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Abstract

This thesis presents two novel approaches for improving efficiency in robotic mobile

fulfillment centers: an Agent Density Based Congestion Detection system for path

planning and an Adaptive Stochastic Class Based Storage (AS-CBS) strategy for dy-

namic storage optimization. The congestion detection system utilizes spatial convolu-

tion operations with varying kernel sizes and thresholds to analyze local robot densi-

ties, dynamically adjusting A* pathfinding costs to enable proactive congestion avoid-

ance. Simultaneously, AS-CBS implements a queue-based system to track real-time

demands of incoming items, creating adaptive storage patterns that optimize access to

high-demand items while maintaining operational flexibility. Through extensive sim-

ulations in a 29 by 32 grid environment with 20 robots, both systems demonstrated

consistent performance improvements across different configurations. The congestion

detection system achieved a 26-percent reduction in collision frequency while main-

taining 25-percent faster completion times, while AS-CBS showed remarkable adap-

tiveness to shifting demand patterns while improving task completion rates. Physical

validation experiments using seven robots on a 6 by 6 grid demonstrated the real-world

feasibility of both approaches, though with some implementation challenges due to

scale limitations. While the robotic experiments revealed gaps between simulation and

physical implementation, they provided valuable insights into practical considerations

for future deployment. This research contributes to the advancement of warehouse au-

tomation by addressing both path planning and storage optimization, demonstrating

balanced improvements in efficiency and operational stability.

Key words : Multi Agent Path Finding, Warehouse, Swarm Robotics, Multi Agent
System, Robotic Fulfillment, Storage
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Chapter 1

Introduction

Amazon.com’s notable example of successful design of Automated Storage and Re-

trieval Systems (AS/RS) motivated many businesses to follow its treads to implement

similar systems. These businesses often do not fathom the complexity of constructing

such system, and hasty implementation often introduced bottle necks and jams, causing

more losses then benefits.

A notable example showcasing the difficulty of large scale AS/RS is Denver In-

ternational Airport (DIA)’s 193 million dollar ambitious vision of automated baggage

handling system, which shared some core discipline with warehouse management sys-

tem, identifying and routing the correct baggage to their destination akin to routing

stocks into a storage location within a warehouse.

This system consisted of 4000 carts and 21 miles of subterranean network inter-

linked into a network of more than 100 computers and scanners, anticipated to be one

of the most advanced system in the world. It costed 560 million dollars and 16 months

for engineers to fix the system and additional costs to hastily construct a manual bag-

gage handling system.

Despite the time and funds poured into the system, the inherent design flaws hin-

dered reliable operation, eventually scrapping the entire project in 2005 (Gibbs, 1994;

Ltd, 2008). While DIA’s example pertains to the difficulty of coordination and routing,

another significant challenge of managing a large scale logistics is the storage of items.

Traditionally, same items were stored and organized together at a dedicated area,

and this seems to be the most intuitive way of managing multiple articles of items.

It is also easier for human operators to locate and manage items without the use of

computers. Yet, this method is disadvantageous in space management, as the dedicated

sufficiently large storage space for each items must be maintained.
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Chapter 1. Introduction

Conversely, if the volume of an article of items exceed the dedicated storage

space, the excess items must be stored somewhere else, deteriorating the efficiency

of item management. In large scale industrial settings, it is quite usual to encounter

situations where certain items exceed or falls short of anticipation, leading to added

cost and inefficiency (de Koster et al., 2007).

Recently, the dynamic nature of order picking operations in warehouses intro-

duces significant challenges regarding the efficient placement of various items to min-

imize travel distances. This aspect of warehouse management is crucial because the

travel cost and time associated with picking activities can account for up to 75 percent

of the entire operational cost and time (Tompkins et al., 2010; Riedel, 2011; Azadeh

et al., 2019; Feng and Ye, 2021; Liu et al., 2021).

Efficient planning and coordination in this context are essential for optimizing

overall performance. Several factors, including product placement strategies and rout-

ing algorithms, play a significant role in reducing these costs.

1.1 Motivation

In large operations such as Amazon.com, Inc., where their Fulfillment centers average

800,000 square feet with 185 locations globally, employing more than 100000 robots in

their Robotic Mobile Fulfillment System (RMFS), these Fulfillment centers are located

near population centers to minimize delivery time, and storage efficiency becomes a

quintessential part of the operation to minimize the size of the facility as well as order-

picking speed and efficiency (Amazon.com, 2021; Merschformann et al., 2019).

By the virtue of computerized stock-keeping systems, mobile robots can now

accurately locate desired items within a warehouse. This technological advancement

has led certain warehouses, such as Amazon Robotic Fulfillment Centers, to adopt

random storage methods (Hausman et al., 1976; Petersen et al., 2004; Petersen and

Schmenner, 1999). The computerized Stock Keeping Unit (SKU) management systems

provide real time information of item locations to the order-picking robots, dedicated

storage spaces for articles of items are no longer needed and the space can be utilized

more efficiently (Zou et al., 2017).

As previously mentioned, dedicated storage spaces lack flexibility in utilizing

storage spaces, while random storage method can simply put an item anywhere avail-

able. Most importantly, random storage offer decreased travelling expenses, because

the picker is more likely to locate its desired item nearby regardless of its location.
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Chapter 1. Introduction

Amazon.com, Inc.’s RMFS employ random storage method due to their wide

range of items they store, and this method becomes more efficient as the variety of the

items increase. In retrospect, the adoption of computerized storage management en-

abled location of individual items, and the random storage method not only maximize

space utilization, but also optimizes picking operation by decreasing the travelling ex-

penses (Malmborg and Al-Tassan, 2000; Furmans and Dehdari, 2014).

Conversely, operations that handle more predictable logistics may implement a

more tailored approach such as the Class Based Storage (CBS) method, operating on

the principle of categorizing items into classes based on their turnover rates, placing

high-turnover items closer to the picking and delivery (p/d) station, thus reducing travel

distances for frequently requested items.

Research by Gibson and Sharp (1992) has demonstrated that the CBS method

can significantly shorten travel distances compared to random storage methods (Gib-

son and Sharp, 1992). This method enhances operational efficiency by strategically

positioning items according to their demand levels, which optimizes the order-picking

process and reduces the overall time and cost associated with warehouse operations.

Albeit a research suggests that a well-designed storage system can lead to up to

a 60 percent improvement in travel distances, attempts at optimizing a order-picker’s

path planning have been made to further reduce the travelling costs (Caron et al., 2000).

For example, Öztürkoğlu (2010) and Zhou (2022) suggested a novel storage strat-

egy and its optimal routing technique, however, the design lacks consideration for multi

agent picking, where the aisles leading to a singular P/D point may induce congestion

(Zhou et al., 2022; Öztürkoğlu et al., 2012).

Accordingly, some warehouses implement a P/D station design to increase its

surface area, handling multiple pickers to reduce bottle necking. Previous researches

mainly explored routing and storage strategies, however, were limited assuming sin-

gle picker carrying out a single operation (Petersen and Schmenner, 1999; Ratliff and

Rosenthal, 1983).

Although there are routing strategies and warehouse designs that may optimize

the travel expenses, the interaction between picking agents may introduce another layer

of complexity in evaluating their effectiveness.

As noted by a survey by Roodbergen et al, the researches pertain to static envi-

ronments, but solutions applicable for dynamic nature of the AS/RS requirements are

increasingly more needed (Roodbergen and Vis, 2009).
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Chapter 1. Introduction

1.2 Organization

To address the consequences of multi-agent picking operation, Chapter 3 proposes a

routing heuristic that focuses on detection of congestion and avoidance of the said

congestion by reconstructing a path. Based on the congestion detection, an agent may

recognize where congestion have occurred or likely occur and re-route their path to the

destination.

To minimize communication and computational demands for each agent, a central

entity may manage the storage and the real time information of the agents and provide

appropriate instruction based on them upon request. Such employment of would be

most effective in a predetermined environment such as warehouses where the layout

remain relatively static, and robustness in variety of settings is subordinate against

other considerations.

Three methods of congestion mitigating path reconstruction were devised, the

first based on the local density of the agents in the grid, where a convolution filter

with varying thresholds and kernel sizes determine areas with congestion, the second

utilizing the density of overlapping paths of the agents in the grid, generating a new

path that avoids areas and corridors exceeding a set threshold, and finally, the third

method generates a path that does not intersect with pre-existing paths.

To further add complexity, many businesses opt to widen their scope of service by

treating broader variety of items and sometimes ones that require special care such as

those that are time-sensitive. In such businesses, the RMFS require additional versatil-

ity and adaptability to rapidly changing stock keeping requirements, such as fluctuation

of demands for certain items.

For example, it is evident that seasonal items will have different demands and

subsequent turn-over rates by each month, and the optimized storage strategy, such

as CBS, would consequently differ each season. While a complete random storage

method eliminate the need to consider this issue, one might possibly further optimize

the storage strategy by considering the temporal element in the CBS method by assign-

ing different classes in response to the turn-over rates.

Chapter 4 presents a queue based classification method that utilizes recent order-

picking operations to rank and assign classes to incoming orders, and additionally in-

troduces a stochastic element to the class-based storage system, where the placement

of items by class type follows a normal distribution.

In this system, items in classes with higher turnover rates are preferentially po-
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sitioned closest to the picking and delivery (p/d) stations. However, items in classes

with lower turnover rates are occasionally placed near the p/d stations as well. This ap-

proach ensures that picking agents benefit from shorter travel distances even when less

frequently requested items are needed and aims to enhance flexibility and efficiency in

warehouse operations.

The normal distribution model allows for a more dynamic and adaptive storage

strategy that can better accommodate the unpredictable nature of item demand. This

method not only reduces the likelihood of congestion in specific storage areas but also

optimizes the overall travel distances for picking agents.

Consequently, the warehouse can maintain high performance and efficiency even

when dealing with fluctuating turnover rates. Furthermore, this research will explore

the implementation and impact of stochastic class-based storage through simulation.

By comparing the performance of this method against traditional storage systems,

we aim to demonstrate its advantages in terms of reduced travel times, improved order-

picking accuracy, and overall operational cost savings. The findings from this research

could provide valuable insights for warehouse managers seeking to optimize their stor-

age strategies in the face of dynamic demand patterns.
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Background

In recent years, the rapid growth of e-commerce has necessitated significant advance-

ments in order processing and fulfillment systems. The integration of computerization

and automation technologies has dramatically accelerated order processing speeds,

leading to an unprecedented demand for faster and larger-scale order-picking opera-

tions.

A prime example of this trend is Amazon.com’s Same-Day and Two-Day De-

livery services in the United States, which exemplify the pinnacle of automation and

stock management efficiency, enabling the timely delivery of even the most mundane

items.

The seeming paradox of expedited delivery across vast distances is resolved through

a strategic network of local warehouses. Similar to supermarket supply chains, prod-

ucts are not shipped across the continent for each order but are instead stored in prox-

imity to potential customers.

Amazon.com’s local fulfillment centers maintain extensive inventories of diverse

products, including an expanding range of time-sensitive perishables. To manage the

high volume and variety of orders efficiently, Amazon.com has developed innovative

practices and heavily automated both their physical and managerial operations. Within

the scope of this research, we focus primarily on the physical aspects of warehouse

automation, specifically optimizing multi-agent control systems.

Key elements of this automation include Goods to Person (GTP) systems, Au-

tomated Storage and Retrieval Systems (AS/RS), and Autonomous Mobile Robots

(AMRs). Goods to Person (GTP) technology forms a fundamental and essential com-

ponent in enhancing picking operation speed for high-volume orders, particularly in

warehouses with spatial constraints. In GTP systems, inventory items are transported
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to human operators rather than requiring workers to navigate the warehouse.

This approach significantly increases picking speed, minimizes human errors, and

improves industrial safety by separating automated workspaces from human-occupied

areas. Automated Storage and Retrieval Systems (AS/RS) represent a subset of GTP

technology, where robotic elements further automate the storage and retrieval pro-

cesses. These robotic components primarily consist of Automated Guided Vehicles

(AGVs) and Autonomous Mobile Robots (AMRs).

While these terms may seem interchangeable, they denote distinct levels of au-

tonomy and operational capability:

• Automated Guided Vehicles (AGVs) : AGVs possess limited autonomy and

processing power, designed for simple, repetitive tasks. They navigate using pre-

defined pathways, typically guided by markers on floors or walls, such as mag-

netic tapes or simple close-range communication beacons. AGVs generally have

restricted obstacle avoidance capabilities and are usually designed to operate in

environments segregated from human workers. These vehicles typically function

within a more centralized control structure and are relatively cost-effective.

• Autonomous Mobile Robots (AMRs) : AMRs exhibit enhanced autonomy with

independent sensing and navigation capabilities, necessitating more advanced

computational capacity. They commonly employ onboard Simultaneous Local-

ization and Mapping (SLAM) technology, enabling them to perform complex

tasks and facilitate Human-Robot Collaboration (HRC). AMRs possess supe-

rior decision-making capabilities, allowing for a more decentralized operational

structure, and offer greater versatility in their applications.

The implementation of these automated systems has revolutionized warehouse

operations, significantly improving efficiency, accuracy, and scalability. As e-commerce

continues to evolve, the role of these technologies in shaping the future of logistics and

supply chain management cannot be overstated. Further research into the optimization

and integration of these systems will be crucial in meeting the ever-increasing demands

of the global marketplace.

Amazon Robotics, formerly known as Kiva Systems first commercialized auto-

mated warehouse system with GTP using AGVs, and sold their system to companies

such as Walgreens and Staples. Many automated warehouse systems use AGVs than

AMRs because streamlining the operation and the structure is possible. The SLAM

8



Chapter 2. Background

Figure 2.1: A picture of traditional pallet stacker (Rücker et al., 2020).

capabilities of AMRs are often not needed in such operations because the workspace

is predefined with simple repetitive tasks, and unforeseen disturbances and hazards are

unwarranted.

With the freedom of configuring AGVs and their operating environment, Kiva

Systems further innovated warehouse automation by moving an entire shelf or a pod

containing many items. At first, it may seem sub-optimal to carry an entire pod to

look for a few, however, a picking station may not treat a single order but multiple,

and because the pods carry random items, it is likely that it contains items for another

order. This approach further enabled standardization of storage pods and space savings,

coupled with storage designs facilitating AGV movement.

Traditionally, warehouses used stacker cranes instead of AGVs to move pallets

along the aisles to store large volumes of items and utilize vertical space, however,

the rigidity of this structure poses challenges in the contemporary rapid and dynamic

order-picking environment.

AGVs are flexible and scalable, and a warehouse layout can be reconfigured eas-

ily, while being able to add more units if needed. This flexibility offers unmatched

advantage when automating in a pre-existing structure, because less significant reno-

vation is needed due to having a smaller profile.

Moreover, cranes require more work to reconfigure their routes and position, and

can be more expensive for smaller warehouses and maintenance costs are lower when

AGV units can individually be replaced or excluded from operation without disrupting

the entire system. Using more individual units with freedom of movement offer redun-

dancy and resilience to failure, because an operation along an entire aisle need to be
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Figure 2.2: Operation of a pod/shelf lifting warehouse AGV (Allgor et al., 2023).

halted if a crane fails.

Still, the complexity and scale of order picking operations in RMFS centers, stor-

age optimization and Multi-Agent Path Finding (MAPF) become quintessential com-

ponents of reducing operational costs and quality of service.

One of the leaders in RMFS operation is Amazon.com, which has been bench

marked by many other businesses. With its acquirement of Kiva Systems, Amazon

Robotics division has been heavily investing into researching optimal storage strategies

and robot systems tailored to their business model, and has made many innovative

practices that now became industry standards such as random storage.

A warehouse layout optimized exclusively for their own AGVs combined with

digital stock keeping system, Amazon.com effectively automated their order-picking

operation while maximizing the storage efficiency.

2.1 Storage Strategy

As previously demonstrated by Caron et al, design of a storage dictate a large part

in reducing travelling expense (Caron et al., 2000). The significance of travelling in

order-picking operation entails an efficient storage method that accounts for the nature

of stock articles as demonstrated by Amazon.com.

Traditionally, a dedicated storage method was preferred, with its structure akin to

shopping in a supermarket. This method has been the choice for warehouse storage due

to its ease of navigation and search for a human picker, but problems such as inefficient

space utilization has always existed.

Furthermore, stock keeping and throughput is not always predictable, thus the

dedication of storage space often end up becoming disorganized as business operates.
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The introduction of Warehouse Management System (WMS) eliminated the need for

operators to memorize the item’s location and eventually led to the development of

random storage method. The extensive and fluctuating inventory of their business led

to the development of random storage method, however, it is possible that a more

optimal solution exists when the inventory is smaller and more predictable.

For example, if certain items have higher demands, consequently the turn-over

rate of those items will be higher at the warehouse. Therefore, one would reasonably

be inclined to place such items at a more accessible location. Petersen suggested a

Volume Based Storage method to address this issue and developed upon it to propose

Class Based Storage to group and rank items by their turn-over rates for optimized

placement.

