2018). Based on the results, we confirmed the validity

of the robot simulation. We set the interaction volume ν as an exponential distribution.

The graph of exponential distribution depends on λc, which is determined by the rela-

tive crop load. If the crop load is large, the value of the interaction volume ν is small.

In contrast, if the crop load is small, the interaction volume ν is large value. The value

of ν is related to colony state F(t). When the value of colony state F(t) increases,

the value of ν decreases. A large value of colony state F(t) signifies that most non-

foragers have a lot large amount of food. In other words, the number of non-foragers

that foragers can deliver to in large quantities is small. In addition, the interaction rate

decreases. The interaction rate is the reciprocal of the time taken for the forager to feed

non-foragers two consecutive times. A small value signifies that it takes a long time to

deliver the food and deliver the food to the next non-forager. Because there are many

non-foragers with sufficient food, it takes a long time to deliver the food.

The colony state F(t) and time-average flows d fi
dt drawn by the robot simulation showed

similar tendencies to the actual ant trends of real ants, thus indicating that the robot

simulation performed well. The graph of the number of interactions and the maximum

distance from the entrance illustrates the situation of the robot simulation. We demon-

strate how we can change features that can not be changed in real ant colonies and

apply them these changes to real situations while proceeding with the robot simula-

tion.

We verified how the system varies was affected with by changes in the number of

non-forager mobility, number of foragers, and various distributions. In the case of non-

forager mobility, the exchange between non-foragers is small when the speed is low.

This means that the forager must be fed directly. Our results demonstrate that the larger

the speed, the faster the colony state increases and the non-foragers become evenly fed.

In addition, it does not go deep into the nest if it is relatively fast. A non-forager with

no food approaches the entrance, or a fed non-forager gives food to other non-foragers
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Figure 3.13: Probability density function according to the crop load. The larger the value

of c, the higher the probability that the value of the interaction volume is small. (a) Ex-

ponential distribution. (b) Uniform distribution. (c) Gaussian distribution. (d) Histogram

by size of generated data values when randomly generating 100,000 data points with

the same lambda value. The gaussian distribution is more likely to have a smaller

value, while the exponential distribution and uniform distributions are more likely to

have a larger value. (Exponential, Gaussian, Uniform maximum value : (1.7372, 0.6948,

0.1333.)

so that they can continue to feed. Then, the forager’s food is consumed quickly and can

not be heard deeply. The number of foragers is related to the increase rate of the colony

state. However, it does not significantly affect the balance. One way is to increase the

number of foragers to quickly fill the colony state.

We observed how the system varies with the distribution. We have also confirmed that

there is no exchange between non-foragers to better characterize the distribution. In
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the case of an exponential distribution, the colony increases rapidly, and the number

of interactions is small but disproportionately distributed. Next, the gaussian distribu-

tion increases rapidly and distributes evenly; however, the number of interactions is

high. Finally, the uniform distribution is the slowest, and the most interactions are dis-

tributed evenly. Figure 3.4 illustrates the reason for these results. Figure 3.4 (a)–,(b),(c)

present the distribution according to crop load c. As the distribution changes, the value

of the interaction volume ν is determined. Figure 3.4 (d) provides the reason for this.

The exponential distribution and uniform distributions have a high probability of a rel-

atively large value, while the gaussian distribution has a high probability of a small

value. Therefore, the gaussian distribution is distributed evenly to non-foragers. How-

ever, even if you hand over a lot, the value is not sufficiently large to cause frequent

exchanges; thus, the number of interaction seems appears to be increased. The expo-

nential distribution leads to a large amount of food because it has a high probability of

giving it often. Therefore, it has the characteristic that it can not be distributed evenly.

Instead, it quickly fills the colony with a small number of interactions. However, the

uniform distribution is likely to have a large value, but can not fill the colony quickly

or evenly. The interaction is also large.

When comparing the maximum value of each distribution, the uniform distribution has

the smallest value. This causes the colony to fail to fill quickly and increase the number

of interactions. In other words, the uniform distribution is not very different from the

gaussian distribution because it has a high probability of giving a large amount, but its

value is not large. As a result, if the food is delivered at a large value, the colony can

be quickly filled with a small number of interactions; however, it can not be evenly

distributed. Nevertheless, when non-foragers exchange food with each other, the prob-

ability of being evenly distributed increases, and the variance decreases.

We were able to identify the the characteristics of the ants. In the paper Greenwald

et al. (2018), ants followed the an exponential distribution, and. we could were able see

the reason for determining the interaction volume by exponential distribution through

robot experiments. In the case of ants, the goal is for the foragers to forage at once

and quickly deliver the food to the colony at the food source. However, if one feeds a

lot, it will not receive much; however, the fed non-foragers will exchange with other

non-foragers to reduce the uneven distribution of food. The distribution of the expo-

nential distribution displays the effect of feeding the colony quickly while determining

the distribution. The robot simulation also reveals the possibility of using different
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distributions according to priority.

3.5 Summary of Chapter 3

In this chapter we observe the movement of ants by applying swarm robotics to a real

trophallactic network system. In this paper, we apply the formula to determine the

amount of food delivered by the forager, which is suggested in the paper (Greenwald

et al., 2018). Ants determine the amount of food they deliver depending on each other’s

crop load during trophallaxis. The decision is then made randomly according to the

exponential distribution applied. The value passed depends on the colony state. These

two relationships represent a linear relationship with each other. Our robot simulation

results also show the same results.

We propose that the exchange of non-foragers as well as foragers has the same rules.

In the real ant exchange of forager and non-forager, the forager tends to feed more.

Our simulation applies the same rules for non-forager exchanges. Although exchanged

with the same rules, the results are similar to those obtained from actual ants. It acts

only with local information, but shows the behavior of moving with knowing the total

amount of food. We not only look at the foragers’ movements with information, but

also identify which criteria they want to gain from the group. Our point of view shows

whether the speed of filling colony food is important or whether it is important to have

food evenly. Basically, it’s hard to have food evenly at first when it’s been a while. As

the colony is filled, it is balanced. We analyze the rate and balance of colony prey.

After all, each individual’s ability is affected. Real ants have their own abilities. But in

the case of robots, they can change their capabilities and adjust the number of robots

appropriately. We analyze according to the speed of the non-forager, the number of

foragers, and the distribution it delivers. Our result is that the non-forager speeds up

the colony faster than the non-forager speeds. And more quickly balance the food.

A velocity of zero corresponds to chapter 2 2.7. Because the foragers must deliver

everything directly, it is difficult to fill the colony quickly and deep into the nest. We

show the advantages and disadvantages of trophallaxis delivery through the speed of

non-forager.

This time, it shows how the number of robots should be used as a forager when the total

number of robots is set. If the number of foragers is large, they often go for their own
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food. So the colony fills up quickly. However, at some point, the rate at which colonies

are filled does not vary significantly. When the number of foragers is too small, they

cannot feed evenly. The problem of balance is also bad. The colony speeds up when

the number of foragers is large, but it works best when the number is appropriate.

The ant determines the amount of food to be delivered as a random variable for the

exponential distribution. To confirm this reason, we applied a different distribution

to observe the effect. The exponential distribution does not show much effect if the

non-forager exchanges it. However, it is evident when non-foragers do not exchange.

Forager’s position shows a tendency to spread evenly. When the non-forager has no

exchange, our results confirm that the colony fills quickly when using the exponential

distribution, but everyone has a balanced diet. We tell you what criteria ants actually

transmit trophallaxis and what should be considered when applying it to robots.



