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Abstract

The navigation of mobile robot is challenging problem due to insufficient information

of surrounding, error from controlling the mobile robot, and error from estimating its

current location. The simultaneous localization and mapping problem is one of pop-

ular concept, and solution for problems of navigation task. This concept declare the

localization problem, and mapping problem cannot be separated independently. To

localize itself, it requires the map to express its current location while a mapping prob-

lem requires current location to build a map. With this map information of surrounding

environment, and current location from localization problem, a navigation task can be

achieved.

To achieve navigation task for mobile robot, it requires abundant information of an

environment, and the most popular type is a visual information. This provide infor-

mation, e.g., visual features, hue, depth, and extracted specific object. Some type of

information can be easily extracted by simple filter, but some require sophisticated

vision technique. This complex technique also requires complex computational load,

and it induce the amount of time to extract meaningful visual information. To over-

come this shortage, there is another approach which is based on navigation ability of

animals, and insects.

There are many experiment on insects, and animals to find out their navigation ability

and its characteristic. There are meaningful results with insects navigation. The insects

has a navigation ability to find a direction to their living area with visual information

after foraging. It is known that many insects including ants can use visual snapshot

around them for homing navigation. Inspired by this navigation ability of insect, many

navigation algorithms have been suggested. The average landmark vector (ALV) algo-

rithm is one of famous algorithm to find a direction to the target location relative to the

current location. This algorithm is based on the observation of landmarks from visual

information. Observing and identifying landmarks in surrounding environment is a

challenging problem. For the snapshot model, the feature extraction from the visual

image plays an important role, and it also requires a technique to extract features.

There are many different ways to extract visual features, e.g., using SIFT, and SURF

descriptors, vertical lines and its surrounding image, and any other feature extraction

algorithm. We apply these different algorithm s to extract visual features on image,

and use these features as landmarks in navigation task. With these information, we set
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a target location arbitrary, and we show how well it can find a direction toward to target

location relative to its current location with snapshots from both locations. With these

algorithms, we implement them to a mobile robot, and control this robot with these

algorithms.

These algorithm which are based on navigation ability of animals, and insects have one

purpose that control a mobile robot to target location. This task is not enough to solve

the SLAM problem. From this concept of the snapshot model, we suggest a SLAM

algorithm to solve this problem. We depends on visual information, and distance in-

formation to solve these localization and mapping problem. With this algorithm, we

show it can build map correctly, and show its performance have more advantages than

other basic SLAM algorithm.
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Chapter 1

Introduction

Some insects have navigation ability to return home after foraging. They have incred-

ible navigation ability even they have simple neural structure, and limited information

of surrounding environment. There are many different analysis of their navigation abil-

ity, and the most plausible hypothesis is the ”Snapshot hypothesis”. This hypothesis

implies that they rely on their visual information to decide direction to their home by

comparing visual information from their home, and current location.

From this hypothesis, there are many different derived algorithms to solve the navi-

gation problem. There are two different approaches, one is using entire visual infor-

mation to find direction to home, and another is extracting features. First one have

relatively simple, but this algorithm can be affected by noise on image, and occlusion.

Navigation algorithm using extracted features have more complex calculation to ex-

tract valid feature, but its performance can be more reliable. We suggest this feature

based algorithm can be a solution for navigation problem, and we use many different

type of features. There are many different features which have unique characteristic

on image, We compare these feature extraction algorithms by comparing their perfor-

mance.

This feature based algorithm provide proper direction to home relative to the current

location. This estimating of a heading direction can be enough to achieve navigation

problem, but some cases require more information of surrounding information to avoid

obstacles, and plan proper route to reach a target location. This problem is same to the

SLAM problem, and we suggest an algorithm to solve this problem.

1
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1.1 A bio-inspired feature based navigation

There are many studies on navigation ability of insects to solve navigation problem.

One of the interesting approach is navigate by comparing images from a current loca-

tion, and a target location. This approach is originated from a study of movement of

honeybees (Collett et al., 2006). The behaviour of bee when they are foraging have

its own characteristic. Otherwise, there is another insect whose navigation ability is

proven is desert ant (Andel and Wehner, 2004), Müller and Wehner (1988). This ant

spread chemical trail to find out its way and navigate. They have certain chemical route

to food, and use this path. Even they losing their way, they trying to find out this path

to continue foraging (Kohler and Wehner, 2005).

There are several possible navigation to use of insect like bee. One is path integration.

Insect know its direction and it movement by observing optical flow or difference of

observed landmarks. By integrating its own movement, it knows it location related

to their nest. In their retina, they use optical flow from ground they observe, and

same thing from surrounding area. Another navigation method in bee is found (Col-

lett, 2008). In this theory, bee rely on visual information while they combining this

information with from sky, sun-compass. They can estimate their current direction by

using visual information. They know how they rotate by observing optical flow. This

combining of information allows them to navigate with more accuracy. They commu-

nicate by dancing to other companion with these navigation information. They found

that the bee and ant not only use their visual information to navigate, but also can learn

about landmarks. This concept of landmark is very important to following navigation

algorithm (Graham and Collett, 2006).

From this concept of landmark of navigation ability of insects, there is a simple, but ro-

bust navigation algorithm, the average landmark vector algorithm (Möller, 2000) (Lam-

brinos et al., 2000). This algorithm have a concept of the average landmark vector. The

landmark vector is defined by a unit vector from current location to observed land-

mark. Average of these landmark vector can represent characteristic of each position.

The difference of average landmark vector for each position indicate home direction

which is direction toward target location. This algorithm just consider only change of

bearing which means this algorithm considers limited information of observed land-

marks. This algorithm is valid and can indicates home direction with high precision.

Thia algorithm also guarantee its convergence to target location.
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On the other hand, there are different approach to understand navigation ability of an-

imals which is study their brain activity to find unique characteristic during navigation

task (Andersen et al., 2006). This approach based on brain activity of mammal, and

it shows there is close relationship between activity of specific part of their brain, and

its current location in environment. This specific part of their brain is the ”place cell”

in their hippocampal cells (O’Keefe and Dostrovsky, 1971). This observation implies

that these mammals remember characteristic from each location in environment, and

rely on this information to find their current location, or localize themselves.

In the next section, we introduce detailed motivation and objectives for the models

proposed in this paper.

1.2 Motivation and objectives

We suggest a model from bio-inspired visual system with features in visual informa-

tion. With this algorithm, we also show this algorithm can be a solution for navigation

problem. Furthermore, We show our algorithm can be a solution for the SLAM prob-

lem using features. The detailed objectives are as follows:

Navigation with landmark vector algorithm based on feature extraction There are

many bio-inspired approach to solve the navigation problem with the snapshot

model. From this approach, we suggest a feature based navigation algorithm.

This algorithm is based on the average landmark vector(ALV) algorithm(Lambrinos

et al., 2000). This algorithm require a specific landmark to estimate direction to

target location relative to the current location. This extracting landmarks have to

be robust, and we solve this problem with different feature extracting algorithm.

The histogram of oriented gradients (HOG) descriptor, the scale invariant feature

transform (SIFT) descriptor, and the speeded up robust feature(SURF) descriptor

are most popular feature extraction algorithms. We show this algorithm can be a

solution for landmark problem, and this algorithm can direct proper direction to

target location by comparing snapshots.

Homing with a mobile robot, and route following We propose an algorithm to find

proper direction to target location. We implant our algorithm into a mobile robot

to move target location. In previous algorithm, we set only one target location

to find direction, but we set serial waypoints to follow a route. We previously
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set multiple waypoints to follow these waypoints. With snapshots from these

waypoints, we can control a mobile robot along waypoints. We also propose

another algorithm to follow waypoint in dynamic environment. This algorithm

is based on the conditional probability to find its associated image. We have

a learning system to remember images from these waypoints. We use current

image as input of the system. With corresponding output of the system, it can

find its current location, and navigate to target location.

Probabilistic approaches of local visual navigation There is another approach from

bio-inspired navigation. This approach focus on solving the SLAM problem.

The ‘Rat SLAM’ is one of them (Milford and Wyeth, 2010). This approach is

from brain activity of brain of rats during navigation task. We simulate this algo-

rithm with visual information. From this idea, we also propose another SLAM

algorithm which can solve mapping problem, and localization problem. We use

not only visual information, but also distance information from laser sensor. We

conbine this information to find its current location, and map information of sur-

rounding map. We compare this algorithm into the ‘RAT SLAM’, ‘Laser only

SLAM’, and dead reckoning.

1.3 Organization of the dissertation

In chapter 1, we introduce the motivation, and history of our work from the concept

of the bio-inspired approach. We also define the problem we have to solve from our

works. The next chapter, chapter 2, we introduce related work with many different

point of view. Bio-inspired navigation, dealing with visual information, traditionanl

navigation, and the SLAM problem.

In chapter 3, we show bio-inspired navigation algorithms based on features. We show

extracted features can be a landmarks for navigation problem, and this can be a proper

solution for navigation problem. We also simulate this algorithm in static environment.

We take snapshot images on given environment, and we show these algorithms can find

proper direction to target location.

Chapter 4 presents control of a mobile robot with proposed algorithms. We show our

algorithm can find target location. We set multiple waypoints on static environment,

and we also take snapshot images on these waypoints. With these information, we
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show how accurately a mobile robot can follows properly. In this chapter, we also pro-

pose another navigation algorithm to follow previously set waypoints. This algorithm

is based on rememeberance of animal, and rely on the conditional probability. With

this algorithm, we show this can be a solution for navigation problem to follow given

multiple locations.

In chapter 5, we apply our algorithm into the SLAM problem. In previous research,

we focus on navigation to target location. The localization, and mapping problem have

to be solved to satisfy the SLAM algorithm. We propose an algorithm to solve these

problem based on a concept of the feature of landmark. There is a similar approach

which is based on bio-inspired algorithm which is called the ‘RatSLAM’. We simulate

this algorithm, and compare our algorithm.

The last chater have concolusions of our works. We show our importance of our works,

and possibility to improve. We also conclude shortage, and advantage of our works.



Chapter 2

Background

Navigation technique is very complicated algorithm by unexpected scene (Brady and

Wang, 1992) (Vasudevan et al., 2007). This complex thing is need to be simplified

to apply in real problem (Kuipers and Byun, 1988). To prove this complicity prob-

lem, there is a new approach. This approach is inspired by insect navigation ability.

Some insect can return home after foraging in a straight line (Wehner, 1987). These

insect have no complex calculation capability at all. Even they have this limitation,

they can return home successfully citepcollett1986landmark. Collett observe their be-

havior of navigation to find out its characteristic (Collett, 1996). In this observation,

these insect use many navigation clues such as magnetic information of earth (Col-

lett and Land, 1975), polarization of sky (Lambrinos et al., 1997), visual cue around

insect (Wehner and Müller, 1985), celestial compass (Wehner, 1997), path integra-

tion (Wehner and Wehner, 1990) (Wehner and Wehner, 1986) and chemical trail for

some insect. Another observation is that these insect like ant use landmark to find out

home direction (Collett, 1992). Without any distinguishable object, they cannot find

home easily (Graham and Collett, 2006). This concept of landmark is one of most

important in local navigation algorithm.

Another similar observation, suggest snapshot hypothesis (Wehner and Räber, 1979).

This explains the behavior of insect that is insect estimate home direction by com-

paring image from home location and current location. By comparing these images,

insect can know home direction. From this hypothesis, many navigation technique is

improvised by contribution of great researchers.

From previous work in this field (Mallot et al., 1996), one of the important work is

done by Franz (Franz et al., 1998). He take these hypothesis and model this algo-

7
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rithm (Franz et al., 1997). He suggest how the landmark is observed in both location

by modeling it. This model is fundamental of navigation algorithm based on snapshot

hypothesis. This also is define problem of this vision based algorithm that is lack of

distance information. He also suggest how can we solve this problem from work about

motion of robot (Nelson and Aloimonos, 1988). Most of later work is to solve this

problems. He also conduct navigation experiment with real robot in artificial environ-

ment. With conical camera, he observe surrounding area (Srinivasan et al., 1997) (Yagi

and Yachida, 1991). He prove this model is valid and its performance is good, and can

be applied in on-line situation. By this means, Franz open new era of local visual nav-

igation field.

With this model, Moller R. and D. Lambrinos suggest another way to find home di-

rection (Möller et al., 1998) based on snapshot hypothesis. He uses vertical edge to

distinguish landmark (Möller et al., 1999). With this detected landmark, he suggest two

new algorithm one is the proportional vector model, and another is the average land-

mark model.. One is draw vectors toward observed landmark from center of agent,

and difference of sum of these vector at both location direct home direction. In this

algorithm, the magnitude of vector is proportional to observed size difference of land-

mark in both location. The average landmark vector algorithm is same but this draw

unit vectors. He suggests these algorithms to find out home direction. He also prove

its validity, and perform experiment with real robot. He also suggests using another

information like polarization in sky is also another way to find home direction.