In understanding warehouse layout, one of the deciding factors is the type of

picking operation. there are two types of operations in a warehouse order-picking. One

is a single command operation, where as the name suggests, a picker receives either

a storage or retrieval order, and makes a travel per order, and the second is a dual

command operation where a picker carries out both a storage and a retrieval order,

storing an item from a p/d point then moving to an item location to retrieve and return

to the p/d point.

2.1.1 Random Storage

A popular method of storage assignment is a random/chaotic storage method, where

an empty storage space is chosen randomly for an incoming item to be stored (Pe-

tersen, 1997). This method’s advantage lies in high utilization of space in contrast to

traditional dedicated storage method where a space needs to be reserved for items re-

gardless of low inventory, and conversely, sometimes need to be expanded to accept

more items (Sharp et al., 1991; de Koster et al., 2007).

The advantage of the traditional storage against other methods is the ease of locat-

ing items for human operators and treatment of special items such as thermoregulated

products, but the former advantage deteriorates when the stock keeping adapts Ware-

house Management Systems (WMS) to digitally manage the location of the items.

Such is why robotic fulfillment with the foundation of WMS only use dedicated stor-

age space with limited application, while utilizing efficient storage strategy.

Within the random storage method there is another variation, storing the items in

the nearest available location. At first, this may not seem like a random storage method,
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however, Hausman explained that if goods were stored and treated by pallets or pods,

it performs similar to the random storage method (Hausman et al., 1976).

In Sharp’s research, the travel distance reducing properties of random storage

method appeared to be sub-optimal, and sometimes extended the distance, and Haus-

man also discovered that it lagged behind other methods such as the CBS (Sharp et al.,

1991; Hausman et al., 1976).

To further develop the random storage policy, Han et al propose ”nearest neigh-

bor” strategy in deciding item to be retrieved after completing a storage in dual-command

operations, by selecting from storage and retrieval points with minimum distance in be-

tween, resulting in around 5 to 8 percent range within optimal performance (Han et al.,

1987; Johnson and Brandeau, 1996).

Nevertheless, an overlooked aspect in random storage method is the elimination

of need for storage organization. In a dedicated storage method or in CBS, regular

organization of items and updates to reflect demand patterns is required, which may

cause additional resource consumption.

One may wonder why a random storage method increased the travel distance

when items are scattered, but it may be due to increased average distance to every

items. For any given pick, a chance of having the desired item close by exists, how-

ever, vice versa is also valid. This becomes more significant if the demands for items

are uneven, because high demand items and low demand items are equally scattered

around the warehouse while the other methods can strategically place from the p/d

point to reduce the travel distance.

Another challenge posed by random storage method is its potential difficulty in

routing, due to the scattered nature of goal points, and this is further exacerbated by

the space saving efforts which is often applied in conjunction.

As mentioned earlier, use of singe lane layouts could save significant space, but

reduce the freedom of movement. Regardless, random storage strategy may outweigh

its disadvantages in contexts where demands of items rapidly change or remains uni-

form, inventory is extensive, and flexibility and space efficiency is the primary concern.

2.1.2 Class Based Storage

A Volume Based Storage (VBS) method was proposed by Petersen et al, where items

of high order volume are placed closer to the p/d point (Petersen and Schmenner, 1999;

Jarvis and McDowell, 1991). The aim of this method is to decrease the travel distances
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(a) (b)

Figure 2.3: Optimized storage layouts. (a) Petersen’s storage layout assumption. (b) Dif-

ferent Volume Based Storage policies. Figures from (Petersen and Schmenner, 1999).

for items that are picked often, reducing the overall distance needed to travel.

Petersen studied four storage policies applicable to the volume based storage as

shown at the top of Fig 2.3(b), with darker regions showing items with higher volume.

The first one from the top, diagonal strategy was proposed by Gibson et al, showing

high volume items placed within the closest Manhattan distance from the p/d point,

and also illustrate how the shape varies by p/d location (Gibson and Sharp, 1992).

Conversely, Jarvis et al, devised a within-aisle plan, arranging the storage area by

each aisle as seen in the second image in Fig 2.3(b). The third image of Fig 2.3(b)

show across-aisle policy where items are stored closer to the p/d point for each aisle,

and the fourth shows storage around the perimeter with high demand items outward.

Petersen evaluated the effectiveness of these four storage policies of their travel

distances with different pick list sizes and various demand skewness by having 20

percent of the stocks having low, medium, or high demands. As a result of his exper-

iment, Jarvis et al’s within-aisle policy with a p/d point in the middle yielded the best

results across all settings. This result is somewhat foreseeable from the geometry of

Petersen’s assumption, because the pickers are bound to moving along the aisles, thus

placing items along them will be sensible.

Except for the diagonal policy, having the p/d at the middle was significantly

better in all cases, but Petersen remarks that the difference narrows as the pick list

becomes greater. In his research, he discovered that within-aisle policy resulted in 10
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to 20 percent travel distance savings and middle p/d point saving up to 4 percent in

comparison to the corner p/d (Petersen and Aase, 2004).

Petersen noted that within-aisle and diagonal policy concentrates high demand

items within the first few aisles near the p/d point, therefore across-aisle and perimeter

policy could result in outcomes when congestion and balanced space utilization is of

concern (Petersen and Schmenner, 1999).

In further improving the order picking performance of the VBS has been eval-

uated, called Class Based Storage method. This method further fine tunes VBS by

grouping items by their pick rate or turnover rate, and assigns storage areas closer to

the p/d point for classes with higher demands.

This is essentially a VBS but it simplifies the assignment process with aims to

reduce administrative expenses such as analysis of demand patterns and item char-

acteristics, while attaining the benefit of shortened travel distances. While relatively

small number of classes yield good performance and Van den Berg and Gademann

found that six classes resulted in optimal, several researches demonstrate that CBS ap-

proaches the performance of VBS proportionally to number of class division (Eynan

and Rosenblatt, 1994; van den Berg and Gademann, 2000; Hausman et al., 1976).

While it may seem as increasing the number of classes is favorable, but the num-

ber of classes will eventually converge to number of items, rendering the new method

meaningless. Contrarily, Petersen implemented partitioning strategies to divide the

items into two classes, then assigning top 30 percent items into class 1 then the rest

into class 2.

Similarly, he tested other proportions and concluded that 30-70 and 40-60 parti-

tioning performed the best. The said partitioning performance resulted in 80 percent

performance compared to the VBS, exhibiting the effectiveness while requiring less

management and care (Petersen et al., 2004).

Indeed, ideal utilization of VBS policy would require ranking all item types by

their demand and placing them accordingly, but its difficulty lies in realization when

demands often fluctuate and assignment of storage space to wide articles of items be-

come difficult. Another problem with a Class Based Storage is that it requires more

space than random storage method to admit incoming items to their corresponding

classes, thus more classes require more space (Graves et al., 1977).

Though, in attempts to undermine this ramification, optimal partitioning strategies

have been established and generalized for rectangular layouts using one-dimensional

search (Eynan and Rosenblatt, 1994; Rosenblatt and Eynan, 1989).
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(a) (b)

Figure 2.4: Storage structure of a warehouse. (a) Two-lane aisle design. (b) One-lane

intersection design (Figures from (Roser, 2021)).

Interestingly, Petersen argued in favor of within-aisle CBS, but Le-Duc’s research

contradict his results by demonstrating across-aisle CBS’s close-to-optimal superiority,

but then discovered that routing heuristics play a pivotal role doing so, along with pick

list size (Le-Duc * and De Koster, 2005; Le-Duc, 2005).

While classes can be assigned using various heuristics, one method is grouping

items that are often demanded together in a same class (Frazele and Sharp, 1989). By

using this method, the average distance to the paired item can decrease even if their

demand differ, however, requires periodic analysis of the demand patterns.

Similarly to the implementation of ”nearest neighbor” policy in random storage

method, Eynan and Rosenblatt applied this policy in CBS environment to discover sig-

nificant increase in throughput (Eynan and Rosenblatt, 1993; Johnson and Brandeau,

1996).

2.1.3 Storage Layouts

Traditional long aisles designs are most desirable for accessing items while maximiz-

ing storage space and is most intuitive for human operators to navigate through. Unlike

traditional long aisle designs as demonstrated in Fig 2.4(a), businesses are starting to

use single lane designs with intersecting longitudinal lanes for better accessibility.

The storage efficiency is typically below 50 percent with long two-way aisles,

while the one-way method usually yield 40-60 percent storage efficiency depending

on the number of cross aisles, and as a result, businesses such as Amazon.com employ

one-way design to simultaneously maintain adequate traffic flow. To further increase

the throughput, cross aisles are introduced, and they are especially useful when using
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(a) (b)

Figure 2.5: Optimized cross-aisles in Fishbone Shape. (a) 3D view of a Fish Bone layout

(b) Fish Bone layout implementation in a business warehouse (Figures from (Meller and

Gue, 2009)).

(a) (b) (c)

Figure 2.6: Storage layout incorporating cross-aisles. (a) Long aisle without cross-aisle.

(b) Long aisle with horizontal cross-aisle. (c) Horizontal long aisle with vertical cross-

aisle. Figure reproduction of Pohl et al (Pohl et al., 2009).

AGVs instead of cranes, because they are easier to move across aisles.

As a result, while cranes rarely have the capability to move perpendicularly to an

aisle due to following rails to navigate, the compactness and freedom of movement en-

ables dual command operations for AGVs to transition from storage to retrieval, thus

utilizing cross aisles. Additionally, Roodbergen et al. showed that single command op-

erations do not benefit from cross aisles due to increased travel distances (Roodbergen

and de Koster, 2001).

How one should implement cross aisles has been a debated subject, but it should

16



Chapter 2. Background

(a) (b)

Figure 2.7: Possible movements between a storage point to another (a) Fish bone de-

sign. (b) Traditional long aisle design (Figures from (Meller and Gue, 2009)).

ultimately be dependent of the nature of operation, however for dual command opera-

tions, having a cross aisle is always resulted in better performance, and while layout C

resulted in the best performance in most cases, it is more dependent on the assumption

that the p/d point is a central singular position (Pohl et al., 2009).

The use of cross aisles maximize when a p/d point is not singular, because AGVs

they increase the accessibility from different directions. The construction with aisles

and cross aisles depend on the nature of the picking operation and the location of p/d

points, and many warehouses that have a singular p/d point often use a ”Fish bone”

design (Fig 2.5(a)), with aisles extending outwards from the p/d point (Meller and

Gue, 2009).

In evaluating the fish bone layout, Gue notes its limitations that the layout assumes

a single p/d point, single order operation, and random storage method (Gue and Meller,

2009).

Accordingly, the fish bone layout would benefit single command operations, where

travel occur mostly between sections that benefit from shortened travel distances from

a storage location and a p/d point. While the fish bone layout demonstrated up to 23.5

percent improvement in shortening the travel distances depending on the weight and

height ratio of the warehouse, Fig 2.7 demonstrates the effect of long aisles in a fish

bone layout and traditional layout, where moving from one point to another in the

warehouse result in prolonged travel (Gue and Meller, 2009; Meller and Gue, 2009).

To address this issue, Pohl implemented additional cross aisles at the top of the

fish bone layout to create a ”Fish Bone Triangle” layout with further improvements for

dual command operations (Pohl et al., 2010).

Nonetheless, businesses with single p/d operation adopted the fish bone layout
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with cross aisles to facilitate movement across different aisles, because in reality, p/d

point is not the only access point by workers and sometimes orders, thus necessitating

additional cross aisles while sacrificing some storage efficiency.

To further improve upon the fish bone layout, Zhou et al implemented CBS to

further utilize the improved accessibility. In his research, there has been up to 70 per-

cent difference and minimum 2 percent difference in travel distance when CBS was

adopted against the random storage method, indicating that the CBS method always

yielded a positive result in reducing travel distances (Zhou et al., 2022).

This result extends from Petersen’s study on effective class assignment in long

aisle storage, highlighting the effectiveness of the CBS method in different warehouse

layouts.

2.2 Routing Strategy

2.2.1 Difficulty of Routing

In an order picking situation, route planning becomes a complex and expensive prob-

lem especially for batch picking operations, because this problem can be reduce to a

Travelling Salesman Problem (TSP). The challenge lies in finding the shortest cycle

visiting all nodes, similarly, an order picker leaves the p/d point then needs to visit all

points with the corresponding order then return to the p/d point, and shortening this

as much as possible will reduce the cost of operation (Robinson, 1949). This problem

is particularly challenging because it can be reduced into an NP-hard problem, where

no known general solution that can solve in a polynomial time exists, meaning that it

becomes explosively computationally consuming as the size of the pick-list increases

(Karp, 1972). Thus, using approximation heuristics is a reasonable approach to solv-

ing a TSP, motivating researchers to apply them into warehouse picker routing (Theys

et al., 2010). One of the earliest and simplest methods of approximation is the nearest

neighbor heuristic, and Lin-Kernighan algorithm is often regarded as the best one.

• Nearest Neighbor Algorithm : Start from one of the nodes, connect to the nearest

node and repeat until all nodes have been visited. This is a greedy heuristic,

where the algorithm finds the best immediate solution for each step, without

regards to the entire scheme.

– Results in a 25 percent longer path on average compared to the shortest
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possible path (Johnson and McGeoch, 2008).

– Worst case performance yields O(N2), and worst case space complexity of

O(N).

• Lin-Kernighan (LK) Algorithm : Developed by Lin S. and Kernighan B. at Bell

Laboratory and modifies local tours from a given complete Hamiltonian tour

(Lin and Kernighan, 1973). This method is largely based on k-opt algorithm,

where the algorithm replaces k number of edges to find the best solution.

– Approximation ratio, how accurate compared to the optimal varies by k

number of changed edges, generally within single digit percentage from

the optimal solution.

– Observed runtime also varies by implementation, however, empirically ob-

served O(N2.2), and generally space complexity of O(N) is reasonable

(Helsgaun, 2000; Papadimitriou, 1992).

The order picking operation is essentially a Steiner TSP, an extension of TSP with

additional Steiner points, which may or may not be visited to reduce the total length of

travel (Cornuéjols et al., 1985).

Because of this, a literature implemented a variation of LK, Lin-Kernighan-Helsgaun

heuristic, for effective routing, and reported about 47 percent saving in travel distances

compared to S-shaped routing and 0.1 percent deviation from optimum on average

(Theys et al., 2010).

In certain cases like parallel long aisle layouts, Ratliff and Rosenthal proved that

there is a linear time solvable solution for the TSP, however, the optimal solution ac-

quired from this method posses limitations, which will be discussed next before dis-

cussing commonly used heuristics (Ratliff and Rosenthal, 1983).

2.2.2 Commonly Used Strategies

Mainly, it was established that there are no generally optimal solution for every lay-

out, and that optimum routing heuristics do not take congestion or multiple picking

operations into account (de Koster et al., 2007). One of the greatest hindrances in im-

plementing the optimal route is in the difficulty and cost of the solution and lack of

transparency in the algorithm. In practice, there are several commonly used heuristics:

S-shaped, Mid-point, Return, and Largest-Gap.
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Figure 2.8: Different routing strategies for parallel aisles layout (Roodbergen, 2001).

Figure 2.8 show different heuristics, and first, the S-shaped heuristic travels through

an aisle with a pick order, leaving from the other end of the aisle every time there it

enters one.

Second, the warehouse is divided into two area, a picker enters an aisle then picks

orders up until the mid point of the aisle, then exits the same point where it entered.

The picker crosses over to the other half of the warehouse at the aisle of the last order

in the first area, when using the Mid-point heuristic.

Third, in the Return heuristic, the picker enters and exits from the same end of the

aisle and only travels until the pick order. Lastly, the Largest-Gap heuristic only travels

as far into the aisle as the largest gap between pick orders in an aisle.
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To put simply, assume an aisle with two pick locations A and B, the layout is in

series: end of aisle - A - B - end of aisle. If the gap between an end of aisle to a pick

location is the greatest gap, picker does not enter the aisle from that end. If the gap

between A and B is the largest, picker will pick A or B depending on which end it

entered, then turn around to exit.

Additionally, combined method decides whether to traverse the aisle entirely or

return (Roodbergen and de Koster, 2001). In comparison of these heuristics, Hall dis-

covered that the Mid-Point heuristic outperforms S-shaped heuristic when pick list

is small, and that the Largest-Gap heuristic always outperformed the Mid-Point, and

Petersen further evaluated these strategies in random storage and discovered that the

combined method yielded 8.9 percent greater than optimal and 41.1 percent greater

than optimal for the return heuristic (Hall, 1993; Petersen, 1997).

In evaluating the performance of routing and warehouse layout, two main metrics

are travel time and travel distance for a pick operation. These both measure the travel

of the picking effort, because minimizing travel effort in a pick operation is essential in

minimizing losses and potentially increasing the throughput of the warehouse AS/RS.