Chapter 4

Trophallaxis for recipient

In this chapter, we present our findings following the use of the trophallactic network

system for purifying contaminated areas. Trophyallaxis is one of the ways insects ob-

tain food. Insects bring some to their nests in search of food. Foragers can deliver food

from mouth to mouth until it is passed round all the insects in the colony. This way,

the amount of food required can be brought into the nest without prior knowledge of

the exact quantity required. In a similar way, some robots are assigned to fetch the

pollutants. These robots are referred to as the foragers, those that perform the clean-up

in the clean areas are called the non-foragers or recipients. Foragers move out of the

clean area to find and bring contaminants. The reason why only a few robots choose to

search outside is that contaminated areas are defenseless against external threats.

This can reduce minimize loss. Furthermore, because the contaminated area is not

deep, it is possible to quickly move contaminants out into the clean area. In Chapter

3, we presented the results of observing and analyzing the foragers’ behavior. In this

chapter, we present the details and analysis of how the recipients, not the foragers,

receive information to determine their movements to perform their task. The recipients

not only deliver pollutants by one-to-one exchange, they also share the location of

pollutants among themselves to device clean-up strategies accordingly. Chapter 4 is

presented in the following order: simulation, method, result, and discussion. Under

simulation, we describe the behavior of the foragers and the recipients, and show the

relationship between the location of the contaminant and the behavior of the recipient.

Then we present the result, which is the evaluation of the success of the mission was

done and the swarm movement of the recipient. Finally, under discussion, we explain

59



60 Chapter 4. Trophallaxis for recipient

the effects and analyze their implications.

4.1 Robot Simulation

Our simulation is based on deploying a swarm robotic strategy to purify contaminated

areas. Our goal is to clean up all the selected contaminated areas. Using trophallaxis,

foraging Insects insects search and find the amount of food they can bring with them.

On their return, they pass the food from one non-forager’s mouth to mouth to the other

in the nest. This action is repeated until the food is duly passed round. We use simulate

this principle to move pollutants from contaminated areas to clean areas. Accordingly,

we call the robots that go to a the contaminated area to fetch the contaminantsa for-

agers, and those that receive and purify the contaminants from in the purification area

are the non-foragers or recipients. We examine the success of this activity in two sce-

narios, with and without location information.

4.1.1 Scenario 1

In the first scenario, the contamination is restricted to a defined location. At the end of

the search, it is assumed that the foragers know the contaminated area. The foragers go

to the contaminated area, and return to the purification area with as much contaminant

as they can fetch. These contaminants are delivered to nearby recipients returning to the

purification area. These recipients randomly proceed from the area of contamination

to other recipients; the recipients randomly proceed to a purification area where the

contaminant is shed. Foragers help to remove the contaminants in other areas. In this

set-up, we observe and analyze the difference made by the availability of location

information.

4.1.2 Scenario 2

In the second scenario, the contaminated area is not defined. Unlike the first scenario,

the foragers fetch randomly moving contaminants. Then, they bring the contaminants

to clean areas, and deliver them to the non-foragers. Because the pollutants also come

from random sources, when the foragers pass on the contaminants to the non-foragers,
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Figure 4.1: The experimental environment. The number of robot is 20 (forager = 8, non-

forager = 12). Red robots are foragers and Blue robots are non-foragers. Contaminated

areas are spaced at regular intervals on a circle with a radius of 20. The most contami-

nated areas are filled with black and the areas without any pollution are filled with white.

The black circle in the center means clean area and the cyan circle means purification

area. (a) The initial state in scenario 1. (b) Situation after some time in scenario 1. (c)

The initial state in scenario 2. (d) Situation after some time in scenario 2.

they deliver not only the pollutants but also share the location they were obtained from.

In this scenario, we consider the effects of receiving positional information as well as

pollutant information.
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4.1.3 Environment

The experimental set-up consists of a clean area and a purification area. The recipients

only move within the clean area, where they wait to receive the contaminants. The

purification area is the area where the robots can completely remove contaminants.

The recipients move randomly through the clean area, and then pass through the pu-

rification area to completely shed the contaminants. The clean and purification areas

are both circles with respective radii of 10 and 2. The forms of the contaminated areas

vary across both scenarios. In Scenario 1, the pollutants are distributed in a specific

area. Each region has a uniform distribution of eight regions on a circle with a radius

of 20. Each region has a different level of pollution. Foragers bringing pollutants to the

outside non-foragers act on the assumption already know these areas.

In Scenario 2, the contaminants are widely distributed. The contaminant particles are

widely spread indistributed within a circle with a radius of 20. These particles form

several groups. The degree of contamination of a particle varies according to the size

of the group. Furthermore, these particles drift around randomly and have no fixed

location. Air pollution pollutants, for instance, are carried by the wind. In Scenarios 1

and 2, the darker the color, the greater the contamination. This means that it takes a

long time to purify all of them because of the limited amount of contaminants that can

be fetched. The simulation is basically observed using a camera. It is assumed that the

robot knows its position. Other than this, it is impossible to know any other information

except by obtaining it directly through the sensor.

4.1.4 Robot

The robot is circular in with a radius 1. There are two types of robots: a forager that

goes to a contaminated area and removes contaminants, and a recipient that receives

the contaminants from the forager in a clean area, and sheds them in a specific area.

The forager is represented by the red circle, and the recipient, by the blue circle. When

there are no pollutants, the foragers fetch them from the polluted area. When a forager

meets a recipient, it delivers the pollutant.

If it the pollutant cannot be delivered, the forager finds another recipient, and deliv-

ers it. The degree of contamination is expressed in various brightnesses from white to

black. The recipient does not leave the clean area. Rather, it moves randomly inside,
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and receives the contaminants from the forager or other recipients. It may also deliver

contaminants to other recipients. Then, passing through the purification area, it sheds

the contaminants. Each robot has an infrared sensor by which it can sense its surround-

ings. Our robot is a flyable robot and that ignores collision avoidance when viewed

in 2-dimension. This way, the effectiveness of swarm activity can be better observed.

Therefore, infrared sensors are used to find robots to convey the pollutants and pro-

vide information or to detect the contaminated section in an area. The sensor has eight

sensors receivers around the robot. The sensor distance range is 2 (m); among all the

robots detected, information is exchanged with the closest. The behavior of the robot

is described in detail in the following section.

4.2 Method

4.2.1 Pollutant Exchange

The trophallactic network system is based on delivering energy. Additional information

is obtained as energy is delivered. Our system also uses this principle to eliminate

pollutants. The amount of pollutants exchanged in the multi-robot system is based on

the exponential distribution used in Chapter 3. The exponential distribution ensures

that delivery to the recipients is swift, and all the recipients are evenly distributed.

p(ν|c) = λce−λcν (4.1)

The equation 4.1 represents the exponential density function that determines the amount

of pollutant to be delivered. Probably randomly determines the value of ν. In this case,

“c” means represents the amount of pollutants possessed by the other robot. Therefore,

when the amount of pollutants possessed by the other robot is determined, the amount

of pollutants to be delivered at that time is determined. Thus, the probability changes

according to the crop load, that is, the amount of pollutants possessed by the robot in

the opposite category. The variable associated with the crop load is λc.

λc =
λ0

C0− c
(4.2)
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Equation 4.2 is the λc equation that determines the probability. C0 represents the max-

imum value that can be possessed by the robot. Therefore, the more pollutants a robot

has, the less λc. Consequently, the amount of pollutant to be delivered is regulated. In

other words, if the amount of contaminant possessed by the recipient is large, fewer

contaminants will be delivered.

4.2.2 Pollutant Position Information

We demonstrate that robots can not only deliver pollutants but also deliver the location

information necessary to perform their tasks more efficiently. Our robots do not know

one another’s situation except it is shared directly by robot-to-robot communication.

When the forager obtains a pollutant, it memorizes the location coordinates of the area.

When the forager meets the recipient, it delivers the location information together with

the pollutant.