Another approach of navigation is the simultaneous localization and mapping(SLAM)

(Betke and Gurvits, 1997) (Booij et al., 2009) (Booij et al., 2008). In this problem,

the localization is one of the most important issue (Cozman and Krotkov, 1995). This

problem is knowing its current position relate to original position of panoramic im-

age (Gonzalez-Barbosa and Lacroix, 2002). This problem is same in local naviga-

tion problem (Burke and Vardy, 2006). The robot need to remain constant orienta-

tion (Collett and Baron, 1994). In this problem, position information include angle

data related to home location. In traditional way to find this angle information is us-

ing magnetic sensor or odometer information (Barshan and Durrant-Whyte, 1995).

This two method is useful, but vulnerable to external noise. To improve this shortage,

Labrosse (Labrosse, 2004) suggest one way to find out this angle information with-

out using magnetic sensor (Frier et al., 1996) or odometer information (Nistér et al.,

2006) (Chen, 2004). This algorithm called visual compass that is just using visual

information to find angle difference. He compare images pixel by pixel by rotating
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current image in outdoor scene (Cozman et al., 2000). This comparing algorithm is

inspired from face recognition (Bichsel and Pentland, 1994), (Etemad and Chellappa,

1997). He find minimum distance of two images and the following angle is difference

between home and current location (Makadia and Daniilidis, 2006). He compare this

result with traditional way, using magnetic sensor. The comparing result show these

two methods have similar performance. With this result, he shot its credit.

Meanwhile there is some improvement of computer vision technique. This technique

is also highly related to this vision based navigation. Moller R. apply one of the com-

puter vision technique to visual navigation (Möller et al., 2010). The applied tech-

nique is warping (Binding and Labrosse, 2006). The warping technique is originally

used in computer vision field to align two images with different point of view. This

image registration technique is similar to find relationship two image from both loca-

tion (Giachetti, 2000) (Labrosse, 2007). First of all, he model this warping equation

by movement of robot. With taken snapshot images in both location, he find minimum

warping line (Liu et al., 2010). By fitting warping equation to given warping curve,

he can decide home direction, angle difference in same time. He claim this algorithm

have this advantage that we can get home direction and align angle, but this algorithm

also have disadvantage its calculation load is heavy.

There is more improvement of computer vision technique. That is the optical flow tech-

nique (Barron et al., 1994). This algorithm made of two major components. One is

find feature points, and another is find correspondence between images (Harris et al.,

2007). With these steps, we can estimate movement of object (Lehrer and Bianco,

2000). This algorithm is similar to visual navigation. Finding feature point is kind

of extracting landmark, and find correspondence is finding relationship between two

images (Fischler and Bolles, 1981) (Jogan and Leonardis, 1999). With this similarity

of these two methods, Moller R. conduct a experiment that of finding home direction

using optical flow (Franz and Krapp, 2000). This optical flow is robust to image dis-

tortion. He shows that this can find home direction with optical flow.

From the observation of behavior of insect, there is development by contribution of

many researcher. They observe navigation ability of insect, define problem of navi-

gation algorithm, and improve this algorithm by combining with other theories from

other field. Due to this problem is highly depends on visual information, the computer

vision technique is suggested by solution of visual navigation problem.
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2.1 Biologically inspired navigation

2.1.1 Insect navigation

Navigation from visual image includes many many approaches. One of the interesting

approach is navigate by comparing images. This approach is originated by one ob-

servation of Thomas S. Collett. He is interested in movement of honeybees (Collett

et al., 2006). He focus on behavior of bee when they are foraging. This intriguing nav-

igation ability of bee has one special feature. Another insect whose navigation ability

is proved is desert ant (Andel and Wehner, 2004), (Müller and Wehner, 1988). This

ant spread chemical trail to find out its way and navigate. They have certain chemical

route to food, and use this path. Even they losing their way, they trying to find out

this path to continue foraging (Kohler and Wehner, 2005). There are several possible

navigation to use of insect like bee. One is path integration. Insect know its direction

and it movement by observing optical flow. By integrating its movement, it knows it

location related to their nest. In their retina, they use optical flow from ground they

observe, and same thing from surrounding area. Another navigation method in bee is

found by Thomas S. Collett (Collett, 2008). In his theory, bee use visual information

while they combining this information with from sky, sun-compass. They know their

current direction by using visual information. They know how they rotate by observ-

ing optical flow. This combining of information allows them to navigate with more

accuracy. They communicate by dancing to other companion with these navigation

information. They found that the bee and ant not only use their visual information to

navigate, but also can learn about landmarks. This concept of landmark is very impor-

tant to following navigation algorithm (Graham and Collett, 2006). They conduct an

important experiment. That is the ant use and learn landmark as an indicator. To prove

this, they set an arena. This arena have some special characteristic that is in Figure 2.1.

The arena consist of a tube and a cylinder. This tube force ant to follow through this

route to find their food. At the end of this tube, there is some food for ant, and this is

tagged by ’S’ in below figure. At the opposite end of tube, there is a cylinder means

only landmark that they can detect. When ant through the tube and return to home,

they cannot observe this landmark at all. Oppositely, when they foraging, they can

observe and use it as indicator to food.

They can use landmark only when they foraging to food. In this experiment, they use
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Figure 2.1: Arena to find out effect of landmark existence. Ant travel to source(S) to

home(F) or reverse of it. At the source, there is only route to home, and one landmark

represented by black cylinder is not observed when they return home. Only they can

observe this landmark when they foraging food. Reprinted from (Graham and Collett,

2006).

this different observation. They train the ant. One group is repeating return home.

They are kidnapped to food location when they reach their home. By observing path

of this trained ant, we can conclude the effect of existence of landmark. Another group

is just repeating foraging. When they reach food from home, they are kidnapped to

home. The last group is do this both without kidnapping. This different condition

of each case can occur difference of path they travel. They observe this path by the

training.

This result is interesting. When they foraging and returning, they can learn about en-

vironment more faster. This group has straight trajectories with less training. Another

group, just foraging group can observe landmark. This group is learn more faster than

returning group with landmark existence. Last group, returning group is cannot use

major landmark, large black cylinder. Even they cannot use this landmark, they are

available visual cue from surrounding arena. With this surrounding cues, they can

learn about environment with slow speed. They need more training time to find out

straight way to home. This result implies the ant can use landmark existence. This

concept of landmark is base of other algorithms. After they proving ant use landmarks
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Figure 2.2: The path of ants by the training. Group A allowed foraging, group B is

allowed foraging and returning while group C is just allowed returning. Reprinted from

(Graham and Collett, 2006).

as indicator when they find food, they explore about this characteristic. To find out

the characteristic of landmark, they conduct another experiment (Harris et al., 2007).

When they observe the landmark in previous experiment, the black cylinder is seems

like just black plane without any pattern on its surface. In this case, the landmark is just

black plane. There is no information in the middle of plane without any pattern. The

informative area of landmark is the edge of it, so they focus on this effect of edge. Or-

dinary landmark have two edges in left, and right side. They also consider upper edge

and bottom edge by changing height of landmark. To find out the effect of edge, they

apply gradient to surface of landmark to one side. This gradient is also not distinguish-

able. This landmark has only one edge due to its gradient. This gradient difference
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of edge will explains about the effect of edge. To remove one edge of landmark, they

apply gradient. This gradient can also affect the result. To find out this effect, they do

this experiment by changing density decreasing of gradient.

Figure 2.3: A. Arena with two edge landmark. B. Arena with one edge landmark with

gradient. C. Types of gradient applied in B. Reprinted from (Harris et al., 2007).

They use two kinds of arenas. One is use two edge landmark, and another is one

edge landmark with gradient. By comparing these two types of arena, we can know

the effect of edge of landmark. In training phase, they train some specific condition.

There are four cases to train. One is using gradient landmark, and place food at edge.

Another case is using same landmark and place food at 10 Cm from edge. Rest of

cases are using two edged landmark. They record trajectory of ant in training phase.

The training result is in Figure 2.4.

In this figure, middle of graph implies that the location of landmark related to ant

heading. Last of graph for each case is fixation relative to food. In this training phase,

we can conclude that when they foraging, they use edge as landmark, and when the

edge is far from food, they have some error to find food. Oppositely, when the food

is just at the edge, they travel straight to the food. Their biased fixation relative to

food is one of the evidence that they use edge as landmark. There is another factors

when we apply the gradient to landmark. One is the gradient starting point. If this

starting point is changed, and ant use it as landmark or evidence to food location, ant

will go wrong way. With trained ants, they record the trajectories of ant with changed

landmark. The result is interesting. Even the landmark is changed, they can find food
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Figure 2.4: Training conditions. A. using gradient landmark, and place food at edge of

it. B. using gradient landmark, and place food at 10 Cm from edge. C. using two edged

landmark, and place food at edge of it. D. using using two edged landmark, and place

food at 10 Cm from edge. Reprinted from (Harris et al., 2007).

location directly. They doesn’t affected by starting point of gradient. Another factor,

depth of gradient, is also possible factor to confusing ant’s navigation algorithm. To

compare this, they do same thing by changing depth of gradient. Also, they can find

food location directly. With these experiment by changing starting point of gradient

and depth of gradient is not affect ant. In another phrase, ant does not consider gradient

at all. This means they mainly detect the edge of landmark.

2.1.2 Snapshot hypothesis

Wehner suggest the ”snapshot hypothesis” (Wehner and Räber, 1979), (Wehner et al.,

1996). This hypothesis explains how to animal can return their home or target loca-

tion. This hypothesis claims that the animal can store the visual cue of surrounding

environment, and they can compare this visual cue to find out direction. From this hy-

pothesis, many research about this hypothesis are happen. One of the interesting work

is from franz (Franz et al., 1998). He assume that there just one landmark observed in

current and home view, and we know observed angle. With this assumption, we uses

ring sensor model described in Figure 2.5. By adding up these associate displacement

vectors, we can get the
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Figure 2.5: Senor difference at home and current position. Reprinted from (Franz et al.,

1998).

With this model, he suggest mathematical relationship between these variables. To

solve this equation, there are two major condition. One is the correspondence problem.

In this model, we assume there is a landmark. In real problem, a landmark observed in

home location is not always distinguishable in current view. There is change of point of

view to occur disrupt of image. With this problem, we must know this correspondence

of landmark in images from both location. Without this assumption, find out home

direction is very challenging problem. There is another critical condition to solve this

problem. If we don’t know the distance from landmark, this information must be com-

pensated by other information or by some assumption. These are major challenging

problems of local visual navigation. We will introduce how they overcome this prob-

lem later. Some use estimation of distance, and some made tremendous assumption to

solve this problem. To overcome this problem, he suggest two assumptions. One is

isotropic distance assumption. This assumption is that each landmark is independent,

and distance of landmarks are not affected by viewing direction. He use the concept of

associated displacement vector (Hong et al., 1992). This displacement vector is defined

by θi + δ/2+π/2 for δ > 0, and θi + δ/2−π/2 for δ < 0. In this definition, index i

represent landmark index. By normalize and adding up these displacement vectors for

every observed landmarks, we can estimate home direction. This scheme have advan-

tage that is this displacement vectors are robust sensor noise. This algorithm is basic

form of later work of Rofer (Röfer, 1995), Wittmann (Wittmann, 1995), and Moller

et al (Möller et al., 1998). He suggest weighted version of this algorithm. Thus, he

calculate its error and analysis about this error. He also suggest its convergence that
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this algorithm can direct home direction. There is another way to compensate lack

of distance information, the equal distance assumption. This assumption is consider

landmarks are far from agent enough to assume the distance between robot and land-

mark in both locations are equal. This assumption made relationship between home

and current location more easier. This assumption is just valid when there is no object

in close range. To complete and determine these variables, this needs at least three

landmarks. The solution of this relation is in form of field. This field can be described

as matched filter. This matched filter is researched by Krapp and Hengstenberg (Krapp

et al., 1996), and established theoretically by Nelson and Aloimonos (Nelson and Aloi-

monos, 1988) and Mallot et al. (Mallot et al., 1996).

This algorithm is based on the assumption that is landmarks are equal distance. This

assumption cause some error. Franz analysis this error mathematically (Franz et al.,

1998). He also conduct an experiment with real robot. Figure 2.6 describe the arena

he execute experiment.

Figure 2.6: Arena of conducted experiment by Franz et al. Reprinted from (Franz et al.,

1998).

He set the toy houses. This cue of houses is landmark the robot can observe. He

uses modified Khepera robot. He uses conical mirror to get panoramic image (Gaspar

et al., 2000) (Goedemé et al., 2005). From image, the intensity of mirror by hori-

zontal position is input of this system. This conical mirror imaging technique is sug-

gested by Chahl and Srinvasan (Chahl and Srinivasan, 1996) and Yahi, Nishizawa,

and Yachida (Yagi et al., 1995). The horizontal resolution is 4.6 degree. He applied

Wiener lowpass filter (Goldman and Johansson, 1978). To reduce the effect of illumi-

nation change, he remove background, and apply histogram equalization to maximize

contrast. He draw the vector fields by different home location. The result is on Fig-
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ure 2.7.