Researches attempt to estimate the travel time of a picking operation in differ-

ent layouts by Bassan and Larson, while Bozer and Cho presented evaluation under

stochastic demand (Bassan et al., 1980; Larson et al., 1997; Bozer and Cho, 2005).

To further evaluate the performance of the routing heuristics, it needs to be com-

pared against the optimal travel time, and Ratliff and Rosenthal provides the lower

bound in this case (Ratliff and Rosenthal, 1983). There are also cases where the p/d

points are not centralized, which influence the routing and the consequent travel dura-

tion, de Koster presented estimation of average travel time and compares the gain in

average travel against S-shaped heuristic, evaluating the worthiness of implementing

optimal routing despite the complexity and unforeseen risks (de Koster et al., 1998).

From his literature, the performance improvement of an optimal routing depended

upon the number of aisles and pick list, presenting its limits especially when picker

vehicles discussed in the literature value flexibility of carrying out other operations

than order picking in a practical context.

To summarize, it seems that there does not seem to be a generally optimal solution

in either heuristics and optimal routing for every pick order and layout. These literature

only discussed long aisle layouts, therefore operation in fish bone layout or its variants

would further jeopardize the evaluation of routing strategies. All in all, selection of a

routing strategy needs to account for these various factors and make adequate trade
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Figure 2.9: Five types of conflicts. (a) Edge Conflict. (b) Vertex Conflict. (c) Following

Conflict. (d) Cycling Conflict. (e) Swapping Conflict. (Stern et al., 2019).

offs.

2.3 Multi Agent Path Finding

Modern warehouses like RMFS are vastly different from previously researched de-

signs, often having decentralized p/d points and omni-directional layouts, due to incor-

poration of multiple simultaneously working picking agents.

While previous researches considered routing strategy and warehouse layout fit-

ted to a single or few pickers, RMFS utilize AGVs to maximize throughput of picking

operation, posing a new important factor of picker interaction into the equation. With-

out coordination, individual routing may lead to congestion and deadlocks when routes

converge or cross, to address this issue, Multi Agent Path Finding (MAPF) is studied.

Stern establishes some important definitions in MAPF (Stern et al., 2019). To put

simply, for k number of agents, there exists a tuple G comprised of set of vertexes V

and set of edges E, a set of starting vertexes s→V , a set of destination vertexes t→V .

For an agent, π is a set of moves along the vertexes at each discrete time step x, and an

agent may either move or wait at each time step. A solution is defined as k number of

pis do not have a conflict at every step of x. There are five types of conflicts that may

occur:

• Edge Conflict : Agents travel along the same edge and direction at the same time

step (Fig 2.9(a)).

• Vertex Conflict : Agents travel to the same vertex at the same time step (Fig

2.9(b)).

• Following Conflict : An agent intends to travel to a vertex previously occupied

by another agent (Fig 2.9(c)).
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• Cycling Conflict : Agents intend to travel to a vertices previously occupied by

other agents, which also intend to travel to a previously occupied vertices to

create a ”cycle” (Fig 2.9(d)).

• Swapping Conflict : Two or more agents travel to vertices previously occupied

by each other (Fig 2.9(e)).

It becomes increasingly difficult to obtain a conflict free solution, thus an algo-

rithm decides which of the five conflicts are to be ignored. According to Stern, there

are two types of objective functions that an algorithm aims to optimize.

• Makespan : This is the number of time steps needed to reach the destination for

all k agents.

• Sum of Costs : The sum of total time steps needed to reach the destination for

all k agents.

Though these objective functions provide a guideline for MAPF, others may con-

struct unique objective functions to fit their needs, such as a function that separates

”move” and ”wait” actions to minimize either action, and in the context of warehouse

order picking, the bounds go beyond classical MAPF.

Ma et al proposed a subclass of Online MAPF as ”Lifelong MAPF” for warehouse

MAPF, where fixed number of agents solve sequence of MAPF problems, thus upon

reaching their destination, agents are assigned to a new destination.

In warehouse situations, the graph mimics the layout and movement of AGVs,

thus often incorporate a grid-like design as seen from Cohen et al, and Asprilo bench-

mark framework often used in MAPF evaluation (Fig 2.10) (Cohen et al., 2018; Gebser

et al., 2018).

Yu and LaValle proved that classical MAPF is NP-hard for finding an optimal

solution to minimize makespan ans sum of costs, and similarly Online MAPF problems

and Lifelong MAPF are NP-hard as well (Yu and LaValle, 2013; Ma, 2021).
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(a) (b)

(c) (d)

Figure 2.10: Grid representation of warehouse MAPF problem. (a) A Routing and

Task-Allocation Algorithm for Robotic Groups in Warehouse Environments (Chatzisav-

vas et al., 2022). (b) Mobile Robot Path Optimization Technique Based on Reinforce-

ment Learning Algorithm in Warehouse Environment (Lee and Jeong, 2021). (c) Rapid

Randomized Restarts for Multi-Agent Path Finding: Preliminary Results (Cohen et al.,

2018). (d) Experimenting with robotic intra-logistics domains (Gebser et al., 2018).
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Gait-Based Human Identification

Using iPhone Video and Skeleton

Analysis

Understanding human gait patterns holds significant potential in various domains, in-

cluding healthcare monitoring, security, and behavioral analysis. However, most exist-

ing gait recognition methods rely heavily on specialized equipment such as multiple

cameras or motion capture systems, which limit their practical applicability in real-

world environments. In contrast, this study aims to explore whether gait-based identifi-

cation can be achieved using only monocular video data captured under unconstrained

settings.

To this end, we recorded videos of 89 individuals walking from left to right using

an iPhone 15 Pro in HD at 60 frames per second. Each participant was asked to walk

naturally over a 10-step sequence, maintaining a constant direction and speed. The

camera was fixed at a distance of approximately 12 meters from the walking path and

at a height of 1 meter, ensuring that the walking direction was perpendicular to the

camera’s line of sight when the subject reached the center of the frame. This setup

was deliberately chosen to avoid experimental constraints that arise in environments

where the camera follows the subject, thereby demonstrating the feasibility of gait

identification even under simpler and more accessible recording conditions.

We utilized the OpenPose BODY25 model to extract 25 keypoint skeleton data

from each video frame. Among these, eight features were selected for gait analysis:

knee, pelvis, neck, body, ankle, nose-to-knee, nose-to-ankle, and pelvis-to-ankle an-

gles. These features were chosen based on their ability to represent the dynamic struc-
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ture of walking. Each participant’s gait was segmented into four full walking cycles,

derived from 10 steps, using the knee joint angle peaks to detect step boundaries. From

each cycle, the segment corresponding to foot-ground contact—between the local min-

imum of the knee angle and the maximum of the pelvis angle—was further divided

into four equal parts. The average joint angles in these intervals were used as repre-

sentative scores, yielding four scores per feature and thus eight features × 4 scores =

32-dimensional feature vectors per cycle.

Our observations revealed that as more features were incorporated, the ability

to distinguish between individuals improved. Initially, only two features—knee and

pelvis joint angles—were used, but as we added features such as body inclination, an-

kle dynamics, and head posture, the identification accuracy increased. Moreover, we

found that different observers intuitively focus on different aspects of movement—some

emphasize leg movement while others focus on torso posture or head alignment. This

motivated a multi-perspective analysis, where we defined six “views” of gait features

based on anatomical regions and their respective relevance in cluster formation.

We conducted a series of experiments to evaluate the effectiveness of the proposed

features and methodology. First, we measured gait similarity between individuals us-

ing Euclidean distance and visually confirmed that people with similar scores exhib-

ited comparable gait patterns. Second, we performed self-identification experiments,

comparing a participant’s single cycle to the average of their remaining three cycles

using joint angle scores. The results showed that identification using only one cycle

was generally challenging, whereas comparing to the average of four cycles signifi-

cantly improved accuracy. Finally, we applied K-means clustering and entropy-based

decision trees using different feature combinations to classify gait types. These exper-

iments confirmed that distinct gait patterns can be captured and quantified using only

joint angles extracted from monocular video, without the need for specialized record-

ing environments.

In summary, this study demonstrates that gait-based identification is feasible using

only OpenPose-based skeleton data extracted from monocular video. By analyzing the

temporal patterns of key joint angles across walking cycles and exploring the role of

multiple features, we provide a practical framework for gait analysis that balances

simplicity in data acquisition with robustness in feature representation. (Ryu et al.,

2024b).
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3.1 Method

Pertaining to the focus of this research, the path shortening property of the random

storage will be investigated in congestion reduction. It is expected that shorter paths

will reduce the likelihood of colliding with another agent, while the scattered item

storage will avoid bottle-necks when multiple agents attempt to reach a single article

of item.

In a random storage environment, the matter of locating the desired item does not

pose a significant challenge as the storage management system can locate the necessary

items, thus items need not to be at a specific place. Rather, having the items accessible

from anywhere in the warehouse would be more desirable. Furthermore, if the items

can always be located, there does not seem to be a substantial advantage in having the

items grouped.

Another commonly used storage method is Class-Based Storage (CBS), which

is used when different items have different demands. Items are ranked by class based

on their picking activity, and items that are picked more frequently are placed near

the picking area, and items with less demands are placed farther away (Petersen et al.,

2004; Petersen and Schmenner, 1999). This method aims to optimize the path lengths

and consequently the picking time, and it is most suited when items can be divided into

classes by their demand.

While storage methods aim to passively reduce the likelihood of congestion oc-

currences, an active method employs a routing the agents. It is conjectured that the

agent based method would perform better as the number of agents increase, while

the path density and intersection based method would perform better when there are

less agents. When there are more agents, the path based method could have difficulty

avoiding areas determined to be congested as the absolute number of paths on the grid

increases, and this also applies to the intersection based method.

Since the convolution filter determines a congestion at the kernel center, the de-

termined congestion area is generally a point or cluster of points on a grid, whereas

the path based counterpart would have a point of congestion area when paths intersect

perpendicularly, and a line of congestion area when paths overlap. Similarly, the inter-

section based method entirely avoids intersection with pre-existing paths, resulting in

multiple paths that need to be avoided.

Consequently, the intersection based method is generally expected to have more

number of grids to avoid, while the agent based method would have the least. This
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problem is also expected to be more apparent as the number of agents grow. The re-

silience against increasing number of agents in the agent based method is expected to

perform better with more agents, utilizing the size of the fleet to perform more picking

operations. Another aspect of the storage method and the path planning is the occur-

rences of bottlenecks, and regardless of the configuration, they are expected to occur

near the stations by the incoming and outgoing agents.

Additionally, bottlenecks may occur in the picking area, especially for the orga-

nized storage strategy, because agents moving between different designated areas are

likely to intersect and collide. Such introduction of bottlenecks may likely trigger the

path planning more frequently.

In contrast, the CBS storage would be less prone to such bottlenecks even though

the items are designated to their storage area, due to the introduction of varying chances

of selection. While bottlenecks may occur among agents picking high demand items

and agents picking low demand items, there would be less agents picking low demand

items, and most agents would operating near the high demand items. Likewise, high

demand items are stored in greater volume in larger area, thus freedom of movement

is provided proportionally to the demand.

3.1.1 Storage Methods

In the random storage method, each of the 360 racks within the warehouse grid is as-

signed a uniform random chance of storing one of four item types: red, blue, green,

or purple. This approach ensures that approximately equal numbers of each item type

are distributed randomly across the storage area, as illustrated in Figure 3.2(a). Conse-

quently, items of different types are interspersed throughout the warehouse, promoting

a more even distribution and potentially reducing travel distances for agents during the

retrieval process.

Conversely, the traditionally organized storage method adopts a structured ap-

proach, designating specific rectangular storage areas within the warehouse grid for

each item type. As depicted in Figure 3.2(b), distinct regions of the grid are allocated to

accommodate items of different types(colors): blue items occupy the grid cells within

the range (0-14, 0-18), purple items are stored in cells (0-14, 19-35), green items oc-

cupy cells (16-29, 0-18), and red items are positioned in cells (16-29, 19-35). This

method facilitates efficient item retrieval by grouping similar items together, thereby

reducing the search time and streamlining the order picking process.
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The CBS method incorporates considerations of demand variability and prox-

imity to stations, and implements a non-uniform distribution strategy, wherein items

with higher demand are strategically positioned closer to the stations for expedited re-

trieval. To implement this bias in item selection probability, an additional setting was

introduced, wherein each of the four types of racks possesses a distinct ”bias” or prob-

ability of being selected as a target.

The biased demand has its basis in ABC analysis following a Pareto’s Distribu-

tion, also known as the 80-20 rule where 80 percent of outcomes are typically attributed

to 20 percent of causes, reflecting the uneven distribution of demand across different

item types (Farrington and Lysons, 2012).

rn−k =
√

r2
n−k+1−P(X = x)r2

n (3.1)

The distribution has a scale parameter xm = 1 and shape parameter α = 1 which

govern the distribution’s behavior. The storage area for each item type is partitioned

by the Pareto’s Distribution, with the bounds of each storage area calculated using the

following equation, where rn denotes the radius of the largest storage area considering

the total number of item varieties n. P(X = x) is the probability density function of

the Pareto’s distribution, and rn−k represents the kth item type. By mapping the stor-

age areas based on the Manhattan distance from the center of the grid, the resulting

distribution yields diamond-shaped storage areas, as depicted in Figure 3.2(c).

While different storage strategies were proposed by Petersen, the diagonal storage

method was selected, as drawing a boundary from a point with a fixed Manhattan

distance results in a diamond or diagonal shape (Petersen et al., 2004). In his literature,

within-aisle storage and rectangular storage performed better than diagonal storage,

however, in consideration of different aisle and geometry and routing strategy, diagonal

storage seemed more practical pertaining to this simulation as Petersen’s configuration

employs long continuous aisles, whereas this research place the racks in clusters with

more passages.

Finally, the effect of different item varieties were explored, because the choice

between random storage and CBS storage depends heavily on the specific characteris-

tics of the business model and the diversity of product offerings. Companies such as

Amazon.com Inc., renowned for their extensive product catalog, often opt for random

storage due to its adaptability to diverse item types and unpredictable demand patterns.

Conversely, businesses with fewer item varieties and more predictable demand may

find CBS storage more suitable, as it allows for strategic placement of high-demand
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(a) (b) (c)

Figure 3.1: Capture of a picking operation with 50 agents and traditionally organized

racks. (a) Location of agents on the field. Light blue represent the storage racks and the

yellow dots represent the agents. (b) Visualization of congestion map grid. Congestion

identified by the convolution filter are marked by the corresponding color to the kernel

sizes, light blue (2), yellow(3), and red color(5).

items closer to stations, thereby optimizing order picking efficiency.

To investigate the effects of varying item varieties, simulations were conducted

with the number of agents fixed at 20, with item types varying 2, 3, 6, and 12, and

additional 30 and 60 item types for the random and traditional storage, and CBS storage

was excluded from higher item variety due to the storage boundaries becoming too fine

and dense, the difference between a boundary radius rn−k+1 and its subsequent radius

rn−k becomes too small and fails to create sufficient area for item storage.

Ultimately, the findings of these investigations contribute to the development of

best congestion avoiding behaviors in different business environments and allows for

a comprehensive understanding of the trade-offs and considerations within the ware-

house management.

3.1.2 Path Planning

The decision to employ a locally repairing path search rather than searching for op-

timal paths with the least intersection is rooted in practical considerations regarding

computational complexity and efficiency. Searching for paths with the least intersec-

tion, while conceptually appealing, presents significant computational challenges.

This problem is akin to the multi-commodity flow problem, which is known to

be NP-complete. NP-complete problems are notoriously difficult to solve optimally,

often requiring exponential time to find the optimal solution. Although there exist ef-
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ficient approximation algorithms and heuristics for solving NP-complete problems in

polynomial time, selecting the optimal approach introduces another layer of complex-

ity (Goldberg et al., 1998; Robinson, 1949; Kizilateş and Nuriyeva, 2013; Johnson and

McGeoch, 2008).

The task of identifying the most suitable algorithm or heuristic becomes a chal-

lenging optimization problem in itself, requiring careful consideration of trade-offs

between solution quality and computational efficiency. Therefore, a much simpler

method called Local Repair A* (LRA*) was devised involving re-routing an agent

consequently to a collision by avoid the visited cell, expected to decrease the number

of collision and ultimately remedy congestion (Hart et al., 1968; Ma et al., 2018).

This method would effectively prevent agents from repeatedly re-attempting to

enter a congested area and facilitate vacation of paths for agents in higher priority.

This method will not only be tested against its default counterpart without such feature,

but further congestion avoidance algorithms will implement this re-routing technique

along with their novel congestion detection and avoidance routing heuristics.

The agent density-based path planning method is a heuristic that leverages a con-

volution filter to calculate the local density of agents within the warehouse grid. This

technique involves several key steps to effectively identify and navigate around con-

gested areas.

The congestion detection and avoidance process begins with the initialization of a

”congestion map,” an empty grid matching the warehouse environment’s dimensions.