φp = atan2(yp, xp) (−pi≤ φ≤ pi )

x′ = r ∗ cos(φ)

y′ = r ∗ sin(φ)

( r is a random number along the uni f orm distribution. 2≤ r ≤ 10 )

(4.3)

The equation 4.3 shows how the recipients process the pollutant location information

delivered to them. The recipients store this information (xp,yp) . It then finds a random

area on the line between the purification area and the area from which the pollutant

was taken. After moving to an area, they wander around the area for some time. This

behavior continues as the robots constantly exchange objects and information. How-

ever, if there is no contaminant to be delivered, and no exchange occurs, the robots will

randomly move to the clean areas.

θi = atan2(y′− yi, x′− xi) (4.4)

The equation 4.4 determines the robot’s head direction. This location information is

also delivered when the recipients interact. The location (xp,yp) of the pollutant re-

ceived from forager is delivered as it is. Therefore, the recipients move randomly and

accidentally meet, acting on the location information of the pollutant delivered by the

forager. Because this is a geographical exchange of information, it is only necessary to

determine which region to move to by according to the information obtained through

robot-to-robot communication.
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Figure 4.2: Recipient’s movement using pollutant position information and forager’s

sensing. (a) Recipients receive location information (x, y) and use it to move to (x ’,

y’). (b) Show the situation when the forager finds contaminated particles. The forager

collects only until the sum of the contamination levels pk is less than C0. D stands for

the sensor area of the robot.

4.2.3 Forager’s Grasp

When the foragers move outside and find contaminants, they fetch as much as they

can. In Scenario 1, as much as C0 will be fetched if more than C0, contaminants are

available, depending on the degree of contamination in the contaminated area. In Sce-

nario 2, on the other hand, when the robot finds a contaminant using a sensor, it returns

with as many contaminants as possible. In other words, it does not always return to C0

when you go back.

Ci =
N

∑
k=1

pk (Ci ≤C0 , pk must be in region D.)

Region D f or the sensor area o f the robot.

(4.5)

Equation 4.5 represents the amount of contaminant particles taken by the forager. Ci

is the crop load of the forager, and pk is the contamination level of the contaminated

particles. Because the maximum amount of crop load a robot can carry is C0, the sum

of all the contaminants cannot exceed C0. In addition, these contaminant particles can

only be taken if they are present in the area known to the robot. Figure 4.2 shows

the situation described in the method. Figure 4.2 (a) shows the movement to the area
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where the location information of the pollutant is received. Figure 4.2 (b) shows a

situation where a the forager brings contaminants when it moves to a contaminated

area. The two cases represent Scenario 2, and in (b), even if the contaminants are

located by the sensor, if they exceed the C0, only part of them are not brought in. When

the forager goes out again, it moves to the remembered contaminated area from which

it commences its random search.

4.3 Simulation Results

We purified a contaminated area apply using a trophallactic network system. We have

20 robots in total, 8 foragers and 12 non-foragers. The foragers fetch pollutants from

the polluted sections of each area, and deliver them to the recipients in the clean area.

The amount of pollutant delivered to the recipient by the forager is determined by the

equation 4.1. These recipients move randomly within the clean area, and then proceed

to purification area.

We perform the task of eliminating the contaminants in two scenarios using the trophal-

lactic network system. In the first scenario, there are eight sections in the contaminated

area. In the second scenario, the contaminants are widely dispersed. Scenario 1 is a

special situation, and Scenario 2 is a general situation. The default behavior of the for-

ager is to deliver pollutants, deliver the location of the pollutant, bserve the recipients’

movements, and analyze their effect on the mission.

4.3.1 Result of Scenario 1

The task in the first scenario is performed in a defined contaminated area. The location

of each contaminated area and the degree of contamination vary. The foragers move to

the polluted areas in their respective locations, and fetch the pollutants. At this point,

if the amount of pollutant exceeds the maximum crop load, the maximum crop load

is fetched. Once a given polluted area has been cleaned, the foragers move to other

polluted areas to help fetch the pollutants. When the forager returns to the clean area,

it meets the recipient and delivers the pollutant according to the equation 4.1. We com-

pare this with when the location information of the pollutant was brought and when it

was not.
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Figure 4.3: The squence of robot simulation. (a) and (b) are initial situation. (c) and (d)

show when there is no location information, and (e) and (f) show when sending and

receiving location information. (a) 100 (s) (b) 200 (s) (c) 400 (s) (d) 800 (s) (e) 2000 (s)

(f) 2500 (s)
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Figure 4.4: Change of pollutant. (a) shows that the contaminated area is being cleaned.

It also shows that when pollutants as well as location information are shared, they are

removed faster. (b) shows the amount of pollutant entering the purification area. Sharing

pollutant and location information together will be faster. (c) shows the crop load of the

forager. (d) shows the crop load of the non-forager.

Figure 4.3 shows the simulation set-up. Blue represents the recipient, and red, the

forager. The green circle in the center represents the purification area where the robots

can completely get rid of the contaminants. There are eight areas of contamination.

Each contaminated area is contaminated to a different degree. The closer to black, the

greater the degree of contamination. As shown in Figure 4.3, once a polluted area is

completely cleaned up, the forager moves on to the next polluted area.

Over time, all the contaminated areas are clean. In addition, the recipients also shed the

contaminants they received over time. Figure 4.4 shows the amount of contaminants in

the contaminated area and the amount of contaminant in the purification area. We show



4.3. Simulation Results 69

(a)

5000-1

1

-0.5

Forager Swarm Distribution

0

TIme

y
-p

o
s
it

io
n 0.5

x-position

0

1

0-1

(b)

Figure 4.5: Movement of recipients and changes in pollutants by region. (a) shows

the movement of a group of recipients. The color represents the number of recipients

forming a herd. The direction of the center is expressed according to time. Contrasts

indicate the level of pollution in each region. Black is the most polluted, and white means

more purified. (b) Three-dimensional representation of the movement of recipients. This

shows the actual movement in more detail.

the amount of contaminant removed and the amount of contaminant that is shed in the

purification area, with and without location information. As shown in Figure 4.4, the

availability of location information ensures that the pollutants are cleaned up quickly,

because the foragers remove the pollutants and deliver them faster.

The crop load of the forager and the recipient. are shown in Figures 4.4 (c) and (d),

respectively. An increase in the load of the forager, means that contaminants are ob-

tained from the contaminated area. Then, the forager returns to the clean area to deliver

the contaminants to the recipient. Figure 4.4 (c) shows the reduction in the forager’s

load. Thus, the load of foragers will rise to C0 when they obtain contaminants from

the contaminated area, and decrease when they get to the clean area. The recipients

exchange the contaminants received from foragers or other recipients. The amount of

pollutants exchanged is randomly determined along with the exponential distribution

by the crop load of the particular robot. Thus, when the recipient encounters a forager

or encounters a recipient with large amounts of contaminants, the crop load increases.

On the other hand, if the recipient meets a recipient with less pollutants or moves to he

purification area, its load reduceds. Following purification in the designated area, the

crop load becomes 0.
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Figure 4.6: The number of interactions by region. (a) shows interactions in each region.

The area where the recipients gather generally has a large number of interactions. (b)

The number of interactions in the clean area is represented by a heat map.

We show how the movement of the recipient changes if it receives location informa-

tion in addition to contaminants. Recipients initially possess no information. Therefore,

they moves randomly in the clean area. Then, when the foragers from the outside meet

the recipient, they pass on the pollutant together with the pollutant location informa-

tion. The recipients then move to a specific location in the clean area according to the

equations 4.3 and 4.4. If another recipient is found, the location information from the

forager is forwarded together. The recipient then moves to the specific location defined

by the equations 4.3 and 4.4. If this process is repeated, the robots decide to act locally,

however the effect is the appearance of global action.

Figure 4.5 shows the recipients moving in groups. Figure 4.5 (a) The angle of the

direction of the location of the recipients over time. The eight contaminated areas are

located at regular intervals from -pi to pi. Black represents a state of severe pollution,

and the lighter the color, the more pollutants are being eliminated. Over time, the eight

areas are being cleaned up. The recipients then appear to converge in the direction of

contaminated area. Figure 4.5 (b) shows this in 3-dimension.