Figure 2.7: Vector fields in arena with different home location. Shaded area means

catchment area. Reprinted from (Franz et al., 1998).

In the result figure, shaded area implies the catchment area. Figure 2.7B. is drawing

of exact trajectory of robot from other location. With this catchment area, he evaluate

Figure 2.8: Success rate by the distance from home location. Reprinted from (Franz

et al., 1998).

the performance of this algorithm by success rate by the distance between home loca-

tion and current location. The evaluation result is on Figure 2.8. The success rate is

decreasing by the distance.

He suggest a hew way to find home direction with snapshot image. This algorithm

is based on ”snapshot hypothesis” from insect navigation ability like ant or bee. This
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algorithm inspire many researchers. From this idea, there is great one who contribute

to this field.

2.1.3 Navigation based on landmarks

As explained above, insect has amazing navigation behavior. Previous work is just

observing insect behavior to find out insect’s navigation ability and its characteristic.

Dimitrios Lambrinos apply this navigation algorithm of insect to real robot (Lambri-

nos, 1998), (Lambrinos et al., 2000). Another work for navigation of ant using polar-

ization is included his work. He combine this polarization information and visual data

to find out home direction. In this paper, we focus on their work of visual information.

Many experiments of navigation of bee are conducted in previous work (Cartwright

and Collett, 1983). This previous work provide a model by comparing snapshot from

home and current view.

He follows snapshot model in Figure 2.9.

Figure 2.9: Proportional vector model from snapshot model. Reprinted from (Lambri-

nos et al., 2000).

He improve snapshot model, and suggest one model. This model is called Proportional

Vector model(PV model). Original snapshot model has one problem as we provide in

previous section. The lack of distance information can occur error to estimate home

direction. To overcome this, he consider change of detected width of landmark as

distance. It seems quite fair assumption. If the object is near, landmark must be de-

tected wider, while far object is looked narrower. This difference can be a indicator

of distance. With this information replacement of parameter, it can be more accuracy.

He suggest this model. He conduct an experiment with a robot. The experimental

environment is described on Figure 2.10.
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Figure 2.10: Experiment environment. The position of robot is home location. Reprinted

from (Lambrinos et al., 2000).

In this environment, he uses four landmarks. He change arrangement of landmarks.

The home location is registered position in figure. In this environment, he conduct

navigation experiment. To apply the model, he need to extract landmark location or

width of landmarks. Following figure explains how he can extract landmark.

Figure 2.11: Image processing for landmark navigation. Reprinted from (Lambrinos

et al., 2000).
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He uses omni camera to get the image around agent (Winters and Santos-Victor, 1999).

In this arena, or environment, there is artificial landmarks whose color is black. There

are four black artificial landmarks. These beams can be extracted by clearly distin-

guishable contrast relate to environment. He extract these landmarks by thresholding.

There is only landmarks and noise factor like black object in far range or shade. He

manually select the band that can extract landmarks. This horizontal area is picked and

we can extract location of landmark by this information. In this extracted landmark,

we also can know its width to apply proportional vector model.

He suggest another algorithm, the average landmark vector algorithm. This algorithm

is basically based on work of Franz et al. This algorithm is using average landmark

vector. The landmark vector is defined by unit vector from agent to observed landmark.

Average of these landmark vector can represent characteristic of each position. This

algorithm is explained graphically in Figure 2.12.

Figure 2.12: Average landmark vector algorithm. Reprinted from (Lambrinos et al.,

2000).

The difference of average landmark vector for each position indicate home direction.

This algorithm also can provide home direction well. This algorithm is one that just

consider only change of bearing. He suggest 2 algorithms, proportional vector algo-

rithm, and average landmark vector algorithm. These algorithms are valid and can in-

dicate home direction well. To prove this stability of algorithm, he compare these two

methods and traditional one, snapshot model. He set 27 landmarks. These landmarks

are very many to recognize. Each landmark has different size. In this environment,

we simulate how the agent will move by comparing two image from home and current

location.

In this result, we can confirm the convergence of these three methods. In this simula-
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Figure 2.13: Snapshot model(left), PV model(center), and ALV model(right). Reprinted

from (Lambrinos et al., 2000).

tion environment, there are many landmarks. The conductor of this experiment expect

this result is not good by overcrowd environment. Even this environment, the result is

very good, and the show the robot can find home location with these methods.

The coworker of D. lambrinos, R. moller, study further of ALV algorithm (Möller,

2000). In his study, he show the advantage of using average of vectors rather than

using sum of vectors. This averaging of vector is robust to occlusion. When a landmark

observed in home location is missing in current location, averaging can guarantee that

direct home location with smaller error while homing direction of summing method is

diverge.

He also conduct a experiment with simple robot. He set the arena with some landmarks

on the wall. He uses photo diode to sense landmarks. This robot have 32 photo diodes

to sense landmarks around robot. With this detected landmarks, he apply average

landmark vector algorithm to find out home location. He vary number of landmark.

He uses just one landmark to find out home direction. In previous section, Franz (Franz

et al., 1998) already show that the solution is needed at least three landmarks. This one

landmark condition violate this condition. Due to this lack of landmarks, the home

direction is not converge. This home direction is just direct landmark position. He also

conducted with two landmarks. This case also didn’t show convergence of homing

vectors. To compare this condition, he conduct three landmarks. This result show

homing vector direct home location. He evaluate his experiment with how the robot

close to home location. He also show the convergence of algorithm by mathematical

proof.

Optical flow is also kind of image processing to detect movement of object in two

scene (Fennema and Thompson, 1979), (Horn and Schunck, 1981), (Nagel, 1982).

With some constraint like there is less change of brightness or a gradient assump-
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tion (Brox et al., 2004), (Papenberg et al., 2006), this algorithm provide velocity of

object well (Hatzitheodorou et al., 2000).

This algorithm is consist of major two parts (Shi and Tomasi, 1994). One is track-

ing features from image (Harris and Stephens, 1988), (Vardy and Oppacher, 2004),

(Vardy and Oppacher, 2003), and another is finding correspondence. To finding corre-

spondence of two images, some researcher try to extract distinctive features (Se et al.,

2002), (Lowe, 2004). Some researcher try to find this correspondence just using

brightness of block (Weber et al., 1999), or color regions (Gourichon et al., 2003),

(Goedemé et al., 2004), (Gourichon et al., 2002). This optical flow and visual hom-

ing methods with snapshot hypothesis are very similar problem (Gluckman and Nayar,

1998). Traditional optical flow is block matching (Jain and Jain, 1981). This algo-

rithm is compare distance of block from two images in certain radius. With this block

matching method is applied local navigation (Vardy and Moller, 2005).

In his experiment, he assume that orientation is not changed in current location. His

test image set is already aligned, and he assume these images are aligned. He also

provide that using visual compass, magnetic sensor, or polarization is one way to find

its aligned angle. In his previous suggested algorithm, the average landmark vector

provide homing direction with its approximated distance. Magnitude of difference of

average landmark vector is also indicate distance from home location. In this optical

flow technique, this homing vector is normalized and magnitude of it means nothing.

He uses image database of the robotics laboratory of the computer engineering group

of bielefeld university. He apply this image database two homing algorithms, one is

warping, and another is block matching algorithm he suggested. The result of this

simulation is on Figure 2.14

Figure 2.14: Result of warping method and block matching method with different home

location. Reprinted from (Vardy and Moller, 2005).
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Figure 2.15: Robot trajectory of two methods. Reprinted from (Vardy and Moller, 2005).

In this result, both methods are converge with snapshot position at (6, 4), but at (0,

16), the performance of warping method is decreased. This snapshot point have close

large object that cause break of equal distance assumption. This lack of assumption

distort the performance of warping method. Meanwhile, block matching method have

perfect return ratio that means its performance is best. This simulation is off-line test.

To prove its validity in on-line situation, he apply this methods to real robot. He draw

its trajectory in Figure 2.15.

There is another contribution of Cha. Y (Cha and Kim, 2012) using optical flow tech-

nique. In his work, he use another kind of optical flow technique from Lucas and

Kanade (Lucas et al., 1981). In his work, he combine the average landmark vector

algorithm from D. Lambrinos (Lambrinos, 1998), and pyramid LK algorithm. He ex-

tract rotational component of optical flow, and find out aligned angle with intensity of

generated optical flow. Another experiment with real robot is conducted. With opti-

cal flow, robot estimate its movement and integrate all movement it made. With this

movement, it return home location. The result is on Figure 2.16.

He uses three kinds of movement, and confirm this agent can return to home well. He

evaluate this homing performance with angle error and distance error. He also show

its robustness in low resolution image case. This optical flow algorithm have many

common problems and characteristic in visual homing navigation. This can be another
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Figure 2.16: Example of robot trajectory using optical flow algorithm in different kinds

of movement. Reprinted from (Vardy and Moller, 2005).

solution to local visual navigation problem.

2.1.4 Place cells

There is another different approach to understand a navigation ability of animals. Es-

pecially, the rodents have better performance to find their home after foraging. There

are many experiments on these rodents to find out their characteristic, and change when

they find their home or their current location. In previous approach, try to find their

navigation ability by changing environment or condition while this approach observes

their activity of brain directly. This approach analyzes brains of these rodents, and

find out specific part of brain involves a navigation task which is called the Hippocam-

pus. These cells are located in CA3 and CA1 pyramidal cells. Figure 2.17 (a) shows

anatomical structure of the Hippocampus and its connections.

The Hippocampus is located in the medial temporal lobes, and it is connected to the

entorhinal, parahippocampal, and perirhinal cortices (Andersen et al., 2006). This Hip-

pocampus involves long term memory, and there are many explanation for this part of a

brain. This organ involves not only long term memory, but also a spatial domain which

concern problems like forgetting place where they been. There are many reports on

damage of the Hippocampus in humans cause spatial memory problems. This reports

implies that this area of a brain involves spatial tasks like navigation problems. In hu-

man, this Hippocampal area helps to navigate, and there is a discovery of ’place cell’
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Figure 2.17: (a) Anatomical model of the hippocampus, (b) Place cell activity by its

location, (c) Place cell of rodents (Reprinted from (Nakazawa et al., 2004), (Bird and

Burgess, 2008))

has same role in rats (O’Keefe and Dostrovsky, 1971). The place cells fire by location

of an animal in environment. As they explore an environment, these place cells are

trained, and it provide reasonable spatial representation of itself. These place cells are

not direct response of their sensory input. If it was direct response of sensory input

of their visual information, it is changed by its direction which decide overall scene of

own (Cressant et al., 1997). In experiments on these rats, it is not changed even they

had different scene, but it has fixed location. This experiments implies that these place

cells fires by its location it is not dependent on its orientation. Rather than it depend

on a visual information directly, it depend on its own movements, and this process is

known as the ’path integration’ (Hafting et al., 2005). There is another cells involves

the navigation tasks which is called the head direction cells. These cells are activated

by its orientation, and this activity can provide the clue of orientation problem. With

these cells, there is a model to explain how it works together.
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The Byrne, Becker, and Burgess (BBB) model is a plausible theory to explain mech-

anism of place cells (Addis et al., 2007). This model involves a anatomical structure

of the Hippocampus, and its connection. When we remember something, we can re-

member details of environment. Boundaries of environment, distance, geometric char-

acteristic can be these details. These details can be classified into two different classes.

One is environment information which represent geometrical information, and overall

scene around it. This information is processed by the parahippocampal cortex (Epstein

and Kanwisher, 1998). Another is feature information which is distinctive character-

istics of scene including edge, distinctive colored, and uniquely shaped object. This

information is processed in the perihinal cortex (Buckley and Gaffan, 1997). The BBB

model combines this perceptual information from these parts of brain. This model re-

member features from environment, and it also remember detected direction using the

head direction cells. This geometrical information limit the environment, and direct

relative location of these detected features. In this environment, there are many fea-

tures in their sight. This distinctive features can provide clues to find their location.

The perihinal cortex remember these features, and its detected angle. It remember

many features, and it is activated by current visual information. If it observe features

in their memory, the perihinal cortex remind its detected angle by location. By compar-

ing these detected angles of features from memory and visual information from current

location, it decide a current location relative to given environment.

To support this model, there are many experiments on rodents. Figure 2.17 (c) shows

that recording of extracellular action potentials of the hippocampal cells by moving of

rodents. These place cells are composed of several independent cells which are acti-

vated by its location. One of researches to find out mechanism of the brain is observing

this activity directly using probe. In this experiment, a probe is located in a brain of

a rodent, and let him move freely. During exploring, and moving, activity of the hip-

pocampus is recorded. From this recording, there is activity depending on its location

in figure 2.17(b).