This map serves as the foundation for tracking and responding to congestion patterns

throughout the operational space.

To detect congestion at different scales, the system employs multiple kernel sizes

(2, 3, and 5) along with corresponding thresholds (1, 3, and 4). These parameters en-

able the system to identify and respond to varying levels of congestion density and

distribution across the warehouse grid.

The core of the detection mechanism lies in its convolution operation. For each

kernel size, the system creates a square kernel with ones in all positions except the

center, which remains zero. This kernel is then convolved with the grid containing

agent locations, following the equation:

Convolution Result[i, j] =
k

∑
m=−k

k

∑
n=−k

Agent Location Grid[i−m, j−n]×Kernel[m,n]

(3.2)
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Where Convolution Result[i, j] represents the output grid value at position [i,

j], Agent Location Grid[i−m, j− n] refers to the input grid value after offset [m,n],

Kernel[m,n] denotes the kernel value at position [m,n], and k is the floor of Kernel Size
2 .

The convolution operation calculates local agent density across the warehouse

grid. When this density exceeds the kernel’s corresponding threshold, the system marks

congestion on the congestion map. Finally, these marked cells are assigned higher

traversal costs, prompting the A* algorithm to construct alternative paths avoiding con-

gested areas.

The path density-based path planning method extends the congestion detection

principle to account for the density of agents’ paths within the warehouse grid. This

approach aims to identify and avoid areas where multiple agents’ paths overlap exces-

sively, signaling potential congestion hotspots.

Similar to the agent density-based method, the path density-based approach ini-

tializes a congestion map to track areas of high path density. However, instead of mark-

ing grid cells based on the presence of individual agents using a convolutional filter,

the congestion map is updated to reflect overlapping paths of multiple agents.

The congestion avoidance process begins with the creation of a congestion map

that mirrors the simulation field’s dimensions. As agents plan their movements, their

intended paths are continuously recorded and overlaid onto this map, with each grid

cell along an agent’s path being marked accordingly.

The system then analyzes the congestion map to identify potential traffic bottle-

necks by scanning for areas where multiple paths converge. This analysis focuses on

detecting grid cells where the density of planned paths exceeds a predefined threshold,

indicating potential congestion points. When such high-density areas are identified, the

corresponding grid cells are marked as congested, highlighting zones where multiple

agents’ paths intersect and congestion is likely to occur.

During path planning, the A* algorithm incorporates this congestion informa-

tion by assigning higher traversal costs to marked grid cells. This cost adjustment

encourages agents to seek alternative routes around congested areas while maintain-

ing efficient paths to their destinations. This dynamic path planning approach enables

proactive congestion avoidance while preserving overall system efficiency.

To mitigate the risk of agents re-entering congested areas after escaping from

them, an avoidance mechanism is implemented, where, upon successfully navigating

away from a congested region, agents mark the grid where congestion escape was acti-

vated, thereby avoiding its re-entry during path planning. By incorporating this avoid-
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(a) (b) (c)

Figure 3.2: Simulation running with 15 agents. Racks of different types are distinguished

by their color. (a) Racks are randomly dispersed across the field. (b) Racks of the same

kind are organized in their designated storage area. (c) Racks are organized by Man-

hattan distances from the stations.

ance mechanism, agents are less likely to backtrack into congested areas they previ-

ously escaped from, enhancing overall navigation efficiency and reducing the likeli-

hood of prolonged delays.

In instances where an alternate path cannot be found due to the absence of feasible

detours, the reconstructed path may temporarily ignore the avoidance mechanism to

ensure that agents continue to make progress towards their goals. On the other hand,

the path planning hueristics are based on A* Search method, with different Density-

Based methods applying weights to nodes for congestion avoidance.

To further inspect how the proposed Agent Density Based Path Planning per-

forms, newer and improved path planning called Windowed Hierarchical Coopera-

tive A* (WHCA*) was implemented into the simulation and its collision avoiding and

throughput increasing performances will be evaluated (Ma, 2021).

In this method, the agents cooperate, do not plan the entire path from start to

finish, but plans the path within a set window. This algorithm is hierarchical, meaning

that it plans a rough path then elaborates upon it (Silver, 2021).

3.1.3 Simulation Environment

The research methodology employed in this study involves the utilization of a simu-

lation framework designed to replicate the intricate dynamics of order picking within

a warehouse environment. This simulation model encompasses a detailed representa-

tion of the physical layout, comprising a grid measuring 29 units horizontally and 32
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units vertically. Within this grid, the warehouse space is subdivided into 60 clusters,

each consisting of 2 by 3 cells, mirroring the spatial configuration commonly observed

in contemporary warehousing systems, as exemplified by the organizational structure

employed by industry giant Amazon.com, Inc. (Roser, 2021).

In instances where agents become trapped between obstructing entities or encoun-

ters an agent with higher priority travelling in opposite direction, the agent retreats to

its previous grid cell. If the previous cell is occupied by another agent, the occupying

agent is also signalled to retreat to its previous location.

Furthermore, to preemptively address potential unanticipated congestion scenar-

ios, each agent is equipped with an internal counter mechanism, tracking the dura-

tion of grid position stagnation. Upon reaching a predefined threshold, agents au-

tonomously trigger congestion escape protocols, thereby proactively resolving con-

gestion and restoring the fluidity of operations.

Each agent keeps an individual map of the field, and its own path represented

by a list of continuous grid indices on the map. The agents have three picking states

from 1 to 3, where the aforementioned ”priority” of traversal in collision correspond,

with higher picking states having higher priority, The first picking state carrying a rack

from a station to the closest empty cell, the second state moving to the target rack after

returning a rack to an empty cell, and the third state carrying the target rack to the

station.

Circulating through these three states, the agents essentially conduct a dual-command

operation, where agents are instructed to return an item to its storage, while also or-

dered to retrieve an item to the P/D station (Pohl et al., 2009). The agents are provided

with a path constructed by the central coordinator to their destination whenever the

agent state changes.

The paths are discovered using A* algorithm, and is designed to search for a path

that has the shortest Manhattan (rectilinear) distance to the destination. Assuming that

the agents are two-wheeled differential drive Automated Guided Vehicles (AGV)s, the

agents move in a constant speed in a straight path, and the agents make a stationary

pivot turn when changing its direction.

Each item within the warehouse is categorized by one of four integers between 1

and 4, which correspond to their respective color: red, blue, green, and purple. A list

maintains the status of each cell within the warehouse grid, with 0 and 1 to denote the

vacancy of the cell. As a results, agents may identify empty cells to place their item.

Of three main metrics used to evaluate the effectiveness of a path planning method,
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Heat maps representing the agent activity (a, b, c) and congestion (d, e, f)

across the field with no path planning. (a,d) Random Storage. (b,e) Traditionally Orga-

nized Storage. (c,f) CBS Storage.

the volume represents the number of items processed through the P/D points within the

predefined duration of the simulation. Collision and congestion are also the number of

total collision during the run of simulation, defined by an agent’s next step blocked

by another, and congestion defined by an agent determining that its path is completely

blocked towards the destination and its escape algorithm is triggered. This congestion

count is also recorded and used to evaluated the effectiveness of rerouting and bottle-

neck prevention.

3.2 Results

3.2.1 Random Storage

The comparison of completed picking operation volumes in random storage revealed

notable differences in performance among the path planning methods, particularly with

respect to the agent density-based approach. Despite some overlap in the standard de-

viations of the completed picking volumes, the boxplot and multi-comparison analysis

from the ANOVA in Figure 3.5 provide compelling evidence of the superior perfor-
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Heat maps representing the agent activity (a, b, c) and congestion (d, e, f)

across the field with no path planning. (a,d) Random Storage. (b,e) Traditionally Orga-

nized Storage. (c,f) CBS Storage.

(a) (b)

Figure 3.5: ANOVA of total volumes for random storage configuration. (a) Uniform item

distribution (b) Biased item distributions.

mance of the agent density-based path planning method over having no implementa-

tion, path density-based, and the WHCA* algorithm.

However, LRA* seems to perform as good as the agent density-based method,

and it is perhaps due to how the agent density based method operates. Because the
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(a) (b)

Figure 3.6: ANOVA of total collisions for random storage configuration. (a) Uniform item

distribution (b) Biased item distributions.

congestion detection by convolutional filter is triggered by a collision with another

agent, it effectively performs similarly to the LRA*, finding a new path that avoids

the location of collision. Unlike the LRA*, the agent based method also accounts for

congestion and other agents’ density across the map, however the effectiveness of this

key difference seems to be diminished by the intrinsic nature of the random storage

method that minimizes congestion.

Overall, the findings emphasize the significant influence of path planning methods

on completed picking volumes in random storage scenarios. Conversely, the decreased

performance of the WHCA* method highlights the need for further investigation into

its limitations and potential refinements to enhance its efficacy in real-world warehouse

environments.

Furthermore, the comparison between uniform and biased demands for items re-

vealed no noticeable deviance of picking performances and exhibited similar increase

in performance nor resulted in changes in relative performances among the different

path planning methods except for in path based reconstruction method.

The comparison of collision and congestion counts across different settings re-

vealed significant improvements with the agent density-based path planning method.

The effectiveness of the agent density-based method in alleviating bottlenecks and

spreading out agent activity is particularly noteworthy and can be seen in Figure 3.6

and 3.7. Regardless of the biased or uniform demand of items the performances of the

path planning methods seem consistent.

Though the WHCA* method exhibited the lowest number of collision and conges-
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(a) (b)

Figure 3.7: ANOVA of total congestion counts for random storage configuration. (a)

Uniform item distribution (b) Biased item distributions.

Table 3.1: Mean Collision, Congestion, and Volume counts for each path planning algo-

rithm when randomly stored with uniform item demands.

Collision Congestion Volume

None 334.6(±22.46) 60.74(±9.054) 253.9(±8.784)

Agent Density 236.9(±7.520) 37.22(±1.257) 274.1(±6.797)

Path Density 301.3(±15.64) 53.50(±2.807) 259.9(±8.320)

LRA* (Stout, 1998) 272.3(±6.235) 48.15(±1.140) 270.0(±6.150)

WHCA* (Silver, 2021) 220.0(±8.167) 40.28(±1.837) 198.2(±4.854)

Table 3.2: Mean Collision, Congestion, and Volume counts for each path planning algo-

rithm when randomly stored with biased item demands.

Collision Congestion Volume

None 327.7(±13.24) 59.24(±2.341) 254.8(±6.357)

Agent Density 237.3(±8.172) 37.33(±1.766) 272.9(±6.158)

Path Density 306.7(±29.34) 56.34(±12.44) 257.3(±10.14)

LRA* (Stout, 1998) 270.8(±7.702) 47.65(±1.562) 268.7(±5.724)

WHCA* (Silver, 2021) 220.5(±8.219) 40.56(±1.630) 200.1(±4.841)

tion counts among all algorithms, comparing this results to the previous findings about

total volume of items processed, the improved collision avoidance do not seem to trans-

late into increased throughput. While LRA* showed improvements in both throughput
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increase and collision/congestion mitigation, the effects were not as dramatic as the

agent density based method.

Interestingly, though the agent based method and the WHCA* exhibited similar

reduction in both collision and congestion, the agent density method seems to result in

slightly less congestion despite having insignificantly greater collision count, as shown

in Figure 3.6 and 3.7.

All in all, the path density based method did not seem to yield impressive per-

formance improvement over the LRA*. As mentioned earlier, the density based algo-

rithms share similar operation with the LRA*, searching for a new path upon collision,

but with additional rules. While the agent density based method demonstrated superior

performance than the LRA*, the path density method did not. Across all performance

evaluation metrics, it performed worse, and the reason could be conjectured that avoid-

ing areas with high path density induced additional collisions and congestion, worsen-

ing the total throughput of items.

So far, the findings ephasize the complex tradeoffs and interactions in path plan-

ning methods across different storage methods and item variation. Certain methods

such as WHCA* method may reduce collision and congestion to a meaningful degree,

however, sacrifices the picking performance. In contrast, LRA* method finds a balance

in lowering congestion while maintaining or in some storage methods, surpassing the

picking performance of the default non-implementation.

It seems that the agent density based path planning does not have such com-

promises between the picking performance and the congestion mitigation, yielding

improvements in all aspects consistently in any storage configuration when the items

have uniform demands.

3.2.2 Traditional Storage

The overall trend of the picked volume, collision, and congestion counts seem consis-

tent to the uniform distribution. At a glance, The path density based method matches

having no implementation as can be seen from Figure 3.8, and this is similar to the

observation in the uniform case. The observations of the picked volume in biased dis-

tribution concur with the uniform counterpart, with agent density method performing

well.

Furthermore, the differences in picked volume from the default no-reconstruction

and the implementations are smaller in the Class Based Storage, and the differences are

39



Chapter 3. Gait-Based Human Identification Using iPhone Video and Skeleton Analysis

(a) (b)

Figure 3.8: ANOVA of total volumes for traditional storage configuration. (a) Uniform

item distribution (b) Biased item distributions.

(a) (b)

￣

Figure 3.9: ANOVA of total collisions for traditional storage configuration. (a) Uniform

item distribution (b) Biased item distributions.

the greatest in the traditionally organized method. It can be extruded that in tradition-

ally organized method induce congestion at the center of the map where different types

of items interface, and this static and constant bottlenecks amplify the effectiveness of

constructing circumventing routes.

In evaluation of the uniform and the biased setting, biased item demands induced

discrepency between the LRA* and agent density based method in total picked vol-

ume. This is perhaps due to the biased setting exacerbating bottlenecks by leading the

pickers to a fixed storage area for high demand items.

Upon further investigation of collision and congestion counts in different scenar-
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(a) (b)

Figure 3.10: ANOVA of total congestion counts for traditional storage configuration. (a)

Uniform item distribution (b) Biased item distributions.

Table 3.3: Mean Collision, Congestion, and Volume counts for each path planning algo-

rithm when traditionally stored with uniform item demands.

Collision Congestion Volume

None 354.6(±19.69) 60.42(±3.014) 257.6(±8.484)

Agent Density 249.4(±7.021) 37.87(±1.244) 277.6(±5.860)

Path Density 314.5(±15.26) 54.26(±2.475) 262.8(±7.013)

LRA* (Stout, 1998) 281.4(±7.514) 48.33(±1.151) 276.0(±6.117)

WHCA* (Silver, 2021) 228.3(±8.091) 41.39(±2.235) 201.7(±5.287)

Table 3.4: Mean Collision, Congestion, and Volume counts for each path planning algo-

rithm when traditionally stored with biased item demands.

Collision Congestion Volume

None 348.8(±17.12) 60.50(±2.559) 259.2(±7.683)

Agent Density 255.0(±6.619) 38.66(±1.408) 279.9(±4.977)

Path Density 315.0(±14.90) 54.90(±2.559) 266.5(±6.317)

LRA* (Stout, 1998) 292.5(±7.581) 49.37(±1.475) 273.7(±6.038)

WHCA* (Silver, 2021) 267.6(±12.37) 47.93(±2.692) 204.2(±5.323)

ios, all path planning method made meaningful effort in reduction. The WHCA* once

again demonstrated superior reduction of collision counts in exchange for the picking

performance.
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Table 3.5: Mean Collision, Congestion, and Volume counts for each path planning algo-

rithm when stored according to CBS with uniform item demands.

Collision Congestion Volume

None 308.2(±46.48) 59.62(±16.04) 273.9(±10.90)

Agent Density 225.0(±13.89) 36.60(±7.878) 289.7(±4.940)

Path Density 275.2(±15.92) 49.83(±5.029) 271.1(±5.578)

LRA* (Stout, 1998) 255.7(±15.59) 46.44(±9.482) 287.9(±5.079)

WHCA* (Silver, 2021) 237.6(±58.62) 48.62(±25.69) 213.4(±4.373)

However, unlike the random storage method, Figure 3.9 show that the collision

reduction was outperformed by the agent density based method once the item demands

possessed bias. As seen from Figure 3.4(b) and e, picker activities are dense at a certain

location, and congestion occur as a consequence. While WHCA* is effective, the agent

density based method’s convolutional filter considers other agents’ activity across the

map, thus creating better circumventing paths.

Additionally, the congestion mitigation of the WHCA* suffer, and its effective-

ness closely follows LRA* in this aspect. While, the path density based method was

expected to perform better with a somewhat predictable and static bottleneck, it exhib-

ited collision and congestion reduction, but, the improvements do not seem to be in a

meaningful degree for increasing picking throughput.

As demonstrated in Figure 3.11(a), the fluctuation nature of the congestion for-

mation and resolution when there are no implementations to prevent the formation of

bottlenecks in a traditionally configured storage. Such geometry is especially prone

to formation of congestion, highlighting the importance of not only the geometry, but

also the preventative algorithms.

In contrast, Figure 3.11(b) demonstrates the effectiveness of its traffic managing

ability, where the duration of non-movement is uniformly managed compared to the

other three plots.