In the trophallactic network system, the interaction between robots is the most im-

portant factor. Therefore, the number of interactions correlates highly with the perfor-

mance efficiency. Figure 4.6 is divided into eight regions to show where the number

of interactions is highest. Figure 4.6 (a) shows the variation in the number of interac-

tions over time. There are two types of interactions: the exchange between the forager
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and the recipient and the exchange between two recipients. Therefore, as the recipients

gather in groups, the number of interactions in that area increases. As may be observed

from Figure 4.5, the recipients usually move in groups between 180◦ and 315◦. As a

result, the interactions are represented as follows: 225◦, 135◦ and 270◦.

Figure 4.5 is a heat map of the number of interactions in the clean area. Compared

to other regions, there are few interactions in the less polluted areas, 0◦, 45◦ and 90◦.

The heavily polluted areas −135◦, −90◦ and −45◦ show a relatively high number of

interactions. We demonstrate that in heavily polluted areas, groups of recipients move

closely, corresponding to a higher number of interactions.

4.4 Result of Scenario 2

We identify cases where contaminated areas are widespread rather than defined. In

such cases, the strategy used is different from that of Scenario 1. Because no con-

taminated area is defined, foragers must search for the contaminants. Initially defined

foragers set out in several directions as it is important that they do not gather in one lo-

cation. The foragers search until they find contaminants. They move randomly. When

contaminants are encountered, the foragers take the maximum amount that can be

taken from the contaminants within the sensor range. The color varies according to

the degree of contamination. Black depicts the worst pollution; the closer to white, the

less the contamination.

Therefore, the closer the robot is to white, the greater the number of contaminants it

carries, while the black ones carry smaller number of contaminants. The foragers car-

rying contaminants go to the clean area, and deliver them to the recipients. Foragers

not only deliver contaminants, they also deliver the location information of the con-

taminants. By passing on the location information in this way, we observe whether the

same effect as in Scenario 1 is achieved.

Scenario 2 is depicted in Figure 4.7. Figures 4.7 (a) and (b) show the initial situation.

The foragers go out in different directions, and fetch the pollutants. If no contaminant

is found immediately, a search is commenced. Figures 4.7 (c) and (d) depict the cases

where the location information is not shared. The recipients that do not receive location

information move randomly in the clean area. Thus, they can be observed to spread

out widely. Recipients with location information, on the other hand, move in groups.
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Figure 4.7: The environment for scenario 2. (a) and (b) show the initial situation. (c) and

(d) show when only pollutants were shared without location information. Finally, (e) and

(f) share location information and show recipients moving in groups. (a) 0 (s) (b) 200 (s)

(c) 600 (s) (d) 1300 (s) (e) 700 (s) (f) 1000 (s)
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Figure 4.8: The results for scenario 2. (a) Removal from the contaminated area. If you

share the location information is removed more quickly. (b) The results show the amount

of pollutant delivered to the purification area. The case of sharing location information is

shown to be delivered faster and cleaned up. (c) The crop load of the forager. (d) shows

the crop load of the non-forager.

This indicates that they received the location information and adapted their actions

accordingly.

From this, it can be deduced that the exchange of location information in this context

has a better effect here, compared to Scenario 1. The speed with which the contam-

inant is moved from the contaminated area to the clean area is faster when location

information is exchanged. Furthermore, purification is also faster. Although delivering

only the contaminants makes it possible for all the robots to receive contaminants, the

task is executed more efficiently when location information is shared. The findings are

represented in the graph in Figures 4.8 (a) and (b). The foragers collect as many of
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Figure 4.9: Movement of recipients and changes in pollutants by region. (a) As in sce-

nario 1, show the movement of recipients. Color refers to the number of recipients and

represents the center of the herd over time. The shaded bar graph shows the contam-

inant particles added by region. (b) Three-dimensional details of the movement of the

recipient.

the contaminants as they can pick up. When the contaminants are obtained, they are

delivered to the recipients in the clean area. Therefore, the amount brought into the

clean area varies according to how much many contaminant particles are around. The

recipients obtain contaminants when they encounter, foragers or other recipients with

contaminants. At this point, the crop load increases, then decreases to zero as the robot

passes through the purification area.

Figure 4.9 shows the location and the number of swarms in which the recipients move

around. In Scenario 2, the pollutants are similarly distributed when the contaminated

area is divided into eight regions, because the contaminants are widespread and the

foragers move slowly. Therefore, the herd is divided into several parts. The pollu-

tants are spread across the eight regions, and the degree of pollution of the regions are

represented in black and white in contrast. Initially, the mark is based on the largest

point. It shows the herd moving along in several directions. Figure 4.9 (b) shows a

bunch of recipients in three-dimensions. It shows the locations where large clusters

form over time, with many distributions observed in the 0◦ area and 180◦ area. This

is also strongly related to the number of interactions. figure 4.9 (b) shows a bunch of

recipients in three dimensions. It shows the locations that form large clusters over time,

with many distributions in the 0◦ area and 180◦ area. This is also strongly related to

the number of interactions.
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Figure 4.10: The number of interactions by region. (a) The number of interactions over

time divided into eight regions. This results in a large number of interactions where there

are many recipients. (b) The clean area as a heat map for the number of interactions

for each of the eight areas.

As in Scenario 1, we find that the number of interactions is related to the movement

of the herd. In the present situation, the recipients are found to be distributed in the 0◦

area and 180◦ area. In this situation, the highest number of interactions also occurs in

the 0◦ area and 180◦ area. These movements will have a good effect on the mission.

We analyze the observations made in the experiment in the following section.

4.5 Discussion

4.5.1 Relationship between interaction number and swarm

Our results show a strong correlationship between the swarm movement of the recipi-

ents and the number of interactions. The location information of the pollutant delivered

to the recipient allows the pollutant to move to the direction from which the foragers

approach. This helps the foragers to deliver the pollutants quickly. And by delivering

to other recipients, it helps to receive large amounts of contaminants. This may cause

an increase in the number of interactions.

Figure 4.11 shows the recipients’ movements and interactions when they do not ex-

change positional information. Figure 4.11 (a) and (b) depict Scenario 1, and (c) and

(d) depict Scenario 2. The simulation results show that when the location information
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Interaction distribution in the clean area
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Figure 4.11: The number of interactions by region and movement of recipients. (a) The

movement of the recipient when only contaminants are exchanged without location in-

formation in the scenario 1 situation. Recipients are widely spread regardless of the

contaminated area. (b) The heat map of the number of interactions per region in sce-

nario 1 situation. Overall, the number of interactions is small. (c) The movement of

recipients for scenario 2. It is widely spread regardless of the contaminated area. (d)

The number of interactions by region as a heat map. The overall number of interactions

is low.

is shared, the recipients are widely distributed. Consequently, there are fewer number

of interactions. If the recipients are spread out widely in an undefined manner, pollu-

tants are received more slowly, compared to if the recipients move as a group to areas

with high levels of contamination.

Figure 4.12 shows the number of exchanges among foragers and recipients and re-

cipients. In general, the number of inteactions was higher when the location informa-
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Figure 4.12: The number of interactions of Forager and Recipient or Recipient and Re-

cipient. Mean and standard deviation for five simulations are shown. (a) How recipients

exchanged with foragers. Red is for sharing location information and blue is for deliv-

ering pollutants only. If the location information is shared together, the number of inter-

actions is high. (b) The number of interactions by robot when the recipient exchanges

with another recipient. Unique geolocation shows more interactions than simply con-

taminants.

tion was delivered in addition to the pollutants. However, the manner of exchanging

the location information differs significantly between recipients, compared to between

forager and recipients. This allows the recipients to quickly accept the contaminants

brought by the foragers, and increases the probability that the recipients with contami-

nants will be purified in the purification area. In Chapter 3, we analyzed the advantages

of receiving pollutants directly from foragers. Consequently, the effectiveness of the

mission depends on the movement of the recipients. It is interesting to note that the

higher number of interactions observed as the recipients move in groups improves the

performance of the multi-robot system.