This activity of place cell is simple model to solve a navigation problem, and finding

its own location. We take this model which is activated by its location, and finding

its current location. With this model of brain, we suggest a solution of localization

problem.
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2.2 Feature matching algorithm

2.2.1 The scale invariant feature transform

By moving camera, we detect an object with different scale. An closer object is seems

bigger, while far object seems smaller. This scale problem is one of the important

factor of feature matching problem. There is a feature matching algorithm robust to

this scale problem, the scale invariant feature transform (Lowe, 1999). This algorithm

uses multiple scale of image. Different octaves of image can have resolution issue.

To overcome this issue, this algorithm also apply the Gaussian mask to cut off image

frequency. With this different size of image, we find local maximum or minimum

points to obtain scale invariant points. With these points, we calculate SIFT keys, and

these are on Figure 2.18. This SIFT keys can describe features of image. They compare

Figure 2.18: The SIFT keys for original image(upper) and transformed image(lower).

(reprinted from (Lowe, 1999))

these keys from original image and transformed image. They generate transformed

image by rotating, stretching, rescaling, and changing brightness. 78% of keys are
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matching even they transform image. They show that keys are robust to transform of

image. With these keys, we can detect object with robustness to image transform. In

this paper, we do not need to recognize an object. We can use these keys as landmarks.

Each keys have its own characteristic, and these are also considered to landmarks.

2.2.2 The speed up robust feature

The SIFT algorithm is robust and have good performance, but there is a shortage. That

is this SIFT algorithm have heavy computational load. This shortage lead to its run-

ning speed. To overcome this shortage, there are many alternative algorithms such as

PCA-SIFT. This algorithm reduce the dimension of SIFT keys to reduce computational

load. There is another feature matching algorithm with advantage of running speed,

the speed up robust feature algorithm. This algorithm uses the fast Hessian matrix to

find out interest points. The Hassian matrix includes second derivatives of Gaussian.

To reduce this calculation, they approximate this operation by box filter on Figure 2.19.

Figure 2.19: Approximation for Gaussian second order partial derivatives. (reprinted

from (Bay et al., 2008))

Above derivatives of Gaussian is approximation along y direction and xy direction. By

applying this matrix to integral image, we can obtain interesting points.

After we find interesting points, we need to calculate descriptor for each points. To

achieve this, we apply the Haar wavelet filter. This process is on Figure 2.20.

2.3 The SLAM problem

The simultaneous localization and mapping (SLAM) is a problem of concurrently the

structure of the surrounding environment with perceived sensor data, while simultane-
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Figure 2.20: Interesting points(Left). Haar wavelet filter(Middle). SIFT descriptor(Right).

(reprinted from (Bay et al., 2008))

ously getting localized in it. This concept was originally developed by Hugh Durrant-

Whyte ?, and Cheeseman ?. This SLAM problem concerns building a map from un-

known surrounding environment by mobile robot, and localization itself at the same

time. This algorithm have many parts to solve this problem. First of important step of

the SLAM algorithm is a state estimation. This part estimate its current position infor-

mation from state updating. For instance, a mobile robot moves with given velocity for

a second. In this case, we can estimate its position after moving by solving the kine-

matics of this robot. This position information have same meaning of the state in the

SLAM algorithm. This estimation of position have same meaning with the prediction

in the Kalman filter. Another important part of the SLAM algorithm is the estimation.

This estimation part is find its position using the map, and sensor data. This estima-

tion process also can be divide into some specific techniques by the way to solving the

problems. For instance, we consider that this SLAM algorithm uses landmark feature

to find its current location. For this case, extraction of these landmark feature can be

a first step to find its current location. This extraction can be any sensing mechanism.

There are most commonly used sensors which are the visual camera, and laser sen-

sor. Visual camera provides the visual information, and it does not provides landmark

feature itself. It requires extra feature extraction algorithm from visual information.

Visual template, vertical line, horizontal line, and corner based feature are most pop-

ular feature extraction from visual information. When this algorithm is depending on

laser sensor, it use distance data itself to construct the map. With this information, it

associate current sensor data, and previously built map. With this association, it can

find its current location from sensor data. We have two estimation from state estima-

tion, and sensor data. There is final step of the SLAM algorithm which is combine



30 Chapter 2. Background

these two estimation. This step is also called state update its state, and a map including

landmarks. For each step, there are many ways to solve, and this solution is highly

related to applying environment.

In the SLAM algorithm, it represent all parameters with probabilistic expression (?).

It does not decide its current position, and heading direction in deterministic express.

To express possibility of position, it assume that this distribution is the Gauissian. This

distribution is represented by its mean, and covariance. With these mean, and covari-

ance information of current position, we can find its possible location. This assumption

is one of important assumption to apply the Kalman filter. If actual system does not

satisfy this assumption, it cause error to estimate its current location.

There is another important assumption that to find its current location which is the 1st

order Markov chains. It is memoryless conditions. This assumption that current prob-

ability of current state is only related to previous state. This assumption is expressed

by following equation.

Pr(Xn = xn|Xn−1 = xn−1,Xn−2 = xn−2, ...,X1 = x1) = Pr(Xn = xn|Xn−1 = xn−1)

This assumption implies that the current position is only affected by proximately pre-

vious step. This assumption allow us that we don’t need to consider older previous

steps to estimate current position. This assumption cause drastic calculation reduction.

Most of SLAM algorithms are based on this assumption.

With the 1st order Markov chains, it apply the Bayes filter to estimate current location.

The Bayes filter is following equation.

P(A|B) = P(B|A)P(A)
P(B)

This form is for descrete event, and this expression is for general probability. We have

to apply control factors, and previous state to estimate current state. In above expres-

sion, an event A is that probability distribution of possible location when a mobile

robot was at xt−1, and there is known conditional probability to have new state from

control at time t, p(xt |ut ,xt−1).

bel(xt) =
∫

p(xt |ut ,xt−1)bel(xt−1)dxt−1

This equation express of P(A) in the Beyes filter equation. This term also called the

‘’belief” in SLAM algorithm. This equation implies that possiblity of state after con-

trol action. This equation does not consider the observation of sensor data. This equa-

tion consider all possible state which is expressed in above equation as integration
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range. For each possible state at time t-1, it calculate all possible state at time t after

control action. This control action is in p(xt |ut ,xt−1). This term implies that relation-

ship between current current state, previous state, and control action. By integrating all

possible estimated current state from previous state, it can find estimation current state

by using previous state, and control action. In general mobile robot case, state implies

that its current poses which include coordinate, and heading direction. A conditional

probability term, p(xt |ut ,xt−1), implies that a kinematics of the mobile robot. If this

robot depends on two wheel, this control factor can be velocity of these two wheels.

With this kinematics, we can estimate its possible location from previous state. With

this estimation, we can find its current state just using its control action, and previous

state. To compensate this estimation, it also use observation. This observation equation

is in following equation.

bel(xt) = ηp(zt |xt) bel(xt)

This equation implies that we already observe surrounding environment with sensors.

With this sensor data, and map information provide abundant information to estimate

its current position. In this equation, it also considers all possible state which is ex-

pressed in bel(xt). For each possible state, it calculate conditional possibility to obtain

observed data with given sensor which is expressed in p(zt |xt). In above equation, a

term η is for normalization, and this one is in following equation.

η =
∫

p(zt |xt) bel(xt) dbel(xt)

With these calculations, we can estimate its current state by compensating estimated

state, or the belief, with observed data from sensor. This approach have one critical

shortage which is this filter have too much calculation load to apply in real problem.

2.3.1 The Kalman filter

In the Bayes filter, it consider all possible previous state, and its conditional probability.

This considering of state increases computational load too much. To overcome this

shortage, the Gaussian assumption is applied in this algorithm. This applying of the

Gaussian assumption is the Kalman filter. To apply this assumption, there are many

calculation procedures, but these are not considered in this paper. With this applying of

assumption, we can have few simple equations which is the Kalman filter in following



32 Chapter 2. Background

Fx+Bu

Figure 2.21: Relationship between the kinematics, and state transition of the Kalman

filter.

equations.

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk

Pk|k−1 = FkPk−1|k−1FT
k +Qk

These equations are first two equations of the Kalman filter which is called the predic-

tion. This equation is basically same procedure of calculating the belief in the Bayes

filter. In the Bayes filter, it considers all possible state. The Kalman filter solve this

problem with applying the Gaussan assumption. It consider only mean of all pos-

sibility, and covariance of it. In other word, the Bayes filter express the belief with

probability distribution function while the Kalman filter express that with its mean,

and covariance. In above equations, parameter k implies that index of steps. k-1 im-

plies a previous step, and k implies a current step. A matrix F is state transition matrix

which implies transition of state by step. In some case, the state can includes velocity

information of robot. In this case, position is always changed without any control ac-

tion by step. This matrix consider this change for some case. uk implies that control

action. In two wheel driven mobile robot case, this matrix is velocity of two wheels.

A matrix B implies change of state from control action. This matrix is a kinematics

matrix which implies change of position, and heading direction by velocity of two

wheels. If there are transition matrix between two probabilistic parameter, there is one

important relationship between its covariances with an following equation.

Y = FX , Cov(Y ) = F ∗Cov(X)∗FT

Y = X +C, Cov(Y ) =Cov(X),where, C is a constant
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A second equation of the Kalman filter implies this property. A control action is added

to state transition, but this adding is not change its covariance because this state tran-

sition can be considered as constant for that step. From these property, we can find

estimating covariance with a second equation of the Kalman filter. In this equation,

there is a matrix Q to add movement noise. Figure 2.21 shows a relationship between

the kinematics and state transition of the Kalman filter. In previous state at time k-1,

its distribution is expressed by its means and covariance. A yellow dot of left robot is

mean of previous state, and red ellipse implies its covariance. From this distribution

of previous state, and control action, we can estimate its possibility distribution of the

current state. In this case with a mobile robot with two wheels, a kinematics is solution

of finding state transition, and control matrix. This ellipse is not changed when we just

apply the kinematics. A red region of right robot is estimated covariance of current

state. This current state does not consider control error. In above equation, a term ’Q’

is considering this control error. By adding this term into covariance, a size of ellipse is

increased, and it means its distribution is enlarged by control error. This consideration

of control error allow compensate this error. If this error is not enlarged, or considered,

control error is remaining by steps. If it happens, control error is accumulated as it

happened with the ”dead reckoning”. A magnitude of control error term affect overall

performance. If it is too small, this system has accumulated error. Otherwise, when it

is too small, this system depends on sensing data. It also can cause estimating error

by a type of sensor. With this prediction, we can estimate its current state with control

action.

There are other equations of the Kalman filter in following equations.

ỹk = zk −Hkx̂k|k−1

Sk = HkPk|k−1HT
k +Rk

These above equations are the innovation of the Kalman filter. These equations implies

estimation of sensor data. A term z is observed sensor data at time k, and a term H

implies that sensor data that would be detected on a state from prediction process. Dif-

ference between observed data in real, and one from prediction can be a measurement

residual. A term S implies covariance of the measurement residual. This covariance

of the measurement residual. The observed sensor, a term z, is constant at time k. It

does not change at that time, and this property cause this covariance of measurement

residual is only depending on estimated state from prediction, and observation matrix

H. For this reason, covariance of the measure residual is similar form of covariance of
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current state from prediction. A term R is a factor to compensate observation error.

If observation is always perfect, this term is not needed. In real case, there is some

limitation of sensor, and this cause degrade of observation of data. For instance, a

laser sensor can detect distance from obstacles, but there are severe error when these

obstacles have transparent. This cause severe degrade of observation, and it also cause

severe degrade of estimation of current state. From this measurement, the Kalman

filter calculate the Kalman gain as following equation.

Kk = Pk|k−1HT
k S−1

k

This Kalman gain implies that inverse of observation matrix, and uncertainty ratio of

prediction, and innovation. This matrix convert a sensor data into state by calculating

inverse of observation matrix term. This term also considers covariance of current state

from prediction, and innovation. With the Kalman gain, there are update equation to

make final estimation of state by combining these two information from control, and

observation in following equations.

x̂k|k = x̂k|k−1 +Kkỹk

Pk|k = (I −KkHk)Pk|k−1

Final estimation of state is linear combination of estimated state from prediction, and

innovation. This ratio of coefficient is from the Kalman gain which consider its co-

variance. This Kalman filter also update covariance of state with these two types of

information. These equations are from mathematical analysis of the Bayesian filter

with the Gaussian assumption. With these consideration, most possible state can be

calculated by above equations. This update process is in figure 2.22. In above figure,

there is estimated state from prediction of the Kalman filter in left of the figure. This

prediction also has its mean and covariance to express its distribution. On the other

hand, there is another estimation from the observation, or measurement. There are

observation from sensor date on right side of the figure. It detects surrounding envi-

ronment, and finding its possible current state. This is also expressed with its mean

and covariance of estimated state. In update step, it combine these two Gaussian dis-

tribution of estimation of state to find optimal solution. There is an optimal mean, and

covariance with highest probability, and use this point as final decision of current state.