3.2.3 Class Based Storage

As depicted in Figure 3.12, the introduction of bias into item demands appears to have

minimal impact on the dynamics between different path planning methods. In both

cases, the picked volume follow a similar trend as the previous random case, where the

path density method have no meaningful change in mean completed volume as hav-
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(a)

(b)

Figure 3.11: Duration of non-movement of picking agents over time. The scatter plots

are binned into intervals, then histograms were drawn with respect to Update Cycle and

Duration. (a) No path planning. (b) Agent density based path planning.

ing no implementation, and agent density based and LRA* having improved picking

volumes.

The WHCA* also underperformed in picking operation. A more in-depth statisti-

cal analysis, as illustrated in Figure 3.13 and 3.14, reveals intriguing insights into the

performance of these methods. Specifically, when no bias was introduced in the Class-

Based Storage (CBS) method, the WHCA* showed wider variation in its total number

of collisions.

Such behavior is also observed when investigating the total number of congestion,
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(a) (b)

Figure 3.12: ANOVA of total volumes for CBS configuration. (a) Uniform item distribution

(b) Biased item distributions.

(a) (b)

Figure 3.13: ANOVA of total collisions for CBS configuration. (a) Uniform item distribu-

tion (b) Biased item distributions.

Table 3.6: Mean Collision, Congestion, and Volume counts for each path planning algo-

rithm when stored according to CBS with biased item demands.

Collision Congestion Volume

None 288.0(±12.03) 54.19(±5.020) 271.9(±6.018)

Agent Density 215.8(±20.62) 36.33(±11.82) 284.2(±5.748)

Path Density 262.1(±16.97) 48.31(±4.779) 268.1(±6.964)

LRA* (Stout, 1998) 241.9(±8.443) 43.58(±2.554) 284.0(±3.921)

WHCA* (Silver, 2021) 213.0(±9.633) 39.27(±3.611) 199.4(±6.086)

44



Chapter 3. Gait-Based Human Identification Using iPhone Video and Skeleton Analysis

(a) (b)

Figure 3.14: ANOVA of total congestion counts for CBS configuration. (a) Uniform item

distribution (b) Biased item distributions.

also having a wide variety that translated from the collision counts, and it seems that the

particular geometry of the product placements influence WHCA*, and the introduction

of bias limited the agents’ picking activities near the p/d points and away from potential

bottlenecks within the storage space.

Because WHCA* also performed the worst in previous experiments pertaining

to the picked volumes, it is unclear as if the collision and congestion performance

impacted the picking operation. On the other hand, it is noteworthy that the agent-

based path planning method emerged as the most statistically significant in terms of

enhancing total picked volume, as indicated by the results of comparisons in Figure

3.12.

In the subsequent analysis, collision counts resulting from various path planning

methods were meticulously examined, as depicted in Figure 3.13 and 3.14. Figure 3.13

and 3.14 unveils a noteworthy trend: all path plannings yielded a decrease in collision

counts when demands were uniform across items.

Notably, the LRA* and the path density-based method exhibited comparable per-

formance, with no significant discrepancy between them. Meanwhile, the agent density-

based method outperformed every other method, consistently achieving lower collision

counts. Conversely, the path-based method exhibited under-performance compared to

the previous scenario involving biased demand distributions. This divergence in perfor-

mance can be attributed to the paths converging towards storage areas housing highly

demanded items, thereby limiting freedom of movement near stations and reducing the

availability of alternative routes.
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(a) (b)

(c) (d)

Figure 3.15: Volume plotted against Congestion and Collision plotted against Collision

to discover the relationship (A, C) uniform distribution, (B, D) biased distribution.

Consequently, the path-based method proved ineffective, resembling a scenario

with no implementation at all. These findings underscore the intricate interplay be-

tween demand distributions, path planning methods, and operational dynamics within

warehouse environments.

By elucidating the performance nuances of different path planning strategies un-

der varying demand scenarios, this analysis provides valuable insights for optimizing

collision mitigation efforts and enhancing operational efficiency in Class-Based Stor-

age systems.
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3.3 Summary of Chapter 3

This chapter presented and evaluated a novel Agent-Density Based Path Finding al-

gorithm that uses convolutional filters to detect and respond to congestion in ware-

house environments. The evaluation demonstrated that the agent density-based method

achieved balanced improvements across all performance metrics compared to other

approaches, reducing collisions by 29.2-percent compared to no implementation while

simultaneously increasing throughput by 8-percent. The method showed notably con-

sistent performance with lower variance in both collision and completion counts, main-

taining its effectiveness across different storage configurations and demand patterns.

Performance comparisons with alternative methods revealed distinct trade-offs:

while WHCA* achieved the lowest collision rates, this came at a significant cost

to throughput performance. LRA* showed moderate improvements in both metrics

but not as substantial as the agent density approach, while the path density based

method showed minimal improvements over baseline. These comparisons highlighted

the agent density method’s unique ability to improve multiple metrics simultaneously

without significant trade-offs.

The agent density approach demonstrated robust performance across all storage

types, including random, traditional, and CBS configurations. It proved particularly ef-

fective with traditional storage where static bottlenecks typically occur, and maintained

its performance even with biased item demands. Notably, the method showed remark-

able resilience to increased agent counts compared to path-based methods, suggesting

superior scalability in high-density operations.

The success of the agent density approach can be attributed to several key factors:

its consideration of agent distribution across the entire warehouse space, ability to iden-

tify and respond to emerging congestion patterns, and effective balance between path

optimization and congestion avoidance. The implementation demonstrated important

practical advantages, with the convolutional filter approach providing computationally

efficient congestion detection while requiring minimal parameter tuning compared to

alternative approaches.

This research establishes the agent density-based method as a promising approach

for warehouse robotics, offering consistent performance improvements while main-

taining operational stability across diverse scenarios. The method’s balanced optimiza-

tion of both safety and efficiency metrics, coupled with its adaptability to different

storage strategies, suggests strong potential for practical implementation in real-world
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warehouse automation systems. Its successful integration with existing A* pathfinding

frameworks and robust performance across various warehouse configurations further

supports its viability for industrial applications.
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Chapter 4

Adaptive Stochastic Class Based

Storage

In addition to path finding algorithms, this chapter further explores the effect of stor-

age placement to decrease the travel distances of multiple picking agents and also the

throughput of item picking and storage, collision counts, and congestion occurrences.

A novel storage strategy is proposed with adaptive storage placement, which utilizes a

queue to observe recent picking activities and modulate the distance of storage location

based on the determined demands of different types of items.

The aim of this method is to determine the demands of items in a dynamic en-

vironment and place high demand items closer and low demand items farther from

the P/D points to decrease the overall travel distances in real time. Furthermore, this

method aims to introduce stochastic behaviors by randomly storing items within the

storage area to decrease the travel distances in spontaneous cases where low demand

items are needed.

In evaluating the performance of the proposed storage policy, its performance

will be compared with other methods in metrics such as throughput of items, collision

counts, congestion occurrences, and achieved storage distances’ gain. As a result, the

proposed method resulted in increased performance in throughput and mitigation of

collision and congestion against other storage methods, especially when the demands

and input of different item types varied. It also demonstrated meaningful modulation

of item storage location in response to changing demands. This chapter’s contents are

available on arXiv and is in preparation for submission to International Journal of

Physical Distribution & Logistics Management (Ryu et al., 2024a).
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4.1 Method

The simulation comprises four distinct storage modes designed to operate under differ-

ent turnover rate configurations. The first storage mode is the random storage method,

similar to the system utilized by Amazon Inc. In this mode, picking agents place items

in the nearest available spot without regard to their class or turnover rate, resulting in

a random distribution of articles.

The second mode is a fixed Class-Based Storage (CBS) system, where storage

areas for each class are predetermined. Within these designated areas, picking agents

choose the closest available spot for item placement. The third method introduces a

predetermined CBS system that incorporates probabilities based on a normal distribu-

tion (N-CBS). This mode aims to balance the storage distribution more effectively by

leveraging statistical models.

The final method, which is the primary focus of this research, is termed Adaptive

Stochastic Class-Based Storage (AS-CBS). This approach uses a queue to dynami-

cally assess turnover rates and adjust item storage distances accordingly. In AS-CBS,

item placement follows a normal distribution with its mean determined by the storage

distance, and the variation is influenced by the queue capacity. This system records

the flow of articles into the warehouse, updating the queue with the number of items

in each article class. These counts are then used to determine how turnover rates are

distributed, subsequently calculating the mean storage distance for each class of items.

At the initial stage, the queue is empty, leading to a broad standard deviation and a

mean placed at the midpoint between the P/D station and the farthest Manhattan point

in the warehouse. As the queue fills up, the variation narrows, and the ratio of the size

of each class relative to the total items recorded in the queue is used to calculate the

mean, or the center, of the normal distribution for placement. The determined normal

distribution is then used to randomly select a storage location. If the selected location is

unavailable, the nearest empty spot to the initially selected location is chosen instead.

The mean of the distribution is determined by the proportion of the item in the queue.

Pi =
l
2
+

di

max(|d1|, |d2|, |d3|, |d4|)
· (0.45lmax) (4.1)

di =
ci

qn
− 1

4
(4.2)

Building upon the above equation, the equation for obtaining the mean distance

Pi for a class i from the P/D station was constructed, where lmax denotes the farthest
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Manhattan distance from the P/D station and ci denotes the number of items in class

i and qn is the size of the queue. di is the deviation of the proportion from mean, cal-

culated by 4.2, and max(|d1|, |d2|, |d3|, |d4|) is the maximum absolute deviation among

all points. .45lmax is the scaling factor to ensure points stay within the line bounds.

si = 1+(lmax−1) · (1−
|N · ci

qn
−1|

max(1,N · ci
qn
−1,1−N · ci

qn
)
) (4.3)

Using equation 4.1, the mean for placing the item is obtained and the standard de-

viation for the normal distribution is calculated by 4.3. With N denoting the total num-

ber of classes, the deviation si approaches lmax as the number of items within a queue

becomes proportionate, and approaches 1 vice versa. This ensures that as the demands

become more uniform and balanced, the normal distribution’s stochastic placement

becomes wider across the storage space to behave more like a random storage.

On the other hand, if demands are polarized, the separation of storage space be-

comes stricter due to the narrow distribution. This enables the AS-CBS to not only

place the items by demand, but also adapt so that the probabilistic travel distance re-

duction expected from random storage may occur.

The turn over rate configurations are divided into three, with the turn over rates for

each class are uniform, Pareto’s distribution, and Pareto’s distribution with a reversal.

Pareto’s distribution is commonly known as the ”80-20” rule where 80 percent of the

outcomes are due to the 20 percent of the causes. This distribution is commonly seen

in many observable phenomena, and it was used to describe the unequal turn over rates

for different classes of articles in this research (Farrington and Lysons, 2012).

In this configuration, the turn over rates are in descending order from the first

class to the last, following a Pareto curve, ultimately replicating the intended use case

situation of the CBS. It is expected that the random distribution is more effective of all

when the turn over rates are uniform, and the other three CBS-like methods effective

when the turn over rates follow a Pareto’s distribution. Finally, the third configuration

of the turn over rate is a Pareto’s distribution based method, but the turn over rates for

the classes change during the simulation. This setting reflects the dynamic nature of

product demands and potentially lifespan of perishable items. Ultimately, this setting

aims to discover the performance of the AS-CBS and how well it responds to the

changing turn over rate compared to other measures.

There are 20 identical picking agents in the environment, and they can move in

the four primary directions. The mapping system is based on a grid and the distances
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Algorithm 1 AS-CBS Storage Location Assignment

1: for Each incoming item i of type t ∈ {1,2,3,4} do
2: Add item type t to FIFO queue Q of size qn

3: if queue is full then
4: Remove oldest entry from Q

5: end if
6: Calculate counts ct for each type in Q

7: Calculate proportions propt =
ct
qn

8: Calculate deviations dt = propt− 1
4

9: for Each type t do
10: Calculate position Pt =

l
2 +

dt
max(|d1|,|d2|,|d3|,|d4|) · (0.45l)

11: Calculate normalized proportion npt = 4 · propt

12: Calculate deviation factor devt =
|npt−1|

max(1,npt−1,1−npt)

13: Calculate storage spread st = 1+(smax−1)(1−devt)

14: end for
15: Generate random offset r ∼N (0, st

3 ) . Normal distribution

16: Assign storage location Li = Pt + r

17: end for

are therefore calculated in Manhattan distances. When planning a path from the initial

position to an arbitrary point on the grid, A* is employed. A single grid can be occupied

by a single agent, thus collision and congestion may occur, thus a collision avoidance

measures are employed.

When an agent detect another agent occupying the adjacent grid cell it intended

to move to, it will wait until it is cleared. However, if the agents are head on, that is, the

intended moves are opposite, one of the agents will retreat to its previous position and

clear the way, and find a new path avoiding the location where the collision occurred to

its original destination. This simple collision avoidance measure proved to be effective

in the context of this research, significantly reducing the congestion and increasing the

picking performance across all settings.

To simulate a physical warehouse environment, a 29 by 32 grid was constructed

to map the storage locations and passages for picking agents’ navigation. each grid

cell is a 1 by 1 cell labeled either a storage ”rack” or a passage (van den Berg and

Gademann, 2000). At the four corners of the map ar P/D stations which the agents

retrieve and receive storage items. In the center area of the map, there are clusters of
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Figure 4.1: Simulation running with 20 agents in a randomly scattered storage. Racks of

different classes are distinguished by their color, and the agents are numbered with the

blue line indicating their path to the destination. Magenta marks the grid cell the agent.

storage racks of 3 by 2 dimension, totaling 60 clusters across the map. There are 360

available storage racks, and each rack can store one of four classes of item. Traditional

warehouses employ long shelves or long corridors to move along, however, Petersen

et al (2017) demonstrated that implementation of cross-aisles can reduce the travel

distances of picking agents (Petersen and Aase, 2017; Gue and Meller, 2009; Gue

et al., 2012; Meller and Gue, 2009; Hall, 1993).

A research showed that within-aisle configuration was the most effective for CBS,

however the research employed a single P/D station with long aisle configurations to

perform simulations, and as it can be seen from the configuration of this research, equal

Manhattan distances naturally produce a diagonal configuration; furthermore, multiple

P/D points and the prevalence of cross aisles in this research makes the diagonal config-

uration more suitable, and because of this, certain organizations such as Amazon Inc.

employ a similar strategy using cross aisles and clustered storage (Roodbergen and

de Koster, 2001; Roodbergen, 2001; Roodbergen and Vis, 2009; Roser, 2021; Eynan

and Rosenblatt, 1993).

On the other hand, because the agents can freely move in four adjacent cells, the

passages are inherently bidirectional, and though come routing strategies prefer uni-

directional passages to reduce congestion, a research suggest that bidirectional paths

may facilitate minimizing travel distances for picking agents and ultimately improve

throughput of the picking activity (Pohl et al., 2010; Hsueh, 2010; Han et al., 1987;

53



Chapter 4. Adaptive Stochastic Class Based Storage

Figure 4.2: Flowchart of a picking agent behavior.

Frazele and Sharp, 1989).

In opposition, having bidirectional passages pose potential risk of increased colli-

sions and congestion, thus a simple rerouting technique has been devised in response.

Figure 4.2 shows the operation of individual picking agents, and the individual

picking agent keep a list of grid coordinates to follow as a result of A* path con-

struction from its starting point to the destination point. This list contains the shortest

Manhattan path, however, if the next grid position the agent intends to travel to is oc-

cupied by another agent, the agent will pause until the intended grid cell of movement

is cleared (Stern et al., 2019).

Nevertheless, if both agents discover each other’s position as the desired grid cell

to travel to, i.e. if the agents intend to move in opposite directions to each other, one

of the agents will move to the adjacent cell available to move into. This is denoted as

”collision avoidance behavior,” and the agent who ”avoided” the collision will mark

the location where the collision occurred and construct an new shortest Manhattan

path to its original destination. If an agent does not find an adjacent cell available for

avoidance, it will signal an adjacent agent to activate an avoidance by changing its

intended cell to travel to in the opposite direction.

This behavior is named ”congestion avoidance” behavior. Counting the occur-

rences of these two behaviors is an important measure in determining the effectiveness

of the geometry of class based storage from the simulation settings, because although

54



Chapter 4. Adaptive Stochastic Class Based Storage

the shortened travel distances may reduce the theoretical travel paths, densely stored

items with high turn over rate can induce bottlenecks, elongating the actual duration of

picking operation.

Additionally, the throughput of the items is another important aspect of assessing

the effectiveness of the system, as the optimized geometry would yield shorter travel

distances, coupled with reduced collision to further expedite the picking agents travel

along the shortened paths.

During the picking operation,there are three different tasks that the agents may

perform. First is the storage of items from the P/D station to the storage area, second

is the travel to a nearest item that matches the requested article, and finally the third

is the retrieval of the requested item to the P/D station. Accordingly, having both the

storage and retrieval operation is analogous to dual-command operation used in actual

warehouse application due to their effectiveness (Pohl et al., 2009).