4.6 Summary of Chapter 4

We deploy the trophallactic network system in a multi-robot system designed to clean

up a contaminated area. We demonstrate that the recipients’ movement is an important

factor in this process. Although transferring only pollutants is quite effective, sharing

the location information of the contaminants obtained by the foragers has a better ef-

fect. All the robots do not possess global knowledge, because they do not have central



78 Chapter 4. Trophallaxis for recipient

control. Therefore, the chance encounter of two robots facilitates the exchange of local

information, and the subsequent action of each robots is determined based solely on

that information. In this way, information is shared, and decide behavior is determined.

However, the recipients generally tend to move in groups.

Our results confirm that the convergence of the recipients ensures the contaminants

are cleared quickly. Furthermore, the movement of this herd frequently corresponds

with a higher number of interactions, which ensures that the pollutants brought by the

foragers are passed on quickly. At the same time, the number of recipients with con-

taminants increases the probability of passing through the purification area, allowing

for faster purification. Therefore, frequently sharing information in groups of recip-

ients has a good effect on the swarm. In the next chapter, we present the details of

applying the trophallactic network system using real robots in the same experimental

set-up described in this chapter.



Chapter 5

Trophallactic network system using

vibration motor robot

This chapter shows the implementation of the trophallactic network system in a real

robot multi-robot system. Based on the set-up shown in Chapter 4, we run a real multi-

robot. First, in Scenario 2, which is sprayed with external contaminants, it is used

to remove the contaminants. Of the six robots, two are foragers, and the other four

are recipients. The foragers simply collect the external contaminants, and return to the

clean area to deliver the contaminants to the recipients. This process is repeated until all

the contaminated particles are removed. We have demonstrated that the trophallactic

method is effective for removing contaminants. However, when implemented using

real robots, it is necessary to ascertain that our algorithm is functional. We use our

own vibration motor robot to remove contaminants. We describe a set-up in which an

actual robot is implemented. In addition, we describe the proposed algorithm and the

components of the robot. The result shows how that the actual robot is effective in

the environment described in Chapter 4. We then analyze our results and explain the

observed phenomena. Finally, we summarize the contents of this chapter.

79
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5.1 Multi-robot system

5.1.1 Scenario

We use a real swarm robot to verify the simulation results detailed in Chapter 4. Our

goal is to deliver external contaminants to the recipients. We virtually disperse the

contaminated particles using image processing. When the foragers go outside and en-

counter the virtual contaminants, they collect them, and return to the clean area. Sub-

sequently, when the recipients are encountered in the clean area, the foragers deliver

the contaminant to them. This process is repeated until all the external contaminants

have been removed. We ascertain that the foragers effectively fetch the contaminants

and delivering them to the recipients.

Our strategy into is two-fold. The first part is simply delivering the contaminants; in

the second, we consider the effect of sharing location information in addition to the

pollutants on the behavior of the robots. We demonstrate that the same phenomena

and results are achieved when real robots are deployed, thus corroborating the findings

detailed in Chapter 4 with the robot simulation.

5.1.2 Environment

We control the robot using a camera installed overhead. We identify the color of the

LED using the camera to obtain the head direction and location of the robot. We

focused on robot-to-robot interaction with the aim of receiving contaminants using

trophallaxis. Therefore, the information of the position and movement of the robot is

obtained through the server computer. The forager moves randomly except when it

moves outside and when it returns to the clean area, minimizing the form of control

over the server computer.

The size of our image is 1280 x 720, and the camera is 2 m high. The clean area is a

circle with a radius of 200 based on the center pixel of the image. We create and mark

the contaminated particles virtually. The contaminated particles were made to form

in a circle with a radius of 400 on the outside. The recipients receiving the pollutant

particles place them in a circle with a radius of 100. The experiments were conducted

in the a darkroom to enable LED tracking.
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(a) (b) (c)

Figure 5.1: Swarm robot using vibration motor. (a) Front of robot (b) Top view of robot

(c) Side of robot

5.2 Structure and Interface of Robot

5.2.1 Hardware

We utilize our custom cluster robot. The robots basically deploy vibration motors. In

this study, two vibration motors are used, and each vibration motor can adjust the its

intensity from -255 to 255. Therefore, the robot is controlled by the same model as the

robot using two wheels. The robot’s basic multipoint control unit (MCU) uses ESP32.

The battery used is a lithium-polymer battery, and can run from 1 h to 1 h 30 min when

fully charged.

We monitor the direction and position of the robot using the camera. To do this, two

three-color leds LEDs were mounted. The front and back of the robot were identified

according to the color of the light emitted by the three-color LEDs. In addition to

this, the intensity of the light is controlled to express the amount of pollutants the robot

carries. Therefore, the stronger the light intensity, the more pollutants the robot carries,

and the weaker it means that there are no pollutants. We regulate the intensity of light

according to eight different levels, ranging from 30 to 100, with 30 being the minimum

intensity at which the camera can track light.

Figure 5.1 shows the structure of our robot. The robot is a 3 cm-high circle with a diam-

eter of 3 cm. The robot has four legs made of solid material. To ensure smooth control,

the legs are tilted approximately 10◦, because when the motor vibrates, the robot’s legs
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digs into the ground due to the vibration. Thus, if the legs are weak, they will not be in-

clined to attempt to move forward. Basically, to move forward, it is necessary to obtain

the frictional force from the ground (Zhu and Kawamura, 2003).

5.2.2 Software

Our robot basically communicates with internet protocol (IP). Each robot becomes a

server and the computer becomes a client, issuing commands to control movement. The

robot is composed of c++ language, and computer proceeds with image processing,

and controls the robot using MATLAB. The protocol type of the robot is the json form.

The intensity of the motor and the color and intensity of the LEDs can be controlled

by sending commands in json form from the computer.

The intensity of the motor and LED are controlled using pulse width modulation

(PWM). The image processing algorithm for tracking the LED of the robot is based

on the threshold method. The LEDs on the camera are more prominent in color further

into the darkroom. Therefore, the high-speed threshold method is used to prevent the

robot from moving. First, the robot moves based on the state of described in Figure 3.2

in Chapter 3. Therefore, the foragers go outside and fetch pollutants if there are none.

If there are more than a certain amount of contaminants, the forager returns to the clean

area. When it enters the robot’s sensor range, it delivers contaminants to the robot. At

this time, the intensity of the LED varies depending on the amount of pollutant.

5.3 Robot control method

We move the forager by selecting a target point, and receiving feedback. Figure 5.2

is a graphical representation of our model. The robot’s speed and angular velocity are

determined by the target point and the robot’s current position. This value is entered

into the robot motor.

ρ =
√

∆x2 +∆y2

α =− θ+atan2(∆y,∆x)

β =− θ−α

(5.1)

Equation 5.1 converts the coordinates of the robot and the target point into distance and

angle. The basic robot pose, (x,y,θ), is changed to (ρ,α,β) to achieve control. This is
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Figure 5.2: Our model for the vibrating robot is the same as the two wheel robot. Change

the robot’s pose to (x,y,θ) with (ρ,α,β) to model the control with velocity and angular

velocity.

chosen to reduce the number of inputs to three. By reducing the inputs, the complex

expressions can simply be computed.

ν = kρ ρ

ω = kαα+ kββ

(5.2)

Equation 5.2 matches the distance and angle variables with the robot’s speed and angu-

lar velocity. We design a system to control the robot by reducing the input by matching

the variables with speed and angular velocity. This reduces the complexity of calcu-

lations. kρ, kα, and kβ are proportional control variables. This makes it possible to set

priorities. We obtained the information about the angle directly from the camera.
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Equation 5.3 sets the distance and angle of the robot and the distance and angle of

the target point to zero based on the feedback control system. However we do not

do this continuously; rather, we partially truncate it, extract a fixed direction, obtain

direct feedback from the camera, and move forward step- by- step. Because of the

structural problems of the hardware and the influence of the ground, it is possible the
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robot makes the unwanted movements, which can cause it to deviate from its path.