The Kalman filter combines two different estimations to find optimal current position.

This concept is very quite fit to solve the SLAM problem for some reasons. There are
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Figure 2.22: Innovation, and update of the Kalman filter.

typical measurement to find its current state, or position which are accumulating con-

trol action, and measuring surrounding environment. These two estimation has its own

characteristic. Accumulating control action, or the ”dead reckoning”, has accumulated

noise. When there is any noise, and control error, this error propagate to next step of

estimation. This error is increased by step, and overall performance of estimation of

state is also decreased. This characteristic guarantee performance in close range, but

it is not work with wide range. On the other hand, sensor measurement also have one

shortage depending on type of the sensor. In general case, this sensor data is not suffi-

cient to determine its current state uniquely. For example, a case that environment has

symmetric structure causes a vague decision to find its current position. When there

are many similar structures in environment, find its current location with only using the

sensor data is not possible. These characteristics of two different measure of position

can help each other to estimate its current state. This concept is a basic of the Kalman

filter in the SLAM problem.

There is another important step to implement the Kalman filter into the SLAM prob-

lem which is decide the state. In previous equations, there is a state variable ’x’. We

have to decide what is this variable, and what it includes. For simple mobile robot,

coordination of the robot, and heading direction can be the state variable. If there are

more complex case, more variables can be included in this state variable. In general

case, it assume that this robot is moving on plain environment. It has x, and y co-

ordinate to express its current location. With this coordinates, a heading direction is

also can be an important factor to decide its position, and it is also can be included

to the state variable. This case have another problem to implement the Kalman filter
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directly into the SLAM algorithm which is absence of the map. When we previously

have entire map, this additional expanding of state variable is not needed, but if it is

not, there is one serious problem. This problem is it cannot decide its current state

with measured sensor data. In this case which does not have the map, a mobile robot

build the map with their sensor. They have to travel surrounding area, and observe

the environment. These observation is also not always perfect, and these information

of the map have to be in its memory. To solve this problem, it build its own map in

the state variable. In this state variable, it includes position of observed landmarks, or

features. By setting this state variable, it update its own position while it also update

location of detected landmarks. This updating process cause improvement of overall

performance of observation. This technique is commonly used in many different types

of the SLAM algorithm based on features in environment. This technique have another

problem, which is it increase size of state variable, or dimension of state variable. A

size of this state matrix is highly related to number of landmarks in environment. It

means that when we target large environment, this size is too large. In calculation of

the Kalman filter, there is inverse operation of matrix which size is same to the state

variable. This inverse matrix cause inaccuracy to estimating current state. There are

many different technique to solve this problem by managing considering landmarks in

given environment. This management is add newly observed landmarks, and remove

some landmarks which was detected far before. This technique have to be attached to

the SLAM algorithm to implement in real problem.

This using of Kalman filter have another problem to implement in real robot. To solve

this SLAM problem with the Kalman filter, we assume that distribution of state is the

Gaussian. On the other hand, there is state transition matrix, and observation matrix to

find next step, and observation. This matrix cause a problem to apply directly which

is that these matrix operation is not linear. When we apply non-linear operation into

the Gaussian distribution, its result is not the Gaussian. Every time we apply this non-

linear operation, it cause estimation error by violating the Gaussian assumption. To

overcome this problem, there is two commonly used algorithms. One is the extended

Kalman filter which approximate this non-linear transformation by the tailor series.

This non-linear transform can be approximated by the tailor series. This extended

kalman filter depends on the Jacobian matrix, and use this matrix as transform ma-

trix, and observation matrix. This technique is most commonly used Kalman filter for

many applications. There is another type of kalman filter to overcome this non-linear

problem which is the unscented Kalman filter. This algorithm suggest another method



2.4. Summary of Chapter 2 37

to express covariance. We can transform a point with non-linear transformation easily,

and we can find a mean of transformed points by transforming a mean point. Esti-

mating proper covariance matrix after transformation is challenging problem. This

algorithm suggest the Sigma vector concept to simplify this problem. Its covariance

matrix is square matrix, but it can be expressed by these Sigma vectors. These Sigma

vectors are vector points from mean of data distribution. A direction of each Sigma

vector is same to each Eigen vector of covariance matrix. A length of each Sigma vec-

tor is related to its corresponding Eigen value. This algorithm transform these Sigma

vectors, and it decide proper covariance with these transformed Sigma vectors.

2.4 Summary of Chapter 2

In this chapter, we introduce different background ideas. Our basic motive is based on

behaviour of animals, and there are many analysis of them. From this behaviour, there

is a commonly accepted hypothesis which is the ’snapshot hypothesis’. It implies that

they rely on their visual information, and they have to find direction to target location

by comparing two snapshot images. From this hypothesis, there are many derived

algorithms to explain, and simulate animal navigation.

We also introduce another approach which is based on their anatomical characteristics.

The place cells are most important results to explain this characteristic.



Chapter 3

Local navigation using HOG

descriptors

Many algorithms are derived from the navigation ability of animals using visual in-

formation. Animals compare images between their home and the current location and

estimate the direction to home relative to their current location. This comparison re-

quires proper landmarks to extract valuable information from the visual information.

Many methods are used to extract landmarks; we use HOG descriptors as landmarks in

an image. In this section, we present details on the extraction of the HOG feature; and

use specific bins as landmarks. This section is prepared for submission as a scientific

paper (Baek and Kim, 2015b).

3.1 Navigation using HOG descriptors

3.1.1 Section based on HOG descriptors

We select a narrow band of an image that contains meaningful landmark informa-

tion 3.1. This region includes most objects in the environment, and is not drastically

affected by image warping. We ignore the rest of the image to estimate homing di-

rection. Images of both the current, and home locations are compared to determine

thehoming direction. The band image is then divided into many subsections (as shown

in figure 3.1).

A centered gradient filter is used to calculate the oriented gradient vectors for each

39
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(a)

(b)

(c)

Figure 3.1: The histogram of oriented gradient vectors of each section of band image.

(a) with small cell size(20 by 20), (b) with large cell size(40 by 40), at home location, (c)

at current location.

pixel of an image. Each cell contains HOG vectors. In figure 3.1, the number of bins

is 8, and we vary it to compare the performance. This HOG descriptor for each cell is

a fundamental element of our algorithm; we depend on the information obtained from

the descriptors. The cell size has a considerable effect on the overall performance be-

cause it decides the amount of information in an image. When the cell size is very

large, details in an image merge and mix into one histogram thereby degrading the

overall performance. On the other hand, when the cell size is very small, details in an

image do not sufficiently express the characteristics of cells. Thus, we have discussed

an optimal cell size that delivers the best performance when locating the homing di-

rection presented in this section.

These images shown in figure 3.1 include many objects in the environment Each object
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has a unique gradient pattern; this pattern is similarly observed in images from different

locations. This consistency of the HOG descriptor provides meaningful information

for use in navigational tasks.

3.1.2 Aligned angle of panoramic image

To realize the accurate homing direction, we need to determine the required orientation

of the mobile robot, or camera used and ascertain the angle difference between the

camera’s direction at home; and current locations. Without determining this angle

difference, bearing information cannot be extracted from the observed landmarks. To

solve this problem, we use the idea of a visual compass and apply the HOG descriptors

to compare. HOG descriptors are obtained from panoramic images, and are compared

with those in an image taken at a different orientation at the same location shown in

figure 3.2. We then determine the distance between the descriptors at far locations

and those at the center location and the Euclidean distance between the corresponding

descriptors. Thereafter, we rotate one of the images, and calculate the distance by the

rotation angle; this distance is at a minimum when these images are aligned. With

this image property, we can determine the angle difference, or orientation difference

between the images. We can then align these panoramic images, and deteremin the

aligned bearing information from the observed landmarks.

3.1.3 Homing direction using HOG descriptors

HOG descriptors are obtained for each section of a panoramic image. With these de-

scriptors, we can determine the appropriate homing direction by comparing two images

(one from the home location and another from the current location). We summarize

our algorithm using equations as follows :

HOG descriptors :
−→
H11

−→
H12

−→
H13 · · · −−→

H1P
−→
H21

−→
H22

−→
H23 · · · −−→

H2P

...
−−→
HQ1

−−→
HQ2

−−→
HQ3 · · · −−→

HQP
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Figure 3.2: (a) The distance between an image from center and its shifted image by

calculating the Euclidean distance of HOG descriptors by rotation angle. (b) The result

in polar form. Distance of the HOG descriptor between center and far locations by

rotation angle. (c), (d), (e), and (f) represent images obtained at different angles, i.e.,

30◦, 60◦, 90◦, and 120◦ respectively.

where P is the number of sections in the panoramic images, and Q is the number of

bins for the HOG descriptors. Equations used to decide the average landmark vectors
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for each bin at the home location are as follows :

−−→
ALV Home1 =

P

∑
p=1

{
∣∣H1p

∣∣cos(
2π
P

p),
∣∣H1p

∣∣sin(
2π
P

p)}

−−→
ALV Home2 =

P

∑
p=1

{
∣∣H2p

∣∣cos(
2π
P

p),
∣∣H2p

∣∣sin(
2π
P

p)}

...

−−→
ALV HomeQ =

P

∑
p=1

{
∣∣HQp

∣∣cos(
2π
P

p),
∣∣HQp

∣∣sin(
2π
P

p)}

The average landmark vectors from each bin are merged as follows :

−−→
ALV Home =

Q

∑
q=1

[
P

∑
p=1

{
∣∣Hqp

∣∣cos(
2π
P

p),
∣∣Hqp

∣∣sin(
2π
P

p)}]

Using this equation, we then obtain the average landmark vector of an image from the

home location. We repeat this for an image from the current location. With the average

landmark vectors from both locations, it is possible to determine the homing direction

using the equations as follows :

−−−−−−−−−−−→
Homingdirection =

−−→
ALV Home −

−−→
ALVCurrent

Most well described features are detected at the edge of objects. Using these features,

it is possible to recognize the correspondence of vectors, and with the correspondence,

we can estimate the homing direction. First, in two images, we assume that the same

object occurs at a similar oriented gradient vector. Although the oriented gradient

vector is not exactly the same, the angle and magnitude will be the same. We then

quantize these vectors in 36 levels (figure 3.3 shows an example of quantized vectors).

We gather vectors in a range of 40◦ - 50◦ and plot them at points where they were

detected. The left side of figure 3.3 represents an object at 130◦ from an agent, and

the object generated vector in a range of 40◦ - 50◦. The right side of the figure 3.3

represents the same object detected at 120◦ from an agent. This level shows the land-

mark location and its change clearly, although most levels cannot represent objects or

landmarks.
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Figure 3.3: Examples of quantized vectors of home (left) and current (right) locations.

The angles in the figure imply the positions of the images. These vectors have angles in

the range of 40◦ - 50◦. This level represents the landmark locations and the difference

between the two images.

Figure 3.3(below) shows an example where no distinctive landmark exists within the

range; such a case is thus ignored. This quantization enables the correspondence be-

tween a landmark in two images to be recognized. Each distinctive vector represent

the landmark location of average landmark vector method. It is possible to determine

the homing location by calculating the difference between the average vector of the

landmark location at the home location and that at the current location (figure 3.4). We

thus calculate the average for each level at the home and current locations, and then we

subtract them. This subtracted vector will be the direction of the home location. The

result is shown in Figure 3.5 (a). The result is obtained from the current location at

left-top location and the home location at center of the environment. The optimal angle
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Figure 3.4: Averaging vector at home(left) view and current(right) view(above). The

homing direction of this range. This vector can present the homing direction.

of the homing direction is -45◦. In the figure, we plot the calculated homing direction

using the difference between the average landmark vectors of the home and current

locations for each bin. The result shows the dominant vectors representing the homing

direction with a small error. It is necessary to navigate several dominant vectors that

have large magnitudes; however, many irrelevant vectors also exist. This is caused by

undetected ranges in the quantization levels, where there are meaningless vectors with

uncertain locations. To reduce the effect of meaningless vectors, we thresholding these

vector with the threshold value decided by maximum vector magnitude. We remove

the meaningless vectors cannot reach its magnitude to the half of maximum vector. The

filtered vectors are shown in Figure 3.5(b). By summing all these dominant vectors,

we can estimate the homing direction.

For using the average landmark vector method, minimum three landmarks are required.