The four classes of items are enumerated from 1 to 4, and each are assigned

corresponding colors to visually differentiate. For class 1, blue is assigned, class 2,

orange, class 3, yellow, and finally class 4 is purple. In the default setting, the turn over

rates for each class follows the Pareto’s distribution, so that class 1 has the highest,

then decreases towards class 4. For the management of the storage cells, The storage

cells either contain one of the four classes of items, or is empty, and additional markers

are used to mark cells that are targeted by a picking agent to prevent duplicate orders

for the same cell.

Meanwhile, the cells can only contain one item, likewise, the picking agents repli-

cate the Kiva’s shelf lifting mobile robots, thus can load a single item at once. In real-

life operations of such robots, the shelves contain multiple items within, however, the

entire shelf is carried to the P/D station for an operator to pick the needed items from

it.

The simulation consists of loop operations performed to carry out calculations and

update the environment and variables, thus the duration of the simulation is counted by

the number of updates occurred, denoted by k, rather than a timer, which is sensitive

to the code and the hardware’s performance. The duration of the simulation is 120000

update cycles, and the aforementioned inversion of turn over rates occur at k = 60000.

To ensure consistent results and statistically sufficient samples for evaluation,

each combination of storage methods (random, Fixed CBS, N-CBS, and AS-CBS)

paired with turn over rate configuration (uniform, Pareto’s, Pareto’s inversion) will be

run 30 times. Overall, the simulation addresses the quintessential components of real
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(a) (b)

(c) (d)

Figure 4.3: Activity heat maps across storage methods (red: high, blue: low) under

uneven Pareto’s turnover rates. (a) Random. (b) Fixed CBS. (c) N-CBS. (d) AS-CBS.

life warehouses with simplicity to evaluate the performance of AS-CBS and other stor-

age strategies.

4.2 Results

The activities of the picking agents across the grid were recorded for each storage

method when the turn over rates for classes of items followed a fixed Pareto’s distribu-

tion throughout the simulation and revealed that the random storage method generally

had even activities across, with less activities near the center and the activities were

closer to the P/D stations as seen from Figure 4.3(a).

Conversely, the Fixed CBS method demonstrated a distinct pattern with height-

ened picking activities concentrated near the center of the storage area. This clustering

effect suggests that items were predominantly stored farther away from the P/D sta-
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(a) (b)

(c) (d)

Figure 4.4: Activity heat maps across storage methods (red: high, blue: low) under

dynamic Pareto’s turnover rates. (a) Random. (b) Fixed CBS. (c) N-CBS. (d) AS-CBS.

tions (Figure 4.3(b)), potentially resulting in longer travel distances for picking opera-

tions. The observed dispersion of activities in the Fixed CBS configuration highlights

the need for further investigation into its impact on operational efficiency and travel

distances within the warehouse environment, potentially resulting in longer travel dis-

tances for picking operations. The observed dispersion of activities in the Fixed CBS

configuration highlights the need for further investigation into its impact on operational

efficiency and travel distances within the warehouse environment.

Nonetheless, the case of turn over rates inverting midway through the simula-

tion was evaluated for picking agents’ activities. At a glance, Figure 4.3(a) and Figure

4.4(a)’s similarities in activities concentrated towards the P/D station indicate that ran-

dom storage method is possibly not influenced by the turn over rates.

Notwithstanding, Fixed CBS exhibited notable change in agents’ activities as can

be seen from Figure 4.4(b), where indications of increased activities near the farthest
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(a) (b) (c)

Figure 4.5: Simulation running with 20 agents in a different CBS strategies to fill up an

empty storage. (a) Fixed CBS. (b) N-CBS. (c) AS-CBS.

point from the P/D station is pronounced. Similarly, Figure 4.4(c) indicate increased

activity near the center of the map. In both Fixed CBS and N-CBS, the storage methods

follow a predetermined storage area or a distribution of storage area, thus their failure

to respond to the change in turn over rate potentially harmed their performances.

Regardless, the AS-CBS show little differences in between Figure 4.3(d) and Fig-

ure 4.4(d), presumably indicating its adaptiveness to changing turn over rates.

Initial tests were conducted to observe the behaviors of the different CBS strate-

gies when the turn over rates followed the Pareto’s distribution as shown in Figure 4.5.

The Fixed CBS configuration yielded a very organized storage, prioritizing filling up

the nearest cells in the corresponding class storage area. The N-CBS showed a more

disorganized behavior compared to the Fixed CBS, however, still showed the CBS’s

characteristics of storing high turn over rates near the P/D stations, and lastly, AS-CBS

showed a more random dispersion of classes across the storage area, but gradually

started to store high turn over classes near the P/D stations.

This phenomenon was somewhat expected due to the nature of the AS-CBS, the

adaptive nature of the queue based construction of normal distribution constitute the

necessity of a warm-up duration. While the queue fills up to its capacity, there are

not enough samples to meaningfully discriminate the proportions, leading to a wide

standard devation.

Consequently, such warm up time is dictated by the size of the queue as shown

in Equation 4.3, and smaller queue size may decrease the warm up, but it results in a

lower resolution to the underlying distribution of the turn over rates, hence making the

adaptiveness overly sensitive to changes and insufficient for capturing the underlying
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(a) (b)

Figure 4.6: AS-CBS queue over time during uneven distributed turn over rates, when

(a) the distribution is kept constant, (b) distribution is flipped mid-point.

(a) (b)

Figure 4.7: Box plots as a result of a one-way ANOVA of distances of each class from the

nearest P/D station for AS-CBS methods: (a) Uniform Demands. (b) Pareto’s Demands.

distribution to reflect upon the placement of the classes.

The contents of queue over time in the AS-CBS was recorded (Figure 4.6) to vi-

sualize how the proportion of classes changed over time when the turn over rates were

uneven. The queue seemed to reflect the demand changes sufficiently, accurately cap-

turing when the inversion of turn over rates occurred. The mean distances of the placed

items according to the Adaptive CBS method was evaluated to further investigate their

effectiveness in reflecting the turn over rates.

For the AS-CBS to be effective, the item placement needs to be modulated relative

to the demands, placing higher demand items nearer to the P/D points, meaning that

classes 1, 2, 3, and 4 needs to be in ascending order when plotting the average distances
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(a) (b)

Figure 4.8: Reorganizing behavior of Fixed CBS method. (a) Initial state. (b) Final state.

(a) (b)

Figure 4.9: Reorganizing behavior of N-CBS method. (a) Initial state. (b) Final state.

to the P/D. As a result, Figure 4.7 shows that the placement of items under AS-CBS

was modulated and corresponded to the predictions, having items of class 1 closest to

the P/D, followed by 2, and 3.

A notable case is class 4, having a seemingly shorter average distance from P/D

than class 3, and this is most likely due to the fact that the stochastic element played a

role, and that the lower demand of class 4 sporadically placed them close to P/D. Re-

gardless, AS-CBS also seem to perform similarly to random storage strategy when the

demands of item classes are uniform, each class having similar average distance from

P/D. In conclusion, analyzing the average placement distances of the different classes

under uniform and Pareto demands revealed that AS-CBS effectively discriminated the

different demands for each class and placed the items according to it.
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(a) (b)

Figure 4.10: Reorganizing behavior of AS-CBS method in Figure 4.6(b)’s simulation. (a)

Reorganization. (b) Reorganization after the demand flip.

The primary focus of this research was to investigate the reorganization behavior

of the Adaptive Stochastic Class-Based Storage (AS-CBS) method. Similarly, the reor-

ganization behaviors of the Fixed CBS and N-CBS methods were also examined, with

the initial state comprising randomly scattered classes across the storage area. Anal-

gous to filling up the empty storage area in Figure 4.5, the transition of the storage area

from an initial state of random scattering to a structured configuration was observed

for the Fixed CBS method.

Each class gradually formed distinct storage areas, resulting in a static organiza-

tion. In contrast, the N-CBS method displayed a less structured storage pattern, with

a more dispersed arrangement of classes throughout the storage area. In comparison,

the AS-CBS method exhibited a more dynamic and adaptive reorganization process.

Despite the initial wide variation in the normal distribution, resulting in diverse stor-

age geometries, the AS-CBS method consistently showcased a higher turnover rate of

items closer to the picking and delivery (P/D) stations.

Moreover, the AS-CBS method demonstrated adaptiveness in response to sudden

changes in turnover rate distributions. By dynamically adjusting the placement of items

based on real-time data, the AS-CBS method proved its capability to efficiently adapt

to varying demand patterns. As seen from Figure 4.10(b), the placement of different

classes were reflected when the demand shifted according to the queue in Figure 4.6(b).

Beyond these examinations, the measured performances were evaluated such as

the number of total items processed, number of total collisions, and number of to-

tal congestion occurred throughout the duration of the simulation. These evaluations
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(a) (b)

Figure 4.11: ANOVA comparison of processed volumes across storage types with uni-

form turnover rates: (a) Box plots. (b) Pairwise comparisons.

Table 4.1: Mean Volume and Standard Deviation for Different Storage Methods under

Various Demand Patterns

Uniform Pareto Invert Pareto

Random 3195.9(±106.17) 3158.1(±159.19) 3008.7(±205.75)

CBS (Petersen et al., 2004) 2898.1(±139.48) 2994.9(±86.72) 2614.2(±51.22)

N-CBS 3059.0(±34.73) 3076.4(±104.15) 2756.6(±72.11)

AS-CBS 3033.9(±41.60) 3139.6(±95.10) 2929.0(±109.03)

ultimately determine how the aforementioned reorganization benefitted the order pick-

ing operation. Due to the reorganization, shortened travel distances were expected that

would lead to faster picking operations, leading to the warehouse being able to treat

more orders for a given time.

Evaluating the total number of items processed by each storage method when

the turn over rates are uniform from Figure 4.11, the random storage method seems

to perform decently, because randomly scattered classes across the storage area could

decrease the travel distances since all classes of items have an equal probability of

being requested for storage and retrieval.

Moreover, AS-CBS was expected to behave in a similar manner to the random

storage method when the turn over rates are uniform due to the fact that all classes

will have the same proportion within the queue. On the flip side, the AS-CBS seems

to have a narrower minimum and maximum, as well as a narrower inter quartile range.

While the Fixed CBS method was not expected to perform well in this configuration, it
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(a) (b)

Figure 4.12: ANOVA comparison of processed volumes across storage types with

Pareto’s turnover rates: (a) Box plots. (b) Pairwise comparisons.

not only demonstrated overall lower mean processed number of items, it also showed

wide variation.

Remarkably, N-CBS was not expected to perform on par as the AS-CBS due to its

lack of adaptiveness, perhaps, the stochastic nature of storage contributed to shortening

travel distances by having certain degree of randomness in storage locations unlike the

rigid nature of the Fixed CBS. Moving onto the pair-wise comparison of the ANOVA

statistics, it was revealed that storage methods random storage, N-CBS, and AS-CBS

do not have a significant difference in mean number of total items processed, while the

Fixed CBS underperformed compared to all other methods.

Building upon the preceding observations, the investigation into turnover rates

following Pareto’s distribution revealed intriguing findings, particularly highlighting

the comparative performance of the Fixed CBS method. As illustrated in Figure 4.12(b)

similar trends to those observed in Figure 4.11(b), emerged, with random storage, N-

CBS, and AS-CBS displaying minimal differences in mean values.

This outcome was somewhat unexpected, as the Fixed CBS method was initially

anticipated to excel in this configuration. However, it failed to meet expectations, indi-

cating potential limitations in its adaptability to varying turnover rate distributions.

Moreover, while the random storage method exhibited substantial variability in

performance, as evidenced by the wide minimum and maximum differences and in-

terquartile ranges shown in Figure 4.12(a), the other three methods showcased more

consistent results.

To further probe the adaptability and robustness of the Adaptive Stochastic Class-
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(a) (b)

Figure 4.13: ANOVA comparison of processed volumes across storage types with dy-

namic Pareto’s turnover rates: (a) Box plots. (b) Pairwise comparisons.

Based Storage (AS-CBS) method in response to dynamic turnover rates, an inversion

of turnover rates was introduced. This inversion served as a means to simulate scenar-

ios where items with historically low turnover rates suddenly experience high demand,

thereby challenging the adaptiveness of storage methods.

As illustrated in Figure 4.13(b), the analysis revealed intriguing insights into the

comparative performance of the storage methods. Surprisingly, both the random stor-

age method and AS-CBS exhibited mean total items processed statistically comparable

to each other, outperforming both Fixed CBS and N-CBS. However, a notable dispar-

ity emerged when examining the variability of performance across the methods, as

depicted in Figure 4.13(a).

In particular, the random storage method displayed a significantly wider range of

performance variability, as evidenced by the stark contrast between the minimum and

maximum values and the interquartile range. This variability suggests that while the

random storage method and AS-CBS may yield similar mean performance outcomes,

the consistency and reliability of AS-CBS may surpass that of the random storage

method.

This finding underscores the importance of not only considering mean perfor-

mance metrics but also evaluating the stability and consistency of performance across

diverse scenarios.

As mentioned previously, another impoertant element that could potentially influ-

ence the performance of order picking is collision among agents and consequent con-

gestion. To address how different storage strategies influence the behaviors of agents,
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Table 4.2: Mean Collision Count and Standard Deviation for Different Storage Methods

under Various Demand Patterns

Uniform Pareto Invert Pareto

Random 14944(±1700.3) 15962(±1287.2) 18456(±3304.2)

CBS (Petersen et al., 2004) 17158(±3243.3) 15202(±944.8) 15972(±874.0)

N-CBS 14049(±523.6) 14435(±496.1) 15116(±332.0)

AS-CBS 13563(±604.5) 14119(±352.5) 15468(±918.2)

Table 4.3: Mean Congestion Count and Standard Deviation for Different Storage Meth-

ods under Various Demand Patterns

Uniform Pareto Invert Pareto

Random 2469.5(±391.97) 2584.2(±534.71) 3353.8(±1003.9)

CBS (Petersen et al., 2004) 2758.1(±942.01) 2264.2(±306.26) 2613.0(±197.9)

N-CBS 2001.9(±78.27) 2319.3(±114.50) 2381.6(±90.3)

AS-CBS 1890.2(±49.94) 2140.6(±110.58) 2315.4(±87.3)

ANOVA was performed under uniform turn over rates.

Similarly to the previous observations in total number of items processed, Fixed

CBS method yielded the most collision and congestion compared to other methods,

meanwhile N-CBS and AS-CBS resulted in narrow range of number of both collisions

and congestion as seen from Figure 4.14(a) and (c).

The previously observed underperformance of the Fixed CBS method might be

explained by the increased variance in collision and congestion counts, where the rigid

nature of the storage led to bottlenecks and points of slow downs.

In contrast to previous observations, where the Fixed CBS method exhibited the

widest variance in the number of collisions and congestion, the random storage method

demonstrated the widest variability in these metrics when turnover rates followed a

Pareto distribution. This notable variability may stem from the uneven distribution of

turnover rates, which can lead to increased travel distances and a heightened proba-

bility of collisions, particularly when items with low turnover rates are sporadically

requested.

As depicted in Figure 4.15(b), the implementation of AS-CBS resulted in a sta-

tistically significant decrease in the number of collisions, indicating its efficacy in mit-

igating collision incidents within the warehouse environment. However, intriguingly,
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(a) (b)

(c) (d)

Figure 4.14: ANOVA comparison of collision and congestion counts across storage

types with uniform turnover rates: (a) Collision box plots. (b) Collision pairwise com-

parisons. (c) Congestion box plots. (d) Congestion pairwise comparisons.

this reduction in collisions did not necessarily translate to a corresponding decrease in

congestion levels, as illustrated in Figure 4.15(d).

Similarly to the preceding case characterized by uneven turnover rates, the ran-

dom storage method exhibited significant variability in the number of collisions and

congestion, as evident from the data presented in Figure 4.16(a) and (c). Once again,

both the N-CBS and AS-CBS methods displayed notable effectiveness in managing

collision incidents and congestion levels.

However, a particularly intriguing observation emerged regarding the Fixed CBS

method. In contrast to its performance in the previous scenario, where it demonstrated

wide variance in collision and congestion counts (as depicted in Figure 4.15(a) and

(c)), the Fixed CBS method exhibited a reduction in variance in both metrics. This

unexpected finding may be attributed to the unique characteristics of the turnover rate
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(a) (b)

(c) (d)

Figure 4.15: ANOVA comparison of collision and congestion counts across storage

types with Pareto’s turnover rates: (a) Collision box plots. (b) Collision pairwise com-

parisons. (c) Congestion box plots. (d) Congestion pairwise comparisons.

inversion scenario. The inversion of turnover rates likely played a role in alleviating

bottlenecks within the warehouse environment.

Specifically, the increased demand for items located at the center of the map,

where the inverted turnover rate is highest, necessitates longer travel distances for pick-

ing agents. Consequently, this extended travel distance offers more alternative routes

and pathways in the event of congestion or collision incidents, thereby reducing the

likelihood of bottlenecks occurring.