Therefore, to minimize this deviation, the control unit was set to move part by step by

giving a stop signal.

5.4 Results

Our goal is to bring external contaminants to the clean area, and place them in the

purification area inside(magenta circle). Our experimental environment is sprinkled

with pollutants between 0◦ and 90◦. We use two foragers to fetch the contaminants

from the contaminated area. One forager goes in the direction of 0◦. The other forager

moves in the direction of 90◦. Outward predators search the surroundings, and bring

in as much as they can bring with them if there is a pollutant within the robot’s sensor

range. If no contaminant is found after searching the area, the foraeger that went in the

direction of 0◦, moves counterclockwise, and the one that went in the direction of 90◦,

moves clockwise to find pollutants. The recipients are initially separated at the same

interval at points within a radius of 150, from 0◦ to 90◦. Then, the recipients receive the

pollutants they bring, and transfer them to the purification area(magenta circle). This

depends on the information received by the recipients.

5.4.1 Strategy 1

Our first strategy is simply to deliver pollutants. We observe that we can succeed in

our desired goal to clean up the contaminated area when we remove the pollutants

by simply delivering them without any information. Figure 5.3 shows the movement

behavior of the actual robot.

First, the pollutants are located more than 200 pixels away from the outside. The extent

across which the contaminants are spread lies between 0◦ and 90◦. The further you

move from 0◦ to 90◦, the greater the density of the pollutant. The two foragers start

out at 0◦ and 90◦ respectively. There are four recipients between−20◦ and 120◦. When

they receive the pollutants from the foragers, they move to the middle purification area.

Upon arrival at the site, the recipients drop the pollutants they had.

After dropping the pollutants, the recipients return to their initial position and receive

the pollutants from the forager as before. However, the foragers approach from a dif-
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(a) (b) (c)

Figure 5.3: Movement of robot by time in Strategy 1. The robots share only pollutants

with each other. (a) simulation time = 0(s) (b) simulation time = 100(s) (c) simulation

time = 200(s)

ferent direction with the pollutants. This results in some recipients being left in the

lurch. Starting at 0◦, the forager gradually changes its position, because there is less

pollution in the contaminated area it is located. Thus, although the pollutants are ini-

tially brought in the direction of 0◦ around the clear area (green circle), over time, they

will be brought in the direction close to 90◦.

Similarly, foragers, starting out at 90◦, will return to where the pollutants are clustered

if the amount of pollutants are reduced. However, due to the large amount of contam-

inants at 90◦, these foragers travel slower than those starting out at 0◦. This makes it

difficult for recipients starting out near 0◦ to receive contaminants from the foragers

over time. The recipients starting near 90◦, on the other hand, receive contaminants

from the foragers relatively well.

5.4.2 Strategy 2

In the second strategy, the location information of the pollutants is shared as well.

First, similar to the first strategy, the foragers search for contaminants at each point

and fetch contaminants discovered there. The contaminants are then taken to the clean

area (green circle) where they are delivered to the recipients. At this point, the infor-

mation of the location from which the pollutant was fetched is shared as well. These

recipients first drop the contaminants into the purification area (magenta circle). Then,

when exiting the purification area (magenta circle), the recipient move in a direction

detrermined based on the position information received. They move in that direction,

and wait.

Figure 5.4 shows how the robot receives the location information, and removes the
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(a) (b) (c)

Figure 5.4: Movement of robot by time in Strategy 2. The robots share pollutants and

location information with each other. (a) simulation time = 0(s) (b) simulation time =

100(s) (c) simulation time = 200(s)

contaminants. When the location information is received, it can be observed that the

forager moves to a similar point as it moves. Two phenomena are indicated by our

results. First, as the forager moves, the recipients move in a similar direction with the

forager. However, the recipients move in groups.

Each recipient simply determines its own path using the location information shared

by the forager; however, when viewed as a whole, they appear to move in groups. The

recipients also exchange the location information among themselves as they pass on

the pollutants. Thus, the user can collect the recipients in a group. Over time, our goal

of removing the contaminants is showing progress.

5.4.3 Flocking of recipients

Our experiment with an actual multi-robot system shows that when robots share pol-

lutants with each other, the pollutant’s location information is shared to determine

their behavior, as a result of which they move in groups. Figure 5.5 shows the time-

dependent direction of all the robots determined around the purification area (magenta

circle). The contrast is closer to black as the robot gets closer, and closer to white as

it moves away. The contrast is the ratio of the maximum angle difference to the min-

imum angle difference at a maximum of one. Figure 5.5 (a) shows the movement of

the robots when only pollutants are delivered. As can be seen from the figurue, in this

case, there is no tendency to move in groups. In other words, most of the recipients

appear white.

On the other hand, when the sharing location information is shared in addition to the

pollutants, the recipients tend to flock together. Figure 5.5 (b) shows that there are many
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(a)

(b)

Figure 5.5: Recipient robot movements. The darker the black, the closer the robots are

to each other. (a) How robots move in situations where only contaminants are delivered.

The robots then move away from each other. (b) How robots move when they share

location information as well as pollutants. Robots often move in groups rather than

each other. It is common to gather together in part, but it is also common to partially

gather.
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points marked black. Even if all the robots are do not converge, some of them do. This

phenomenon is not a command that can be directly issued; rather, each recipient simply

determines its path using the location information of the pollutants. This corroborates

the findings with the robot simulation detailed in Chapter 4.

Because we have noted in Chapter 4 that this phenomenon increases the number of

interactions between the robots, which has a positive effect on the global task, the next

result can be predicted.

5.4.4 Strategy comparison

Our results show that recipients are more effective in conveying not only the pollutants

but also their location information. Figure 5.6 shows the amount of external contam-

inants and the amount of pollutants deposited in the purification area. The amount of

contaminants on the outside shows that both pollutants and location information are

delivered faster if they are shared simultaneously. However, the amount of pollutants

delivered to the purification area is not different in the two cases. Nonetheless, our

results show that if the external pollutants are brought into the clean area faster, they

can also be used to transmit the location information of the contaminants. We exam-

ine each crop load to evaluate the effectiveness with which the foragers and recipients

exchange the pollutants.

Figures 5.6 (c) and (d) show the crop load of foragers and recipients, respectively.

The foragers only obtain pollutants from the outside. The rising portion of the load

corresponds to when contaminants are obtained from the outside. On the other hand,

the section where rope crop load decreases indicates that the foragers have met and

delivered the pollutants to the recipients. As for recipients, their crop load increases

when they receive the contaminant from the forager. On the other hand, when contam-

inants are transferred to other recipients or sprayed on the purged area, the crop load is

reduced.
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Figure 5.6: Change of pollutant. (a) shows time by time that external contaminants are

removed in case only contaminants are transferred and not only pollutants are also

transferred, but also location information. The transfer of location information together

is eliminated more quickly. (b) The amount of contaminant delivered to the purification

area. There is not much difference between the two cases. (c) Forager’s crop load (d)

Recipient’s crop load

5.5 Discussion

5.5.1 Relationship between the Location Information of Pollutant

and the Number of Interaction

We are deeply concerned with the number of robot-to-robot interactions that occur as

the share the pollutants and their location information is shared. By passing on the

location of the pollutants, the recipients are spurred to head to the area. This is because
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the expectation is high that there will be a lot of pollutants in the area. Thus, each robot

will move based on its own determined path; however, this movement will force the

recipients to swarm. Thus, these groups are more likely to converge near areas where

pollutants are present.