The features obtained from the HOG algorithm indicate landmark information. We

have shown that the arrangement of an average landmark vector array can be used

as a distinguishable feature when acquiring landmark location information from two

images and have previously suggested that the quantization method can be used to in-

dicate the home location. In the previous section, we observed that many meaningless

vectors exist in the quantized average vectors and undetected levels cause such irrele-

vant data. However, we cannot be certain that the meaningless vector can cancel each

other or that the performance will be maintained even if meaningless vectors are re-
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Figure 3.5: Average landmark vectors. (a) Difference among average landmark vectors

of all bins; red line indicates the homing direction obtained by adding all average land-

mark vectors. (b) Threshold difference among average landmark vectors of dominant

bins; red line indicates the homing direction obtained by adding the dominant average

landmark vectors.
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Figure 3.6: Homing direction obtained using given algorithm in a 5 × 5 environment:

(a) from the algorithm and (b) with 0.4 threshold.

tained. To understand the potential effect, we sum all observed data to check whether

the meaningless vectors subdue the performance level. The comparison data used are

thresholded, and we check whether the thresholding can remove the meaningless data
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and improve the accuracy. The hvectors, i.e., the difference between the home and

current locations, can be distinguished at the home location. We simulate the hvectors

at different locations and figure it out there is quite relationship to homing direction.

3.1.4 Local navigation performance

In figure 3.6, the simulation result at different position around the home located at

center. Most vectors point to the homing direction, but there are many meaningless

vectors that need to be ignored. Therefore, we first include all meaningless vectors to

compare their performance by comparing the angular error of the difference between

the observed angle and optimal homing angle. This acts as a concrete parameter to

evaluate the method’s performance. The average angular error is 18.11◦. We also

simulate this estimation at different indoor environments, covering a wide range (as

shown in figure 3.7). We vary the size of each cell and determine that there is an

optimal size for which the appropriate direction is found. When the 20 × 20 cell size

is used, it is not possible to describe the characteristics in each cell because of the

small cell size, and thus, it is considered to be very small to find the correct direction.

The 80 80 size delivers a poor performance than the other cell sizes because much

meaningless information from the surrounding environment is included. In addition,

the area and floor and ceiling of the environment in this image contain no specific

pattern or characteristic, which causes huge errors in the gradient vectors and degrades

the overall performance. Figure 3.7(d) shows the average angular error by case.

Many distinctive features can be observed on the vertical edge of the images. From

this observation, we select oriented gradient vectors with a vertical direction. We then

divide the range of HOG descriptors by their angles, shown in figure 3.8(c). We divide

these descriptors into two ranges to extract the vertical and horizontal descriptors. We

then split the orientation into 8 sections and consider that there are vertical components

in sections 2, 3, 6, and 7 and horizontal components in the other sections. To determine

the optimal cell size and type of descriptors, as shown in figure 3.9, we compare the

average angular error by case and by different measurements. Figure 3.9(a) shows the

average angular error by case from the overall environment, and figure 3.9(b) shows the

average angular error by case from locations near the home location. Figures 3.9(c)

and (d) show the result when a threshold is applied. We remove the HOG bins that

have a magnitude below 30 % compared with the most dominant one. We determine
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Figure 3.7: Homing direction obtained by the given algorithm in a 13 × 13 environment

using different cell sizes: (a) 20 × 20; (b) 40 × 40; (c) 80 × 80. (d) Average angular

error by case.

that there is an optimal cell size and that the type of descriptor does not decide the

overall performance. We divide the types of descriptors with associated angles, as

shown in figure 3.8(c), and set a specific angle range to decide vertical and horizontal

descriptors.

We can find there are optimal size of cell, but types of descriptors does not decide

overall performance. We divide type of descriptors with its angle as in figure 3.8(c).

We set a specific range of angle to decide vertical and horizontal descriptors. This

range can be too wide to express proper vertical descriptors. About 45 degree can be
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Figure 3.8: Homing direction obtained by the given algorithm in a 13 × 13 environment

with different ranges of HOG vectors: (a) horizontal range and (b) vertical range. (c)

Vertical range: 1, 8, 4, and 5 and horizontal range: 2, 3, 6, and 7. (d) Comparison of

average angular error by case.

considered to vertical descriptors. To avoid this, we specify the range. We use narrow

range of angle to extract vertical and horizontal descriptors in figure 3.10.

However, this range can be very wide to express proper vertical descriptors, and there-

fore, the range should be around 45◦. To avoid this problem, we specify the range and

use a narrow angle range to extract the vertical and horizontal descriptors, as shown in

figure 3.10. As shown in figure 3.10(a), vertical descriptors are used to determine the

homing direction.

When finding vertical descriptors with a wider range, a small area exists wherein it
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Figure 3.9: Homing direction obtained by the given algorithm in a 13 × 13 environment

by descriptor type and cell size. (a) Angular error by descriptor type and cell size. (b)

Average angular error in a close range within the environment. (c) With 0.3 threshold

value. (d) With 0.5 threshold value.

is not possible to accurately determine the homing direction, but this does not occur

in this case. The homing direction in most of the areas can be determined, and it is

merged to home. The overall performance using horizontal descriptors is not suffi-

cient for determining the homing direction. We have an omnidirectional image with

warping along the y axis. A horizontal straight line actually appeared as a curve in the

panoramic image. Thus, the horizontal descriptors cannot work accurately, and it is

necessary to rely on the vertical descriptors to determine the homing direction. In Ap-

pendix A, we test this local navigation task with a 13 × 13 environment and simulate a

11 × 11 environment that includes many objects in the target area. Using this environ-

ment, we simulate the local navigation task shown in figures 3.10(c) and (d). The result

shows that the algorithm cannot be used to accurately determine the homing direction

when there are many objects in the field. There is a small area which is opposite side



3.1. Navigation using HOG descriptors 51

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

(a)

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

(b)

Figure 3.10: Homing direction obtained by the given algorithm in a 13 × 13 environment

using (a) narrow vertical descriptors and (b) horizontal descriptors.

of object relative to home location. In this area, it is possible to accurately determine

the homing direction, which shows that it is valid to determine the homing direction

in this environment. We conduct experiments using different types of environments

(Appendix A). Figure 3.11 shows the results on a vector map, where the overall per-

formance is observed to depend on the characteristics of an environment. The indoor

environment gives a better performance than others, and this is related to the clear and

concrete features on an image. Otherwise, outdoor environment have pattern in far dis-

tance. The observed bearing angle of these patterns does not change by location, but

their HOG descriptors vary between locations because of the noise in the camera. Such

a difference causes a bias in the homing direction. In this environment, the top side is

open but the bottom side is closed, and such asymmetry causes the biasing problem.

Other environments lack clear features. Most images have pattern-less walls, which

causes the algorithm to perform poorly. Furthermore, images in this environment have

many errors or noise on the images, which causes a degradation of the overall perfor-

mance. As there is noise on the images, we conduct experiments with noise. We add

some noise to the images from the indoor environment and attempt to determine the

homing direction. The average angular error by noise level and type is shown in fig-

ure 3.12. First, a blur effect is added to the images because this effect occurs when the

focus of the camera is not appropriately set. We thus modify the snapshot images using

a blurring filter and compare the effect by covariance of the filter. This blurring filter
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Figure 3.11: Vector map in different environments: (a) indoor environment; (b) outdoor

environment; (c) moving people; and (d) featureless environment.

is obtained by a mathematical operation and does not change the HOG descriptors.

This implies that the algorithm is robust against the blurring effect on an image when

distinct gradients exist. We conduct another experiment in which we resize images to

a certain percentage of the original ones and apply the nearest interpolation rule. With

these images, we determine the homing direction using the HOG descriptors, and the

performance is not highly degraded in accordance with the size; the overall perfor-

mance is retained when using an image size that is 20 In a previous experiment, we

found that there is an optimal cell size in which the correct homing direction can be

found. To verify this, we compare the entropy level by sizes shown in figure 3.13 and
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Figure 3.12: Average angular error by noise level with different noise types: (a) Gaus-

sian blurring; (b) low resolution; (c) salt and pepper noise; and (d) Gaussian noise.

determine the maximum entropy level with a size of 40 or 60. There is no pattern in

images when a small size is used, and the images become almost random. However,

when a very large size is used, the bottom and top of the environment are included,

and the images are pattern-less, causing a lower entropy level. Thus, as previously

mentioned, there is an optimal cell size that can be used to determine the appropriate

direction.

3.1.5 Illumination change

This algorithm using gradient feature can be affected by change of illumination. We

gather snapshot images in an outdoor environment. We gather images for a long time,

and it changes the illumination of environment. Mostly, existence of cloud cause a
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Figure 3.13: Entropy by size of cell in different environment: (yellow) indoor environ-

ment; (red) indoor environment (objects); (black) outdoor environment.
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Figure 3.14: Illumination change of outdoor environment. (a) Environment with cloud,

(b) Environment without cloud, (c) Applying the histogram equalization algorithm.

severe difference of illumination. Following figure shows this difference.

This environment has a clear change of sunlight. Without a cloud, most object has clear

shape, and its shadow. When it is shaded, the overall scene is blurred. These shaded

snapshot images are taken at left bottom of the overall environment. To reduce this

difference, we apply commonly used algorithm, the histogram equalization algorithm.
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Figure 3.15: Average angular error by case. (a) Using the histogram equalization al-

gorithm, (b) Using the Gaussian filter, (c) An example of defects from the histogram

equalization algorithm.

This algorithm compensates the illumination change, and enhance comparison of an

image. We compare one using the histogram equalization algorithm in figure 3.11, and

another without the algorithm in the figure 3.15.

We simulate this environment with illumination change with, and without the his-

togram equalization algorithm. It shows one without using the algorithm has better

performance. When we apply the algorithm, its average angular error is 31.95◦. Oth-

erwise, it is 21.72◦. We find why the degradation of overall performance is caused by

using the histogram equalization algorithm in figure 3.15.

It shows details of a snapshot image. It shows a defect of the image is increased, and

it also causes degradation of overall performance.

3.1.6 Image warping compensation

The omni directional camera uses parabolic mirrors to obtain surrounding environ-

ment. It has skewed image in figure 3.16(a). It shows straight parallel lines as curved
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(a)

(b)

Figure 3.16: Warped image(a), and calibrated image(b).

lines. This warping relation of original straight lines, and skewed lines is depending on

the angle difference between an object angle and focal angle, and distance between the

object and the camera. A pixel in the image warped along y axis from warping effect.

We have to find this relation between original heigh, or observed angle, of the original

image, and warped image. In this figure, we can see a cabinet which has distant for

the camera. It has a focal angle which is not changed parallel line by warping. It has

unique focal angle decided by the curvature of a parabolic mirror. The difference of

the focal angle, and pixel decide warping effect. If a pixel has distance to the focal

angle in the original image, it moves far from the focal angle in warped image. There

is another factor which decides the warping effect is the distance between the object

and the camera. When it is closer than the others, it appeared bigger. This distance is

critical to decide warping effect. This relation between pixel is following equation.

Vo = f (Vf −Vw,D)

Where Vo is observed angle of a pixel in an original image, Vf is focal angle, Vw is

the observed angle of a pixel in a warped image, and D is the distance between the

object and the camera. In the general case, we cannot find the distance to object, and

we estimate this distance from image in figure 3.17.
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Figure 3.17: Warping process. (a) Edge of a snapshot image, (b) Estimated distance,

(c) Calibrated image.

For each snapshot image, we find the edge image using the canny edge detection with

blurring. It can provide bottom line of the overall object. We assume that this bot-

tom line can represent the distance to object. From this bottom line, we estimate the

distance to objects in figure 3.17(b). With this estimated distance information, and

pixel information, we can find the calibrated image in figure 3.17(c). We can find a

curved bottom line from the wall is compensated. We apply this algorithm to all snap-

shot images in a given environment. With these images, we apply our algorithm in

figure 3.18.

In this figure, overall performance is degraded when we use 40 cell sizes. A case we

use 60 cell sizes, we confirm overall performance is remaining. This degrade of per-

formance is from the error of estimating the distance. For the same region of an image,
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Figure 3.18: Average angular error using calibrated images. (a) Using 40 cell size, (b)

using 60 cell size.

we cannot find an edge, or bottom line properly, and it causes severe degradation of

overall performance. This compensation has to be more accurate to find distance from

object.

3.2 Summary of Chapter 3

In this section, we suggest navigation algorithms that have different feature extraction

properties. In accordance with this, we suggest that HOG descriptors, SIFT, and SURF

descriptors can be used as solutions for navigation problems. We consider these de-

scriptors as landmarks, and show that it is possible to find the correct direction relative

to the current location. We find that using specific bins for landmarks can deliver a bet-

ter performance, and that vertical bins have a robust characteristic. We simulate this

algorithm with different parameters. The size of the band image decides the overall

performance, and we find that there is an optimal size when there is maximal informa-

tion. In this section, a visual navigation algorithm is suggested using HOG features.



Chapter 4

Navigation with gradient feature on

image

To find the homing direction, it is necessary to extract landmarks and corresponding

landmarks. We suggest that the feature matching algorithm can be used in this respect.

We simulate different feature matching algorithms to find the correspondence between

landmarks, and apply the SIFT, the SURF, and vertical line features to find correspond-

ing landmarks using visual information (Baek and Kim, 2014). This section is being

prepared for submission as a scientific paper (Baek and Kim, 2015c).