4.3 Summary of Chapter 4

This chapter introduced and evaluated the Adaptive Stochastic Class-Based Storage

(AS-CBS) method, demonstrating its effectiveness in dynamically optimizing ware-
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(a) (b)

(c) (d)

Figure 4.16: ANOVA comparison of collision and congestion counts across storage

types with dynamic Pareto’s turnover rates: (a) Collision box plots. (b) Collision pair-

wise comparisons. (c) Congestion box plots. (d) Congestion pairwise comparisons.

house storage locations. The research revealed that AS-CBS successfully adapted stor-

age locations based on real-time demand patterns, demonstrating robust performance

across uniform, Pareto, and dynamic demand scenarios. The method achieved notably

consistent performance with lower variance compared to random storage, while main-

taining higher throughput during demand pattern changes compared to fixed methods.

Analysis of storage behavior showed that AS-CBS effectively modulated stor-

age distances based on item demand, displaying appropriate stochastic behavior when

demands were uniform and successfully reorganizing storage patterns in response to

demand changes. The queue-based demand estimation proved particularly effective

for adapting to changing patterns, providing a reliable mechanism for dynamic storage

optimization.

Comparative analysis revealed distinct characteristics among different storage
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methods. Random storage showed high variability but good mean performance, while

Fixed CBS surprisingly underperformed in dynamic scenarios despite its theoretical

advantages. N-CBS achieved intermediate performance but lacked adaptability, high-

lighting the unique advantage of AS-CBS in combining the benefits of both random

and structured storage approaches.

In terms of operational metrics, AS-CBS showed consistent improvement in col-

lision reduction across all demand patterns while achieving lower congestion counts

compared to other methods. The method maintained competitive processing volumes

while reducing disruptions, demonstrating superior performance particularly during

demand pattern changes. This balanced performance across multiple metrics distin-

guishes AS-CBS from other approaches.

Implementation considerations revealed several important factors. The queue size

significantly impacts adaptation speed and stability, and the method requires a warm-

up period for optimal performance. However, once established, AS-CBS successfully

balances deterministic and stochastic storage behaviors without requiring extensive pa-

rameter tuning. The research establishes AS-CBS as a viable approach for dynamic

warehouse environments, offering improved operational stability and adaptation to

changing demand patterns while maintaining competitive throughput performance.

The method’s ability to combine structured storage benefits with stochastic flexibility

makes it particularly suitable for modern warehouse operations with varying demand

patterns.
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Chapter 5

Robotic Application of Congestion

Detection and Adaptive Storage

Strategy

In this chapter, a robotic experiment is devised to investigate the feasibility of real life

adaptation of proposed path finding algorithm and adaptive storage policy proposed

in chapter 3 and 4. This experiment serves as a validation for core mechanics of the

proposed methods, while further exploring the discrepancies between simulation and

robotic implementation. It also aims to find underlying factors in observed results and

identify the challenges of implementation. The experiment also serves as a pioneering

endeavor to reveal the potential solutions to overcome the identified challenges.

The experiment aims to discover these by measuring the performance of the al-

gorithms in number of task completion, navigation completion, and collision counts.

As a result, the challenges of robotic implementation such as dependency on reliable

visual acquisition and communication have been discovered, and also the limitation of

scaled down experiment in measuring the performances. Regardless, meaningful evi-

dences of performance increase due to novel path finding and storage algorithm have

been discovered and this research serves as a first step to practical implementation in

real-world robotic fulfillment centers. This chapter’s contents are available on arXiv

and is in preparation for submission to Swarm and Evolutionary Computation (Ryu

et al., 2024b).
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Figure 5.1: Schematic of the experiment setup.

5.1 Method

A real-world simulation consisting of robots was conducted to discover the effective-

ness of the previously devised Agent Density Based Routing heuristics and Adaptive

Stochastic Class Based Storage (AS-CBS) (Ryu et al., 2024b; Ryu et al., 2024a). The

robots within the simulation obey the rules identical to the MATLAB simulation and

operate on a grid environment and but simplified and scaled.

The robots move in four cardinal directions, one step at a time, and a node shall

not quarter more than one unit. The robotic platform is a Zumo Shield V1.2 developed

by Pololu, which is controlled by an Arduino UNO R3 unit (Pololu Corporation, 2024;

Arduino LLC, 2024). This platform was chosen due to its compactness and integrated

sensor and motor control suite, and uniform nature of operation. This platform is lim-

ited by its inconsistency of movement due to the tracked design, thus requiring external

observer to correct its movement and location.

Because of its limited capabilities, virtual navigation is not applicable, but in-

stead a physical method to also correct the movement. Though many businesses are

now transitioning to virtual navigation such as SLAM (Simultaneous Localization and

Mapping) and dead-reckoning, tags and line followers are still widely in use. Zumo

Shield’s line following capabilities were utilized when devising a physical navigation

environment due to its course correcting nature to compensate for the inconsistent

movement by using the integrated infrared sensor array.
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To coordinate multiple Zumo Shields, each robot needed to be identified and re-

motely controlled. This feature was enabled by marking the robots with an ArUco

markers to determine their orientation and location on the grid, while offering robust

and quick recognition with simplicity (Garrido-Jurado et al., 2014). These markers also

serve as reference points to define the boundaries of the simulation environment and

calibration of image processing.

For wireless control of the Zumo Shield robots, three common methods are used

in practice: radio, bluetooth, and WIFI, and, WIFI was chosen because of its availabil-

ity at the time. Each unit houses an ESP8266 WIFI module connected to an adapter for

the Arduino UNO R3, and offer adequate connectivity.

Normally, the ESP8266 WIFI modules need additional circuitry to be compatible

with Arduino UNOs, due to them taking 3.3V power while Arduino UNO supply 5V,

so third party adapters with built in resistors and circuits were applied to eliminate the

necessity of additional work and to achieve compactness.

While the Zumo Shield already comes equipped with necessary pins and features

to accommodate Arduino UNOs, the WIFI module had to be installed. The pins of

an Arduino UNO are still usable despite being connected to the Zumo Shield. Fig B

shows how an ESP8266 is supposed to be connected to an Arduino UNO, with pins

6 and 3 from Arduino UNO each connected to TX and RX of ESP8266, and 5V and

GND connected to the VCC and GND via jumper cables.

The Zumo Shields operate by four AA sized batteries, and it was discovered that

the robots’ performance highly depend on the voltage they provide. Therefore, tradi-

tional alkaline batteries with a gradual voltage descent with repeated use presented

challenges by affecting the consistency of WIFI connectivity and motor power, often

leading to errors and halts during simulations.

As a solution, Nickel-Metal-Hydrogen (NiMH) rechargeable AA batteries re-

placed the alkaline power sources due to their consistent voltage output despite a slight

drop (1.5V vs 1.2V). While the NiMH batteries did not deliver enhanced run times,

however, consistent and reliable operation regardless of repeated use.

The grid environment consists of 4 by 3 nodes, and the grid cells correspond to

nodes where the lines intersect. Zumo Shield robots will move from a node to another

at a time if available, but moving to an already occupied node is prohibited, similar to

the simulation environment. The robot occupies the beginning node and the destination

node until its traversal is completed, and this effectively prevents most of the conflicts

defined by Stern (Fig 2.9).
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If the desired destination node is not vacated, a robot does not move, and if a

robot encounters a swapping conflict, one of the robots involved in the conflict will

evacuate to a nearest empty node to unblock the path. Determining which robot shall

evacuate is determined randomly, and in case where a robot is surrounded and cannot

find an adjacent empty node, it will trigger one of the surrounding robots to evacuate,

and move into its node.

As demonstrated in the previous chapter 3, this method was proven to eventually

solve any congestion. The construction of the path to the destination is achieved by

using A* algorithm, and utilized Manhattan Distance heuristics to minimize turns and

promote construction of straight paths.

The Zumo robots and an overseeing computer exchange information for opera-

tion, and establishes a two-way communication via WIFI. The role of the overseer

is to observe the movements of the robots and correct their path, send commands to

robots to reach their destination, and calculates and plans paths for each robot.

The map is perceived as a grid for the overseer and the operation of robots are

marked on the grid. Consequently, visual recognition of the robots become and impor-

tant aspect of the operation, and a top-view camera identifies the ArUco markers to

find the location of robots, as well as their heading direction.

The equipped camera operates at 1280 by 720 resolution for faster recognition and

processing, and image adjustments such as color/contrast adjustments, warping, and

cropping are applied to correctly identify the markers. With ArUco markers placed at

the edges of the grid environment, the overseer can correctly identify the intersections

of the grid, as well as the robots regardless of how the grid was deployed.

The nodes are identified by the overseer and marked red, and distortions are cor-

rected. For the top-view camera, a generic Universal Serial Bus (USB) webcam was

used, presenting the challenge of inconsistent capture rates and low resolution.

Meanwhile the issue of having a low resolution was solved by image processing,

the inconsistent capture rates and shutting down during a prolonged usage was not

solved completely, thus the overseer had to wait for completion signals from all of the

robots and often attempt multiple times to capture a correct image.

All in all, the overseer first ensures the completion of all robot operations, iden-

tifies the robots, calculates the next move for each robots, then sends out commands.

The following pseudo code explains the operation of the overseer.

Unlike the original computer simulation, experimenting with real robots presented

multiple unforeseen challenges due to physical and software constraints. Consequently,
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Algorithm 2 Overseer algorithm
1: while running do
2: while !all complete do
3: for all robots do
4: check completion signal received

5: end for
6: end while
7: visual robot recognition

8: for all robots do
9: determine next move

10: end for
11: send commands for robots

12: end while

(a) (b)

Figure 5.2: Placement of items on the six-by-six grid. (a) Randomly placed items. (b)

Items re-organized according to AS-CBS.

modifications such as sending commands collectively after coordinating moves for

robots instead of each robot operating in serial.

Nevertheless, the grand scheme of the experiment does not deviate largely from

the computer simulation, incorporating path reconstructing algorithm and congestion

avoidance based on convolutional congestion detection.

Building upon the evaluation of different path finding algorithms, the effect of

Adaptive Storage Strategy is further evaluated. To account for the smaller scope of the

experiment, the number of classes were decreased to two classes along with a smaller

queue size for estimating the input demand.
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(a) Robots operating in a grid environment

(b) Path drawn on the perceived view by the over-

seer

(c) 6 by 6 line following grid with corner

ArUco markers for calibration

Figure 5.3: Images of the Robot Experiment Environment.

In this case, the completion is measured by a dual order cycle, where a robot

starting from a corner begin by placing a cargo at a designated spot, then travels to

another location to retrieve a cargo back to the corner. Similarly, robots that do not

start at the corner will begin with carrying a cargo to a location. This set up emulates

a situation where robots are continuously working in a cycle, as the P/D point at the

corners can only have one robot at a time.

Same as the path finding experiment, the runtime was ten minutes, and the number

of repetition was three per configuration. The items classified into either class 1 or 2

were randomly placed in the random setting, while the AS-CBS setting followed the

placement determining calculation according to its algorithm.

The placement of items for each setting are shown in Figure 5.10, and illustrates

the placement of items by demand. Because of the setup replicating a continuous oper-

ation, the queue was provided pre-filled before commencing the experiment according

to an uneven distribution, with class 1 comprising 66.6 percent and class 2 taking 33.3

percent of the total demands. As a result, the placement of different classes were mod-
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Figure 5.4: Line following grid environment with four Zumo Robots. Their paths to their

respective destination are drawn.

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Movement of robots to their destination. Purple and green reach their des-

tination at (c), yellow reaches its destination at (d), and blue reaches its destination at

(f).

ulated according to the AS-CBS calculation.
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(a) (b)

Figure 5.6: Bar plot of collision counts marked blue and completion counts marked red

for four robots. (a) Without congestion avoidance. (b) With convolutional congestion

avoidance.

5.2 Results

Fig 5.4 shows the destination and an A* path constructed by the overseer overlaid upon

the captured top-view image. One may notice that some robots are expected to have

blockage when following through the path.

Fig 5.5 demonstrates the process of robot movements by each step, where the

robots wait and avoid conflicts while moving along the path. Some robots are seen ex-

ploring different paths after reaching the initial destination because the overseer pro-

duces a new destination if the robot reaches the end.

Initially, three settings have been devised for robotic experiments on a same 3 by 4

grid, with two, three, and four robots, each with and without convolutional congestion

avoidance and path reconstruction.

Because of the simplifications made, notably, without cargo collection akin to a

warehouse situation, collisions and completion to the destination became key metrics

in determining the effectiveness of navigation. Additionally, due to being a robotic

environment in real life, the absolute time it takes for navigating through the grid to

the destination have been recorded.

Having two robots did not yield significantly meaningful data, with the simulation

sometimes but rarely ending without a single collision. Meanwhile, as seen in Fig 5.7,

completion count is usually higher than the collision counts when the number of robots

is relatively small, but still the collision count increased when compared to having only

78



Chapter 5. Robotic Application of Congestion Detection and Adaptive Storage Strategy

Figure 5.7: Bar plot of collision counts marked blue and completion counts marked red

for an experiment with three robots.

Table 5.1: Table of average time (in seconds) in between each collision (first row) and

in between reaching a destination (second row) for default configuration.

Robot 1 Robot 2 Robot 3 Robot 4

25.4218 26.8991 15.3905 23.0658

26.8989 30.7806 25.4218 28.9245

two robots.

On the other hand, the collision count increased significantly in contrast to the

completion count regardless of having a congestion avoidance, as demonstrated in Fig

5.6 by the blue bars. It seems that having four robots would induce more collision

in a confined environment such as a 3 by 4 grid, and the contrast between having an

algorithm and without should become clear.

As seen from Fig 5.6, A’s robot number 3 has a significantly higher collision

count compared to other robots, indicating that it was struggling to find a new path that

avoids congestion, and likely got stuck until other robots cleared the path. In contrast,

B shows a more evenly distributed number of collision across the four robots.

The Overall average time between collision and reaching a destination is 22.6943

seconds and 28.0065 respectively in default configuration, and 25.7924 seconds and

34.8896 seconds when convolution based congestion avoiding measures were taken.

As far as we know, there seems to be lack of significant differences in performance

in between these two configurations, and this is more evident when comparing the

average number of collision and completion for each robot in these two settings. The
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Table 5.2: Table of average time (in seconds) in between each collision (first row) and in

between reaching a destination (second row) for congestion avoidance configuration.

Robot 1 Robot 2 Robot 3 Robot 4

29.4418 16.7174 22.1075 34.9031

27.6342 52.3541 17.4000 42.1703

(a) (b)

Figure 5.8: Boxplots for larger scale six-by-six grid with seven robots with different al-

gorithms applied. (a) Volume, or number of path planning completion. (b) Number of

collisions.

average number of collision is 4.5 and the average completion count is 3.75 for a

single robot when no congestion avoiding measures were implemented, and 4.25 and

3.25 respectively for its congestion avoiding counterpart.

There certainly seems to be possibility that these two settings yield different re-

sults, however, unlike the computer simulation spanning 40000 steps of duration on a

30 by 40 grid with 20 to 50 agents, the experiment is conducted on a relatively smaller

scale and due to the limited duration and size of the experiment, the difference may

not be discernible. Further experiments were conducted to evaluate the effectiveness

of various routing heuristics.

From Table 5.5 and Figure 5.8, the Agent Based path planning resulted in a bal-

anced improvement in path planning completion and collision counts. In comparison

to the baseline ”None” configuration, the collision was reduced from 3.142(±1.396) to

2.285(±1.177), while simultaneously achieving a 43-percent improvement of comple-

tion count to 2.571(± 1.119).These enhancements in both collision and completion are
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Table 5.3: Comparison of different algorithms, mean and standard deviation of collision

and number of completion (volume).

Collision Volume

None 3.142(±1.396) 1.800(±0.9331)

Agent Density 2.285(±1.177) 2.571(±1.119)

LRA* 2.885(±1.078) 2.971(±1.248)

WHCA* 0.885(±0.8321) 1.971(±0.9544)

particularly noteworthy when examining the performance trade-offs exhibited by other

methods.

Compared to WHCA* that also showed improved performances, WHCA* showed

better improvements in reducing the collision, yet came at a cost of reduced com-

pletion performances. On the other hand, LRA* resulted in the highest completion

counts at 2.971(±1.248) but showed minimal improvement in collision reduction at

2.885(±1.078), compared to the ”None.”

In can be said that the Agent Based Method found the compromise in between the

extremes of these two methods, similar to the observation in simulation experiment.

Additionally, the Agent Based Method demonstrate a tighter variation compared to the

WHCA* and LRA*, showcasing consistent performance that indicate a reliable and

stable path planning.

The remarkable aspect of the Agent Based Method’s results is the balanced im-

provement of both the collision and the completion count without the extreme trade

offs that other methods exhibit. The consistency in performance across different tri-

als, combined with the substantial improvements in both safety and completion met-

rics, suggests robust operation even when facing real-world implementation challenges

such as sensor noise, communication delays, and physical constraints.