Figure 5.5 shows the information of the position of the recipients. In our experiment,

the pollutant is spread between 0◦, and 90◦. The closer the contaminant is to 90◦, the

greater the density; and the closer it is to 0◦, the smaller the density. Therefore, it can

be observed that the recipients who were initially separated swarmed in the 0◦ area,

after which the herd gradually moved the herd to the 90◦ area. In the middle, the herd

splits into two groups of twos, because each of these influences is differ. The recipients

responding to the foreger at 0◦, will gather around it, and those responding to the

foraeger at 90◦ will be visible. This is because, there are two recipients who are greatly

affected by each forager;

thus, it can be observed that there are many cases where foraging is conducted in

groups of two. However, for 0◦, the density of the pollutant is small. Therefore, the

amount of contaminated particles is small. Thus, the forager here will perform the

task of removing faster than the forager at 90◦, which will move up faster can be

observed moving to the 90◦ area. As the recipients converge, the exchange between

them becomes more active. At the same time, the recipients hold on to the pollutants

for less time as they pass the their own contaminants to the other recipient their own

contaminants.

Consequently, the pollutants are received faster from the forager. This occurs more than

if the number of interactions with the forager and another number of interventions

by patients only deliver contaminants. Thus, as shown in Figure 5.7, the number of

interactions where the location of the contaminant is given along with the information

of the location of the contaminant is higher, compared to when only the pollutant is

delivered. Therefore, pollutants can be brought in and removed faster when location

information is exchanged.

In figure 5.7, (a) and (b) show the number of interactions per area in the clean area.

Overall, when you receive location information together, it shows more interaction.

If only contaminants are exchanged, the recipients should exchange only at the des-

ignated location. It can be seen that the interaction occurred almost similarly in each

area. However, if the location information is received together, the recipients use the
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Figure 5.7: The number of interactions by region and by robot. (a) The number of in-

teractions by area in clean area if only pollutants were exchanged. (b) The number of

interactions by area in the clean area when the location information as well as the pollu-

tants were exchanged. (c) The number of interactions between foragers and recipients

when they have location information and when they do not. The presence of location in-

formation results in more interaction. (d)The number of interactions between recipients

and recipients when they have and do not have location information. The presence of

location information results in more interaction.
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information to move to the area. We confirmed that the recipients are grouped between

-2 (rad) and 0 (rad) through the figure 5.7. Therefore, it shows the highest number of in-

teractions in the area. In figure 5.7, (c) and (d) show the number of interactions between

robots. (c) shows the interactions of each recipient with the forager, and the number of

interactions is almost the same when only pollutants are exchanged and when location

information is exchanged together. However, the number of interactions between re-

cipients in (d) can be seen clearly when the location information is exchanged together.

Recipient 5 robots were separated from each other without clustering, so exchanges

with foragers were greater than exchanges with recipients.

5.5.2 Limitations of vibration motor robot

This experiment was conducted using a vibrating robot. However, vibrating robots,

they are greatly influenced by the angle of the robot’s legs. Therefore, even though

there are unnecessary movements, or the force received becomes random, and we at-

tempt to deliver the same speed, different robots communicate differently. This results

in errors and the desired point is reached slower than expected. Furthermore, it is nec-

essary to consider the size of the robot because we deployed a terrestrial robot. The

effect of movement in groups is less pronounced, compared to that observed with the

robot simulation in Chapter 4. Therefore, our results verify the effectiveness of the

proposed algorithm.

We verify the functionality of the algorithms derived from the robot simulations by

replicating the situation described in Chapter 4 using a real robot. We have demon-

strated that using the trophallactic network system, we can perform the desired global

task that in the multi-robot system. However, the vibrations produced by the structural

problems in the robot and affected by the robot’s movement on the ground; thus, a

tendency to deviate from the accurate path was observed. Rectifying this was rather

time-consuming. Therefore, although the unexpected time-consuming nature of the

task has does not affected its the performance of the multi-robot system, it is difficult

to measure its temporal efficiency. Furthermore, our current system situation obtains

data from the camera and inputs it into the computer to determine its behavior.

Although this is a problem that occurs because the robot’s efficiency is significantly

lower, our system simulates local movements as much as possible by allowing the

robots to move randomly without using location information, except when exiting the
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clean area and externally, for central control. However, sharing real information is

driven by robot-to-robot interaction, which works in line with the swarm intelligence

concept to realize our desired goal.

5.5.3 Compare robot simulation result with real robot analysis re-

sult

We show that exchanging information in a trophallactic network system has a positive

effect on a multi-robot system. We confirmed the algorithm through robot simulation

and analyzed it with real robot to confirm the same effect. However, compared with

robot simulation, the data obtained by real robots did not show a big difference. Com-

pared to the rate of removal of contaminants for scenario 2, the robot simulation re-

duced the time by almost 50%. On the other hand, in real robots, the time was reduced

by 17%. However, the overall effect is the same, and the behavior of recipients caused

by exchanging positions is similar.

The difference in the reduction effect was that the robot simulation ignored the col-

lision avoidance of the robot, and there was no long-term stay in one place because

there was no obstacle in the robot’s movement. On the other hand, a real robot cannot

ignore the size of a robot unless it moves in the air like a drone. As a result, there is less

freedom for movement. In other words, it takes a little longer to get out of an area. This

phenomenon prevents the recipients from moving to the purification area to purify the

contaminants and, if slowed down, takes longer to receive the contaminants from the

forager. As a result, the effect obtained in the robot simulation is not obtained in the

real robot.

5.6 Summary of Chapter 5

In this chapter, we present the findings of conducting the task of eliminating contam-

inants using a real multi-robot system. As noted in Chapters 3 and 4, the robots can

perform the desired global task effectively using the trophallactic network system. The

foragers determined the optimal behavior based on the experiment detailed in Chapter

3, and performed the task in the Scenario 2 situation described in Chapter 4. Our re-

sults show that the external contaminants are effectively collected and passed on to the
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recipients. We implemented the robot’s motion shown in the robot simulation to real-

ize a similar movement, and the recipients could be observed becoming more filled,

similar to the trophallactic network system.

When all the recipients are full, the foragers are finished in a form that no longer runs

out. Using real robots and ensuring that the movement of the robot simulations were

well replicated, we obtain results similar to those detailed in Chapter 4. When the

location information as well as the contaminants are shared, the recipients use this to

determine their movements individually. Each individual recipient determines its own

movements individually; however, because of the uniformity of the information, they

all appear to move in groups. This results in frequent interactions, thus ensuring that

pollutants are quickly removed from the outside.



Chapter 6

Conclusion

In this chapter we summarize the research in this paper. It also presents the contribution

of the paper and provides future works.

6.1 The Action of Forager

As detailed in Chapter 3, we used robots to simulate the behavior of ants in a trophal-

lactic network system. The foragers who bring food from outside are the agents of in

the trophallactic network system. The results of the global task vary according to their

actions. In the case of real ants, the foragers continue to fetch food from outside, and

do not bring it from inside at any point. They act as if they know the amount of food

required in the nest. Beyond merely delivering food, the foragers obtain information

based on interaction volume and interaction rate.

This information is closely related to the amount of food that the nest requires to be

filled up. First of all, the larger the amount of food in the nests, the lower these values

are. These two values represent a near linear relationship with the amount of food that

is in the nest. Thus, the interaction volume and interaction rate reduced steadily as

the exchange continues. We made a similar observation in our robot simulations. Our

robot simulations proceed to demonstrate why the amount of food the foraeger delivers

is actually determined by the exponential distribution, the speed of the non-forager, and

the ratio of forager to non-forager. First, we evaluate the choice of distribution in terms

of the speed at which the nest is filled and how evenly each robot performs its role in

passing on the object.