4.1 Navigation with vertical line features

4.1.1 Vertical line detection from omnidirectional camera

A panoramic image is warped along the y-axis. The line at the bottom center of the

image is originally straight line, but in the image it is warped. We thus consider the

warping effect when we select the landmark (a line). Firstly, we obtain the edge of

the image, and map this into the Hough coordinate (an example of this is shown in

figure 4.1). It is necessary to have an edge image, and as such we apply canny edge

detection to obtain the image in figure 4.1(a), which shows the edge image well. Many

line segments are included here, and we thus map this image into the Hough coordi-

nate. Figure 4.1 (b) shows the mapped edge on the Hough coordinate, where each line

implies one edge point. With these mapped edges, we apply clustering and find the

59
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Figure 4.1: (a) Edge of image; (b) Mapping result and clustering; (c) Detected lines

local maximum of the graph. The white boxes represent the local maximum points of

the graph, where a number of line segments can be found. The result of line detection

is shown in figure 4.1 (c), where it can be seen that too many line segments are in-

cluded to use as landmarks. The landmarks need to have their own characteristics, but

the lines are overlapped or not located in the right place.

In the previous section, we mentioned the warping effect of an image. The warping

effect disrupts parallel lines and causes them to curve, which cannot be detected by

the Hough transform. We thus need to find vertical lines rather than parallel lines. We

threshold the lines by the theta value (the tangential angle). Through thresholding, all

lines that disrupt the performance are removed. We need to determine whether line de-
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tection is possible, and thus apply this algorithm into the image of the current and target

locations. The detection result is shown in figure 4.2 (a). The result has many line seg-

(a)

(b)

Figure 4.2: (a) Detected vertical lines at current location, and target location. (b) Gen-

erated descriptor for corresponding lines; and finding minimal matching.

ments, and is thus shown as a long line divided into many line segments. We need to

clustering these by its location. We have just one line for a reasonable line. These lines

are considered to be related to the landmarks, and we can find detected lines within the

corresponding lines. The lines at the side of electric box, and lecture desk. Some of the

lines at the current location have disappeared, or have popped up in the home location.

These differences can only be refined with knowledge of the landmark, and they are
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caused by differences in the observing location where the observing angles of objects

are altered. To determine the correspondence between landmarks at both locations, we

apply the histogram from the oriented gradient technique. This technique generates

descriptors of each landmark. A window is arbitrarily set for each detected line, with

a width of 40 pixels and a height that is the same as that in the panoramic image. For

this image, we apply the R-HOG filter to generate descriptors for each line, but do not

divide the window into sub windows. Figure 4.2 (b) shows the clustered vertical lines

at the current and home locations. We arbitrary pick a vertical line at the current loca-

tion, and set a window around the line (which is represented by the black box on the

panoramic image). For this region, we apply the R-HOG filter, and first histogram is

generated descriptors for the line. There is a corresponding line at the home location,

and we also generate the descriptors for this line. By comparing these descriptors, we

ensure that the response is similar. We check that the approach is right for the line at

the current location by comparing the descriptor for this line and for other lines from

the home location. The distance between the descriptors is shown in the third his-

togram of figure 4.2. There is a minimum at the corresponding line (at 8). The index

of the line is arbitrarily set, but the index of the corresponding point is at 8. There is

also minimal point at 4, which is a line on the another side of an electric box. Such

a similarity of windows can induce a degradation of the performance. However, we

are able to find the corresponding landmarks using these descriptors, and the distance

between other landmarks. We are also able to estimate the landmark correspondence

between images.

4.1.2 Navigation with vertical line

If we construct the environment and take images from it, we can find vertical lines

using the Hough transform and use these as landmarks. We apply the HOG descriptors

to find the correspondence between landmarks. With these landmarks, we apply the

average landmark vector to estimate the direction toward the target location, at the

center of grid.

However, this result is not reliable at all and it implies that there is no information to

use. More information is required, and we thus expand the window.

Figure 4.4 (a) shows that the result with the expanded window is better than that with

the smaller window, although the performance is still not reliable. Figure 4.4 (b) shows
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Figure 4.3: Using R-HOG response; window size is 40 pixels.
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Figure 4.4: (a) Using R-HOG response; window size is 80 pixels. (b) Using a different

window scale.

the result using a different window scale, where a 40 pixel window was used and then

resized. This difference in scale makes the change in resolution robust. However, al-

though the result is improved it still includes a large number of wrong directions. We

thus apply the different HOG filter, as the diagonal HOG filter is able to provide us with

better landmark information. We find a landmark in the current location and pick a cor-

responding landmark in the home location. In the real image, a number of landmarks

have disappeared, and some have popped up. As this operation contains weaknesses

we therefore need to refine it, and to achieve this we pick a corresponding landmark

at a minimal distance from the home location. For this chosen landmark, we again the
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line with minimal distance among the current image. We compare these landmarks

pick each other, than we think this matching is correct, and use this matching. If they

are not choose each other, we waste these landmarks. With this, we expect that the

result is improved. However, there is another available refining process. The correct

matching of lines have not much difference of position along the x-axis, and most of

wrong matching has a large displacement. We find the differences along the x-axis, and

threshold them. If there is a matching line that has a displacement over the threshold

along the x-axis, such landmarks are discarded. Using these refining processes we are

able to obtain an overall better performance than before, and most the vectors point in

the right direction. At some locations however, the vectors are pointed upwards. This

is a default value, which appears when no matching lines exist, and can occur when a

landmark from a current location has a corresponding landmark at the target location.

To refine this result, we determine the minimal matching between the landmarks from

the current location and the corresponding landmark, and this therefore represents the

landmark at the current location. If another minimal landmark exists, it is not con-

sidered to be matching. However, this refining process can sometimes remove correct

matching and can induce the default direction for some points. Another result using

threshold shows that refining is able to improve the result. We have the problem that

we already mentioned in relation to the refining process, which cannot be solved using

the thresholding technique, although the overall performance is much improved. We

therefore need greater accuracy to obtain robust navigational features, and thus apply

another technique from the HOG descriptor. Generally, the HOG descriptor divides

the window around interest points into many sub windows. We therefore apply this

dividing process, which takes a little longer than before. The window is divided into

six sub windows, and we have a total of 48 dimension descriptors for each line. In

this case, we do not use any other features, such as the diagonal HOG or a different

scale. This results show a considerable improvement in the performance. By expand-

ing the dimension of the descriptor the process is considerably improved. We thus

apply the refining process, and a thresholding technique with an expanded process.

These processes are much more complex than when only using the HOG descriptor,

but the performance is drastically improved. However, the result still shows a de-

fault direction at some points, particularly on the right hand side of the environment.

Therefore, to overcome this problem we loose the refining process. For a landmark in

the current location, we find a corresponding landmark in the target location, and for

this landmark we find the minimal distance between it and the current location. We
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then check matching on both sides. However, this refining process is too strict to find

matching lines in some locations, and therefore we loose this refining process. If the

corresponding points has second minimal matching at current location, we also con-

sider this matching is correct. We have accurate performance to find the right direction

toward target location. Find the corresponding landmarks and direction delivers some

reliability.

4.2 Navigation with SIFT features

4.2.1 SIFT features & navigation

We firstly obtain images from within the environments. From the images of the home

and current locations, we find matching SIFT features, as shown in figure 4.5. From

Figure 4.5: Descriptor matching by SIFT algorithm.

the images, we choose five matching features where each matching features implies a

corresponding landmark. However, not all matching features are correct. We consider

these as observed landmarks using the ALV algorithm, and we estimate the homing

direction (figure 4.6).

Results are shown in vector map form. We calculate the homing direction for each
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Figure 4.6: Performance of navigation using the SIFT algorithm shown in a vector map:

(a) in environment; (b) and environment2 with five landmarks, and (c) in environment;

and (d) environment2 using all landmarks with the SIFT algorithm.

point and draw this with an arrow. The home location is set at the center of the field,

and thus the optimal vectors are directed toward the center of the field. The naviga-

tion result is not adequate to determine the homing direction. In homogeneous en-

vironment, this navigation works around the home location, and at close range this

algorithm can work. The arrow directed toward home is directed well with a tolera-

ble error. When there is a large distance to the home location, the algorithm performs

badly and there are some errors related to mismatching by the SIFT algorithm, which

occurs when an object is severely distorted by the difference in location and can de-



4.2. Navigation with SIFT features 67

4 8 16 32 64
0

10

20

30

40

50

60
Average angurlar error by the number of bins

(a)

1 2 3 4 5
0

10

20

30

40

50
Average angurlar error by initial blurring

(b)

−0.2 0 0.2 0.4 0.6
0

20

40

60

80

100
Average angurlar error by threshold for DoG threshold

(c)

0 1 2 3 4
0

20

40

60

80

100
Average angurlar Error by threshold

(d)

Figure 4.7: Navigation performance by parameters. (a) Number of bins for SIFT

descriptors; (b) Gaussian blurring level; (c) descriptor threshold value; (d) matching

threshold value.

grade the performance.

There are many objects inside Environment, which causes an occlusion and a num-

ber of mismatching features. Ultimately it causes a degradation of the overall perfor-

mance. A different method of navigation is required. We need to find some other way

to navigate. We arbitrary pick just five landmarks, and the mismatching of landmark

cause severe degrade of performance. A mismatching have much proportion of total

matching. Thus, it is confirmed that when a few landmarks are used and mismatched,

tremendous errors can occur at each point. Thus, more landmarks are required for nav-

igation. We calculate the difference in the descriptor for each matching, set a threshold

for each matching, and use all landmarks above the threshold. We set optimal param-

eters for the SIFT feature which decide whether mismatching features exist or not.

Some parameters remove noise on the image (their overall performance is shown in
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Figure 4.8: Navigation performance in vector map: (a) in environment1; and (b) in

environment2 using the weighted algorithm.

figure 4.7). Although it is evident that the performance is better than that of environ-

ment2, the performance is still not good enough. There is some mismatching using the

SIFT algorithm. Therefore, we apply another feature of the matching algorithm to find

the homing direction.

4.2.2 Weighted algorithm

To find a correct homing direction using the SIFT features, we need to remove or

reduce the mismatching features causing a degradation of the overall performance. We

need to decide whether each matching feature is correct or not, using the difference

between matching features, and choosing the most possible matching features. We

then also apply this measure to the ALV algorithm. The algorithm for the landmark

vector uses a unit vector toward the observed landmarks. Instead of using a unit vector,

we decide the magnitude by the difference between matching features. This modified

algorithm is the following equation :

−−→
ALV Home =

N

∑
n=1

QnLV n

−−→
ALVCurr =

N

∑
n=1

QnLV n
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Figure 4.9: Navigation performance on a vector map: (a) in environment1; and in (b)

environment2, using a scale compensated algorithm.

where Qn is the difference between matching features. Using this algorithm it is pos-

sible to find the hom-ing direction (figure 4.8). There is a less average angular error

than when the weighted algorithm is used, but the overall performance is not much

changed. This implies that we cannot decide whether the matching features are correct

or not using this measure.

4.2.3 Scale compensation

This algorithm is unable to consider the distance to landmarks and assumes that the

distance between landmarks and a location are all equal. This assumption is not always

satisfied, and therefore the overall performance is degraded. Finding the distance to

landmarks is a challenging problem, but there is a way to compensate this difference

using the ratio of distances. This ALV algorithm does not need the exact distance to

landmarks. A ratio of the distance between the current location and a landmark, and

the distance between the home location and the landmark is required to compensate

this difference. We are able to estimate this ratio using the difference in the scale space

between matching features. We compensate estimating direction to home with this

ratio in figure 4.9. The results show that the overall performance is much better than

the one that is not compensated, and its average angular error of estimating the homing

direction is reduced. This thus shows that compensation using a scale difference can

be used as a solution for the absence of distance information.
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4.3 Navigation with SURF features

4.3.1 The SURF features & navigation

With confirm that the SURF algorithm is also able to adequately perform descriptor

matching. Firstly, we select five matches (the result is shown in figure 4.10. where

the performance is shown to have improved relative to the previous simulation). We

expect that using a greater number of landmarks will deliver an enhanced performance.

However, the result of this test is shown in figure 4.10, where it is confirmed that the
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Figure 4.10: Navigation performance shown on a vector map: (a) in environment1; and

(b) environment2 using five landmarks with the SURF algorithm. (c) in environment1;

and (d) in environment2 using all matching pairs as landmarks with the SURF algorithm.

performance is degraded. We thus analyze this result to determine the cause, and find
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that the degradation is caused by mismatching. With a greater number of landmarks,

there are a greater number of mismatched landmarks, which degrades the performance.

There are less mismatched landmarks using the SURF algorithm, and it is possible to

use only three landmarks to determine the homing direction. As previously mentioned,

with more landmarks there are a greater number of errors. This result is in contrast to

the previous simulation using the SIFT algorithm. We consider that five landmarks are

not adequate for use with the SIFT algorithm, and there is thus an optimal number of

landmarks.