Furthermore, the balanced improvements are particularly promising in real world

operations when the two aspects are crucial considerations, such as in warehouse au-

tomation, manufacturing environments, or service robotics applications.

Comprehensive analysis with respect to time was conducted to reveal how the

different path planning methods perform when implemented into robots. All methods

except for the ”None” completed its path to the goal for all 35 path planning tasks.

While it yielded a reasonably good success rate at 97.1-percent, there were cases where

a robot failed to reach its destination in time.
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(a) (b)

Figure 5.9: Boxplots for six-by-six grid with seven robots with different algorithms ap-

plied. (a) Collisions per minute. (b) Interval between completing a path.

Table 5.4: Performance Metrics of Different Path Planning Methods. Best values are in

bold.

Method
Collisions
per min

Success
Rate

First
Completion (s)

Mean
Interval (s)

None 0.31 ± 0.14 97.1% 184.96 ± 124.70 196.64 ± 127.79

Agent 0.23 ± 0.12 100% 144.50 ± 108.82 172.30 ± 108.19

LRA* 0.29 ± 0.11 100% 165.25 ± 122.94 157.43 ± 105.52

WHCA* 0.09 ± 0.08 100% 211.80 ± 152.05 147.96 ± 58.82

To surmise, all additional measures seem to be successful at avoiding congestion

and finding an alternate route. The results demonstrate that the Agent Density Based

Method provided similar achievement of balancing the collision and completion per-

formances to the simulation results.

In the simulation results, the Agent Based Method resulted in a meaningful reduc-

tion of collision while increasing the throughput (volume) performance of the P/D pro-

cess. This was reflected in the robotic experiment, while WHCA* showed the lowest

collision rate (0.09 ± 0.08 per minute), this comes at a significant cost of longer com-

pletion times (mean time 211.80s to first completion) while the Agent Based Method

decreased the collision rate to 0.23 ± 0.12 per minute, compared to having none at 0.31

± 0.14, while having the shortest completion time performance of 144.50s.

This translate to 25-percent faster than baseline (none) and 35-percent faster than

WHCA*. The collision frequency was lowered by 26-percent than the baseline, and
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(a) (b)

Figure 5.10: Placement of items on the six-by-six grid. (a) Randomly placed items. (b)

Items re-organized according to AS-CBS.

the reliability of path planning was not compromised. In continued experiment, the

Agent Based method also showed improved completion interval against the baseline

(172.30s vs 196.64s).

The observation of lacking completion to the goal in WHCA* aligns with the

simulation results where it sacrificed the navigational performance that resulted in a

lower processed item volumes.

The effect of Adaptive Storage Strategy is further evaluated with a robotic ex-

periment. To account for the smaller scope of the experiment, the number of classes

were decreased to two classes along with a smaller queue size for estimating the input

demand. In this case, the completion is measured by a dual order cycle, where a robot

starting from a corner begin by placing a cargo at a designated spot, then travels to

another location to retrieve a cargo back to the corner. Similarly, robots that do not

start at the corner will begin with carrying a cargo to a location. This set up emulates

a situation where robots are continuously working in a cycle, as the P/D point at the

corners can only have one robot at a time.

The runtime was ten minutes, and the number of repetition was three per con-

figuration. The items classified into either class 1 or 2 were randomly placed in the

random setting, while the AS-CBS setting followed the placement determining calcu-

lation according to its algorithm. The placement of items for each setting are shown

in Figure 5.10, and though limited, illustrates the placement of items by demand. In

Figure 5.10(a), the randomly placed items were reorganized into B with AS-CBS in

effect, locating class 1 items closer to the corners where the P/D points were defined.
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(a) (b)

Figure 5.11: Boxplots for larger scale six-by-six grid with seven robots with different

storage strategies applied. (a) Volume, or number of cycle completion. (b) Number of

collisions.

Table 5.5: Comparison of different algorithms, mean and standard deviation of collision

and number of completion (volume).

Collision Volume

Random 3.000(±1.183) 0.3810(±0.5896)

AS-CBS 2.524(±1.289) 0.7619(±0.6249)

The resulting reorganization do not seem as apparent as the simulation results

due to the scope of the robotic experiment and its shortened duration. Nevertheless,

increased picking and delivery activity of class 1 items was observed, as well as place-

ment of class 2 items further from the P/D points.

Because of the setup replicating a continuous operation, the queue was provided

pre-filled before commencing the experiment according to an uneven distribution, with

class 1 comprising 66.6 percent and class 2 taking 33.3 percent of the total demands.

As a result, the placement of different classes were modulated according to the AS-

CBS calculation.

It was demonstrated that the number of completing a dual order cycle was low

and robots often failed to finish a complete cycle, hence, no more than two cycles were

completed by a robot. The number of collisions also appear to have little differences,

and in both the volume and collision counts, there seem to be no significant evidence

to believe that the means differ between the Random and AS-CBS setting.

The lack of discrimination most likely originate from the limited scale and sam-
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(a) (b)

Figure 5.12: Boxplots comparing the Random and AS-CBS method with different met-

rics. (a) Collision per Minute. (b) Time to First Completion.

Table 5.6: Performance Comparison between Random and AS-CBS Methods with re-

gards to time.

Metric Random AS-CBS

Collision Frequency (per minute) 0.30 ± 0.12 0.26 ± 0.13

Completion Rate 7/20 (35.0%) 13/20 (65.0%)

Mean Time to First Completion (s) 244.67 ± 188.74 284.88 ± 169.07

Min Time to First Completion (s) 49.94 40.83

Max Time to First Completion (s) 532.54 505.98

ple size of the experiment. In the simulation setting, the field was considerably larger

with 29 by 32 grid, with up to 50 robots as opposed to the robotic experiment. Because

of these results, the effectiveness of the AS-CBS policy remains inconclusive in real

applications, and its performance when the demands of different items fluctuate, there-

fore further experiments in greater scale are warranted to better clarify the dynamics

of the system and identify the underlying issues that led to these obtained results. Re-

gardless, Figure 5.10 revealed that placement of higher demand class 1 was modulated

closer to the corner P/D point, validating the AS-CBS implementation was in effect.

To further evaluate the underlying dynamics of robotic implementation and to

discover deeper from the completion and collision counts, additional analysis using

the time data was conducted. Mainly the collision frequency and time it takes to first

completion was the focus in studying how the claimed performance gains translate

into real time. From the Table 5.6, the Random method and the AS-CBS method show
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marginal differences in the mean (Random: 0.30 ± 0.12, AS-CBS: 0.26 ± 0.13 per

minute), and also in the median as seen from box plots in Figure 5.12.

Regardless, the most notable advantage of AS-CBS method appeared when com-

pleting a P/D cycle, having 86-percent improvement in completion rate in compari-

son to the Random method. Out of 20 item placement and delivery cycle, AS-CBS

method completed only failed to complete 7 times, while the Random method failed

13 times. It is noteworthy that the AS-CBS achieved this higher completion rate while

also achieving a slight decrease in collision frequency.

The analysis using the time metric also revealed the reliable and consistent perfor-

mance of AS-CBS, with both lower minimum completion time (40.83s vs 49.94s) and

maximum completion time (505.98s vs 532.54s), with the smaller standard deviation

in completion times (169.07s vs 188.74s) further supporting the consistency of the op-

eration. Such consistent performance in contrast to the Random method is somewhat

foreseen, because randomly stored items have the chance of having the needed item

nearby, but could also potentially be farther away, especially if the item demands are

non-uniform.

Furthermore, AS-CBS may result in a more optimized and shortened route as

demonstrated in the simulation results, leading to less collisions and a more reliable

and structured path to the goal, and the experimental results seem to support these

claims. The outstanding aspect of the AS-CBS implementation is the demonstration of

reliability and consistency while maintaining the collision frequency lower or similar

to the Random method, under the real-world uncertainties and physical constraints that

often degrade algorithmic performance.

A more optimized setting with less reliance to visual robot location and increased

individual autonomy could further fine tune the performance of the AS-CBS method,

thus this robotic implementation sets the foundation for continued improvements with

further refinements.

5.3 Summary of Chapter 5

This chapter evaluated the real-world implementation of the proposed path finding

and storage algorithms through robotic experiments, successfully demonstrating the

agent-based path finding in a physical robot environment and validating the AS-CBS

storage strategy implementation. The experiments achieved meaningful reductions in

collisions while maintaining throughput, demonstrating the practical feasibility of the
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proposed algorithms in real-world conditions.

Performance results were particularly encouraging for both main components of

the system. The Agent Density Method showed balanced improvements with a 26-

percent reduction in collision frequency and completion times 25-percent faster than

baseline and 35-percent faster than WHCA*. Similarly, AS-CBS demonstrated an

impressive 86-percent improvement in completion rate, along with more consistent

performance and lower variance, while successfully adapting to changing demands

throughout the experiments.

The implementation process revealed several critical technical challenges. Vi-

sual recognition reliability proved crucial for system performance, while communi-

cation consistency played a vital role in coordination. Physical movement variations

required compensation, and battery voltage consistency significantly affected robot

performance. These challenges led to the development of specific solutions, including

the use of line following for movement correction, ArUco markers for robust position

tracking, and NiMH batteries for consistent power delivery. The coordination approach

also required modification to account for real-world constraints.

Several limitations and considerations emerged during the experimental phase.

The scaled-down environment affected measurement precision, while limited sample

size impacted statistical significance. Physical constraints introduced new variables

that required consideration, and real-world factors necessitated algorithm adaptations.

These limitations provide valuable insights for future implementations and scaling con-

siderations.

The experiments established clear pathways for future implementation, identify-

ing the need for robust visual acquisition systems and reliable communication infras-

tructure. The demonstrated value of physical movement compensation and the estab-

lished foundation for larger-scale implementations provide crucial guidance for future

development. This research successfully validated the core mechanics of the proposed

methods in a physical environment while identifying key challenges and solutions for

practical implementation. The results provide valuable insights for future deployment

in real-world robotic fulfillment centers, establishing a foundation for continued devel-

opment and scaling of these approaches.
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Conclusion

This research investigated three interconnected aspects of automated warehouse op-

erations: congestion detection using convolutional filters, adaptive storage strategies,

and their practical implementation in robotic systems. The investigation began with the

development of an agent density-based path finding algorithm that uses convolutional

filters to detect and respond to congestion patterns.

This was complemented by the introduction of Adaptive Stochastic Class-Based

Storage (AS-CBS), a novel approach to dynamically optimize storage locations based

on real-time demand patterns. Finally, these theoretical developments were validated

through physical robotic experiments that provided crucial insights into the challenges

and opportunities of real-world implementation.

Together, these three components represent a comprehensive approach to improv-

ing warehouse automation, addressing both the theoretical foundations and practical

considerations of robotic warehouse operations. This chapter summarizes the key find-

ings and implications from each aspect of the research, discussing their significance

for future warehouse automation development.

6.1 Congestion Detection Based on Convolutional Fil-

ter

In the context of evolving trends towards automated smart factories and paperless in-

ventory management, this research endeavors to investigate the intricate dynamics of

AGVs in warehouse environments with varying storage techniques. The primary ob-

jective is to assess the performance of AGVs under different storage configurations
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reflective of diverse business needs and to propose an effective congestion mitigating

routing heuristic.

The findings of this study demonstrate that the agent density-based path recon-

struction model consistently outperforms other methods in terms of order picking effi-

ciency within a given timeframe. Notably, this approach also significantly reduces the

incidence of collisions and congestion compared to scenarios without such measures

in place.

Importantly, this characteristic holds true across different numbers of agents, item

varieties, and storage methods, including random organization, traditional organiza-

tion, and Class Based Storage (CBS). While perfect coordination among AGVs may

theoretically yield high performance while eliminating congestion, the agent density-

based approach offers resilience and simplicity in adapting to rapidly changing de-

mands.

Moreover, it integrates the adaptability and robustness of Autonomous Mobile

Robots (AMRs) designed to operate in dynamic human-robot interaction environ-

ments.

Future research endeavors may warrant exploring alternative implementations of

routing heuristics and warehouse layouts to comprehensively assess the advantages

and limitations of agent density-based path reconstruction. By conducting detailed in-

vestigations, tailored warehouse management strategies can be developed to optimize

operational efficiency and effectively address evolving operational challenges.

6.2 Adaptive Stochastic Class Based Storage

The comprehensive simulation results underscore the consistent performance of the

Adaptive Stochastic Class-Based Storage (AS-CBS) method across various turnover

rate scenarios. While AS-CBS may not consistently yield the highest performance in

terms of total items picked, collision counts, and congestion counts compared to other

storage methods, it demonstrates remarkable reliability and predictability across a di-

verse range of situations within the scope of this research.

The integration of user-adjustable and controlled stochastic characteristics equips

AS-CBS with adaptiveness and resilience to unforeseen variables that may otherwise

impact performance, while maintaining stability in warehouse operations. However,

for AS-CBS to be practically implemented, several additional considerations must be

addressed.
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These include accommodating separate turnover rates for incoming and outgo-

ing order pickings, optimizing predetermined storage geometries such as within-aisle

configurations, determining the optimal number of picking and delivery (p/d) points,

and exploring potential enhancements to further refine the system’s performance. By

addressing these considerations, AS-CBS can be tailored to meet the specific require-

ments and operational constraints of individual warehouse environments, thereby en-

hancing its practicality and effectiveness in real-world applications.

Moreover, continued research and development efforts are essential to refine and

optimize AS-CBS further, paving the way for its widespread adoption and integration

into modern warehouse management systems. By leveraging the insights gained from

this study and addressing the identified considerations, AS-CBS holds viability in im-

proving warehouse storage strategies and optimizing operational efficiency in dynamic

and evolving logistics environments.

6.3 Robotic Application of Congestion Detection and

Adaptive Storage Strategy

The application of convolution filter based routing into real robots proved its feasibility

in implementation and demonstrated its improvements. Despite the robot experiments

showed gaps with the simulation results, it provided valuable insight into identifying

issues it faced and ones that may potentially arise.

The algorithm needed to accumulate activity for its benefits to become distinct in

contrast to having no collision and congestion avoiding measures, as seen from traces

of performance discrepancies among different settings. In the simulation environment,

the scale of the picking activity was longer at 40000 steps on a larger 29 by 32 grid

with 20 robots, conversely, the robotic experiment was scaled with limited duration

due to the battery capacity and smaller field.

The limitation of the robotic experiment most prominently appeared when test-

ing the AS-CBS implementation. Although lacking, path finding algorithms showed

some improvements and traces of performance differences, but the virtual order pick-

ing activity often collected less than sufficient number of cycles to draw a meaningful

conclusion despite the elongated duration. Nevertheless, future experiment that better

replicates the simulated environment still holds possibility of revealing the effect of

AS-CBS in real world environment.
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6.4 Future Works

In the domain of congestion detection and path planning, future research should ex-

plore alternative implementations of the convolutional filter approach. This includes

investigating different kernel sizes and configurations, developing adaptive threshold

mechanisms that respond to varying traffic densities, and exploring the integration of

machine learning techniques to optimize filter parameters based on historical conges-

tion patterns. Additionally, the investigation of alternative warehouse layouts specif-

ically designed to complement the agent density-based path reconstruction could po-

tentially yield further improvements in operational efficiency.

For the AS-CBS storage strategy, several key areas warrant further investiga-

tion. First, the development of a more sophisticated model that can handle asymmetric

turnover rates between incoming and outgoing operations could enhance the system’s

practical applicability. Second, research into optimizing storage geometries, particu-

larly focusing on within-aisle configurations and their interaction with the adaptive

storage strategy, could improve space utilization. Third, investigating the optimal num-

ber and placement of P/D points in relation to storage zones could further enhance

system performance. Lastly, exploring methods to reduce the warm-up period required

for the queue-based demand estimation could improve the system’s responsiveness to

changing demand patterns.

Regarding robotic implementation, future work should focus on scaling up the

experimental validation. This includes conducting longer-duration experiments with

larger robot fleets and storage areas to better match simulation conditions. Develop-

ment of more energy-efficient robots with extended battery life would enable such

extended testing. Additionally, investigation into improved visual recognition systems

and communication protocols could enhance the reliability of real-world implemen-

tations. Research into robust error recovery mechanisms and fault-tolerant operation

would also be valuable for practical deployments.

Integration and scaling aspects also present important research opportunities. This

includes investigating the scalability of the combined system (congestion detection,

adaptive storage, and robotic implementation) in larger warehouse environments, de-

veloping methods to handle dynamic reconfigurations of warehouse layouts, and ex-

ploring the integration of human operators in hybrid human-robot warehouse environ-

ments. The development of standardized performance metrics and testing scenarios

would also facilitate comparative evaluation of future improvements to these systems.
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Finally, theoretical extensions of this work could explore the formal properties of

the agent density-based congestion detection method, including proofs of convergence

and optimality under various conditions. The relationship between storage location as-

signment and congestion formation could also be analyzed mathematically to provide

insights for future system optimization.
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