95
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Our findings demonstrate that the fastest way to fill up the nest with food is through

exponential distribution. Although the gaussian distribution fills it up at a similar rate,

the food is not evenly distributed, compared to the external distribution. Besides fill-

ing up the nest, the objective of ants in the trophallactic network system is to feed

one another evenly for the ultimate purpose of filling up the nest quickly. We will be

able to efficiently deploy trophallaxis in multi-robot systems by selecting the nature

distribution according to the purpose. This is related to the distribution of the amount

of food selected by the probability. For exponential distribution, it is more likely that

the amount of food delivered will be selected as a more significant value, compared

to other distributions. In other words, when the nests start to fill up, they’re going to

deliver the maximum amount to the non-forgers, and then they’re going to be deliv-

ered to the various robots in small quantities. Because this also affects the interaction

rate, other distributions can convey information that is not suitable for the component

distribution.

Furthermore, the interaction rate and speed of the foragers and non-foragers affect

the global task. The effectiveness of our performance is dependent on maintaining an

appropriate proportion. The slower the speed of the non-foragers, the more likely that

food evenly distributed; however, it takes longer to fill the nests. Therefore, we can

control the manner and speed in which food is delivered, and the role each individual

plays for different purposes.

6.2 The Role of Non-foragers

The trophallactic network system cannot be solely dependent on the foreager, because

it is necessary them to encounter non-foragers very often as they arrive at the nests

so that it can be filled up quickly. This is highly dependent on the actions of the non-

foragers. To examine this in detail, we set up an experiment in which the task was

to clear a contaminated area and purify the contaminants; we focused specifically on

to the impact of the movement behavior of the recipinents. Although the trophallac-

tic network system is basically exists for the purpose of transporting a substance, the

significance of communicating information at the same time cannot be undermined.

We examined the movement of the recipients following the robot-to-robot interactions

in which the location information of the pollutant alongside the pollutants. Our results
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show that each recipient tends to determine its path according to the location informa-

tion, resulting in the appearance of moving in groups. This phenomenon caused led

to increased interactions. The increase in the number of such interactions sped up the

delivery of the pollutants.

Thus, when the foragers brought in pollutants from the outside, the recipients were

able to receive them quickly, and transfer them to the central purification area. Thus,

the efficiency of the global task depends on the movement of recipients in response

to the information shared by the foragers. Moving in groups made it possible for the

robots to quickly remove pollutants from the outside and perform the task efficiently.

6.3 Verification through a Real Robot

It was necessary to verify the experimental situation in Chapter 4 using a real robot.

Therefore, we created replicated the situation using a real robot, and verified that the

same results were achieved. The findings in the set-up with the real robot corroborates

the findings in the robot simulations. First, when the location information is supplied

in addition to the object, the recipients were observed to swarm in the direction of the

contaminants. Furthermore, when the forager moved to a location where contaminated

particles were located, the recipients who received the pollutant from it swarmed in the

same direction. As was the case with the robot simulations, this resulted in increased

number of interactions, and hence, the rapid elimination of pollutants. On the other

hand, real robots can collide, except if they are specially designed not to.

Therefore, the collision risk prevents them from clustering too closely, and prevents

them from smoothing out pollutants. However, this difference did not cause the results

to deviate too significantly from results of the simulated robots; however, it was ob-

served that the objects were delivered faster to the purification area, and the robots a

little faster when it was not crowded. It was a subtle difference, but the result showed

that building a swarm somewhat impeded the robots’ movement. However, we were

able to demonstrate that barring the risk of collision and its impact on the real robots’

movements, the the recipients’ herd behavior has a positive effect on the effectiveness

of the multi-robot swarmsystem.
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6.4 Relationship between spreading information and flock-

ing of robots

Our system operates based on diret communication between robots. In other words,

when sharing information with each other, they move based on short-range communi-

cation. In many multi-robot systems, long distance communication is often impossible.

Thus, short-range communication takes a long time for robots to share information.

Updating in real time while the robot keeps exchanging information helps the robot

perform its tasks. We show in chapters 4 and 5 that the behavior of a robot affects the

number of times information is exchanged. In our system, robots exchange informa-

tion through robot-to-robot interaction. Through the exchanged information, the robots

move in groups, and the movements in groups often cause interaction between robots.

The robots in a group share information obtained by each robot in real time, so that the

task can proceed efficiently. In this paper, we show that grouping behaviors facilitate

the sharing of information and have a positive effect by efficiently performing tasks

through updated information in real time.

6.5 Contribution

Our goal is to enable robots in multi-robot systems to efficiently perform necessary

tasks through robot-to-robot interactions. The efficiency of most multi-agent systems

are limited to by environmental factors and the robots’ physical factors. Therefore,

there is a limit to which central control can be realized. Because centralized control

has to process a large amount of information, the system is complex, and unwanted

delays can occur during communication. Therefore, rather than performing a task with

global information, we attempt to use local information.

We use the concept of swarm intelligence to solve this. The concept of swarm in-

telligence is based on simple entities making decisions through some local informa-

tion without central control. Each robot’s action is called self-orageanization; self-

organization requires information to determine the action. Swarm intelligence uses

local information rather than global information. Therefore, depending on the mis-

sion, each robot must use appropriate communication methods to obtain the necessary

information. We introduce the trophallactic method, which is a robot-to-robot commu-
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nication method.

Trophyallaxis is one of the indirect communication methods. The purpose of trophal-

laxis is to enable ants and bees share nutrients among themselves. Social insects not

only obtain nutrients through this method but also obtain the information required for

all insects to share nutrients efficiently. Such a system is called a trophallactic network

system. Information is obtained and shared on a one-to-one. However, it has been ob-

served that the foragers who bring food act as if they know how much food is required

in the nest. Thus, although the exchange occurs locally, the entire group behavior ap-

pears to be based on global information. We extend the trophallactic network system

to one-to-one information exchange and provide a solution to control multi-robot sys-

tems.

We deploy this system in a multi-robot system to perform a variety of tasks, with the

aim of demonstrating that in spite of not possessing global information, it is possible

to perform various tasks if the individual robots appropriately determined their action

according to local information. Because trophallaxis is one-to-one communication, no

complicated system is required. This is a useful method for simple multi-robot systems

and for the goal of sharing certain objects. We introduce a contaminant removal system

as an example, and demonstrated the usefulness of trophallaxis for such a task. In this

study, we reveal the link between the location information supplied by foragers and the

swarm behavior that is shaped by the information. The efficiency of the multi-robot

system depends on identifying the optimal condition, passing on this information, and

flocking swarming accordingly.

6.6 Future works

The trophallactic network system in this study is predicated on robot-to-robot commu-

nication. The inspiration was drawn social creatures who share nutrients among each

other so that all individuals in the colony can receive energy from the outside. How-

ever, one of the problems with today’s multi-robot systems is the battery. As many

robots are involved, it is not easy to install sufficient charging stations for correspond-

ing to their numbers. Besides, even if charging stations were sufficient, determining

the required power is a challenge. Furthermore, it would be difficult to move the robots

around in areas with many obstacles. In this case, charging can be achieved by repli-
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cating trophallaxis, and all the robots near each other will receive sufficient energy.

In our future research, we will study the most effective way to perform this task by

comparing the effectiveness of charging of all the robots in a multi-robot system at

the charging station within a specific environment and that of the robots charging one

another using the trophallactic network system. These studies will be of great help in

suggesting ways to solve the battery problems in multi-robot systems.

In addition, we will study the positive effects of the trophallactic network system on

the robots used in the courier logistics, depending on the environment and robot move-

ment. Courier Logistics Transportation finds and delivers a number of desired couriers

to people’s areas. Because there are numerous parcels in this environment the space

is small, and there are many obstacles impeding the movement of several robots. In

operating various robots, in many cases, communication between several robots is im-

possible. It is a great advantage to be able to perform global tasks simply through

robot-to-robot interaction. This will allow us to continue working on what information

we need to share in order to proceed with the desired task and to be more efficient.
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