4.3.2 Weighted algorithm

In the previous section, we showed the navigation performance in relation to the num-

ber of landmarks used. The performance of this navigation algorithm was found to be

degraded by mismatching. We therefore suggest an alternative method for determining

the homing direction. In the previous section, we applied the average landmark vector

algorithm to determine the homing direction, which drew the unit vector toward the

observed landmarks. Instead of draw a unit vector, we differ magnitude of the vector.

We need to therefore decide its magnitude. Fortunately, we are able to calculate the

matching score for each matching descriptor, which can be used to consider whether

this matching is correct. This score does not always work, but we can still use this

factor to determine the similarity of matching. We assume that a matching with higher

score have more possibility to correct. We can enhance the effect by matching with

a higher score and reduce the disturbance of mismatching by setting the magnitude

of a landmark vector to its matching score. We thus apply the SURF algorithm to

match the descriptors. We also compare the effect of the number of landmarks used

and expect that the performance would be improved using a larger number of land-

marks. Figure 4.11 shows the performance when five landmarks are used. However,

the performance of this algorithm is found to be the same as before, and we consider

that it is difficult to improve the previous result gained using five landmarks. In some

locations, the angular error was slightly increased when using the weighted ALV algo-

rithm. We thus apply this weighted algorithm using 20 landmarks (this result is shown

in figure 4.11). We then apply the weighted average landmark vector algorithm, and

find that the performance is very much improved. In most locations, this algorithm

was able to direct toward the homing direction. Although the performance is no better

than when using five landmarks, we expect that this method is more robust in relation
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Figure 4.11: Navigation performance on a vector map: (a) in environment1; and (b) in

environment2 using 5 landmarks with the SURF algorithm applied to a weighted ALV

algorithm. (c) in environment1; and (d) in environment2 using 5 landmarks with the

SURF algorithm applied to a scale compensated ALV algorithm.

external factors, such as mismatching. For example, if one mismatched landmark ex-

ists, another correctly matched landmark can revise the error; for example, even with

the occlusion in environment2, the homing direction was correctly identified. There-

fore, it is possible to reduce the effect of mismatching by applying the weighted ALV

algorithm.
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4.4 Localization using vertical feature distribution

In the previous section, we extract vertical lines from images. We suggest an algorithm

to find its current location using its distribution. We have vertical lines in figure 4.12(a).

We set a window around extracted vertical lines. Figure 4.12 (b) shows examples

of it. We can find distinctive window templates to find a unique property for each
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Figure 4.12: Extract vertical line information. (a) Extracted vertical lines, (b) Examples

of template around vertical lines, (c), (d) Template responses.

location. Figure 4.12 (c), (d) shows its responses for each template. In this graph,

x-axis implies observed angle of vertical lines, and y-axis implies index of locations

in the environment. We have total 169 environments. For each location, we find a

vertical line which has most similarity to the given template image. The red circle in

the graph implies observed vertical lines, and the black dot implies that most similar
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vertical line with the given template. We can see this response have characteristic.

Only one response of one template cannot show unique property, but a combination of

them can represent each location. We use 6 template images to describe response for

each location.
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Figure 4.13: Distance between descriptors from current location, and other locations.

(a) Current location is at a corner of environment, (b) Current location is at a center of

environment, (c), (d) Image difference for each case.

Figure 4.13 (a), (b) show difference between descriptors of target location, and others.

We can find there is the minimum area around the target location. We can find there is

a convex like distance which guarantee the convergence. We simulate this localization

with different location. To find current location, it does not compare with descriptors

from current location. Even it does not have its current data, it can estimate its current

location with a small error. We compare overall performance with different size of

template images in figure 4.13(c). We can estimate its current location with a small

error. With this comparison, it shows larger size of the template guarantee better per-
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formance. In this experiment, we show its current location can be estimated using a

distribution of vertical edge features of the images. This estimation has a relatively

large localization error, and we use additional feature which also depends on visual

information, and difference of images (Franz et al., 1998). The difference of two given

images is increasing with distance between locations where they have taken. We also

use this measure with distribution of vertical lines to compensate the error from ver-

tical lines. With this information from an image, we can localize its current location

in figure ??(a). With this distribution of vertical lines, we can find its current loca-

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(a)

Vertical only   With image 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Localization error by case

Lo
ca

liz
at

io
n 

er
ro

r(
m

)

Size of template image

(b)

Figure 4.14: (a) Localization result in given environment. (b) Localization error with,

and without image difference information.

tion by comparing its distribution with the dataset. It has some localization error from

mismatching of giving template, and lack of information for distribution. For some

locations with higher error, response of template image is moderate, and it is not dis-

tinctive. It causes an error from localization. In some case, it does not have enough

vertical segments in an image. It also cause an error severely. We find there is few min-

imum points at far from some locations which has a similar pattern of vertical lines.

We remove them by using the difference between images. By combining information

from vertical lines, and from images, we can improve its overall performance.
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Figure 4.15: Average angular error for each algorithm.

4.5 Summary of Chapter 4

The challenging problem related to navigation is accurately determining the location,

and this localization problem can be solved using visual information. Plenty of re-

search has been conducted using a visual dependent localization system. However,

there is another approach that can be used to solve this problem, and this is based on

the activity of rodents brains. The hippocampus of the brain of rodents is used to de-

termine their current location. We modelled our study on the brains of rodents and

thus our model uses images in a dataset before it performs its navigation task. Using

this information it can find the current location by comparing the current images with

those in the dataset. This procedure of comparison needs to be reasonable, and we

therefore suggested an algorithm to compare with the SIFT features and its matching

procedure. This SIFT algorithm provides the corresponding points on images. These

features are extremely important and are very robust to occlusion. We therefore used a

feature-based algorithm to compare these images. With SIFT matching, we suggested

a measuring distance for use in determining the similarity between images. With this

similarity information, the current location can be determined with a high accuracy.

We conducted many experiments to show that this algorithm works in occluded envi-

ronments. We also suggest that this algorithm is able to find its current location and

it can navigate along the locations we set. This deciding procedure have an important

shortage to find current location with similarity measure. Which is it includes most of

times. We analyzed this error, and show this error can be compensated by its moving.

Thus, this error is not increasing by its movement. This error level is maintained by

its moving. The error is decided by the density of place cells in a given environment.
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We also simulated the random generating of these place cells, when we chose preme-

diated random movement and gathered images during random movement. We decided

whether to use the current image or not by similarity between a current image, and

images in dataset. The results depended on a threshold value that decides whether a

current image is similar or not. The effect of this threshold value was determined, and

the overall density of place cells was decided. Using a different distribution of the place

cells, we compared the overall localization performance in figure 4.15. Using vertical

feature can be a accurate solution for the local navigation problem which consume

more computation. Otherwise, using the HOG descriptor have inferior performance,

but it does not requires complex calculation to find homing direction than other algo-

rithms. Each algorithm have its own advantages, and shortage. We also suggested an

algorithm that enabled determining the current location using visual information and a

previously explored memory.



Chapter 5

Feature based navigation for the

SLAM problem

We expand this concept for use in self-localization. The snapshot images are taken

with an omnidirectional camera using the previously explored environment, and the

feature-matching algorithm is applied to enable the robot to find the current location.

To determine the current location, we find a similarity between the images, and using

the current location, we are able to navigate the robot with a small localization error.

This section is being prepared for submission as a scientific paper (Baek and Kim,

2015a).

5.1 Feature matching based localization

5.1.1 Image similarity

We gather a large number of images within environments at different locations and

build SIFT descriptors for each image (as generated in figure 5.1). These generated

descriptors depend on edge thresholding. The threshold value is decided in relation to

whether points are interest points or not. Using this threshold value, the number of gen-

erated interest points is altered. The threshold value enables different candidates to be

used for the matching process, but the matching results do not differ greatly using this

threshold value. In the figures, the first, second, and third images are those generated

by the SIFT descriptors with different threshold values, and the fourth and fifth im-

79
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Figure 5.1: SIFT descriptors generated with different edge threshold values. SIFT

matching result between two images from near locations, and from distant locations.

ages are the matching results. Different matching exists with different threshold values

when generating the SIFT descriptors. The fourth image shows SIFT matching with

two images from near locations, and with occlusions related to people. The fifth image

gives the same result using images from distant locations. These results have reason-

able matching, but still some of the matching interest point pairs are wrong. Many

algorithms can be used to refine these matching pairs of points, and one well-known

algorithm is the random sample consensus to detect outliers, otherwise known as the

wrong matching pairs of points (Fischler and Bolles, 1981). However, this algorithm

has a high calculation complexity when used to find proper matching.

Instead of using the RANSAC algorithm to find correct matching, we can compare

the descriptors themselves. In figure 5.2, the graphs represent the distribution of dif-

ference between the descriptors of matching pairs of interest points. Many matching

pairs have large differences, but there are also many matching pairs with small dif-

ferences. Therefore, we determine these differences and choose those that have the

smallest matching, as we consider we are more likely to be able to correct these. In the

figure, matching shows the results. Most of them are correct on both cases. Although

RANSAC can guarantee correct matching, it has a higher calculation complexity than

when descriptors are compared. We therefore use the comparison of descriptors to

determine correct matching pairs. This result also implies another important fact, that

there are still mismatched pairs of interest points in both results, but that the mis-
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Figure 5.2: Distribution of difference of SIFT descriptors for each matching pairs of

points. Refined results when choosing matching pairs of interest points with the small-

est difference between descriptors.

matching is greater with distant images. In contrast, images from close locations have

a small amount of mismatching. Using these matching pairs of interest points, we find

similarity between the images, and these mismatching pairs can be compensated in the

process of calculating similarity. This similarity measure uses similar close images and

different distant images and follows the method outlined below. We find corresponding

points between two images using the SIFT algorithm and consider that these points are

detected landmarks on the image. If these corresponding points are correct, there is a

relationship between the detected angles in figure 5.3. A target image is found at the

bottom of the figure, and two locations with different distance to target location. The

following equation is then used:

D1 < D2

For each location, we detect the same arbitrary landmark using the SIFT feature match-

ing algorithm. With these detected matching pairs of interesting points, we can then

find a relationship between the detected angle. For the i-th landmark, the following
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Figure 5.3: Landmark and detected angle for each location. Target location (at the

bottom), close location (middle location), and distant location (top location).

relationships are determined:

‖θ1 −θt‖< ‖θ2 −θt‖

fi(D) = ‖θD −θt‖
N

∑
i=1

fi(D1)<
N

∑
i=1

fi(D2)

From the above relationships, the detected angle difference (θ1−θt) depends on many

parameters, such as the distances between location 1, t and landmark, D1, and θt . This

detected angle difference is increased by the increasing distance between locations,

which is not linear but is monotonically increasing. When there are N detected land-

marks, the sum of the detected angles satisfies the above relationship, which assumes

the same detected landmarks. However, the same detected landmarks are not always

apparent on the images using SIFT matching algorithm, and at times there are a dif-

ferent number of matching pairs of landmarks. We assume that there are N matched

landmarks between location 1, and location t, and M matched landmarks between lo-
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cation 2, and location t. With these landmarks, the following relationship exists,

1
N

N

∑
i=1

fi(D1)<
1
M

M

∑
i=1

fi(D2)

and this relationship is always satisfied when there are enough landmarks. The mean of

the differences of the detected angle also monotonically increases with the increasing

distance between locations. From this relationship, we define the distance between the

image with the following equation,

Distance =
1
N

N

∑
i=1

‖θi −θt‖

and can find both the distance between images with this distance measure and the

current location. Before the robot navigates, it gathers images from within its environ-

ment. These images are same manner of memory of the place cell with visual informa-

tion. Using these dataset images, it can estimate its current location by comparing the

current images with those in the dataset. It finds all possible distances between current

image and dataset images, then finds the smallest one and considers this as its current

location. This consideration can cause some error in finding its current location, but

this is not increased with moving. This is discussed later in the paper.

We assume that there is a place cell near a current location. In the previous section,

we showed that there were many mismatching pairs in the SIFT matching results that

either disturb or degrade the overall performance. A larger number are mismatched

when there is a distance between the pairs, and mismatching increases the distance

measure of a distant object more than a close image. For this reason, the robot is not

particularly disturbed by these mismatching pairs when using this distance measure to

decide the current location. This works well within a specific range with this distance

measure, but this is not reliable when the distance between images is too far. When

it finds the current location using this distance measure, the smallest image is merged

at a close range, but more are merged at a distant range. This phenomenon is caused

by the mismatching pairs. To prevent this false localization, we apply a distance filter.

When there is distant activated place cell, we do not consider this one. We estimate

the current location using odometer information, and movement information. We are

able to find the distance between an estimated current location, and locations where
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Figure 5.4: (a) Two different exploration routes. Dataset images are gathered on black

dots. The beginning and end points are the red dot on the figure. (b) One image

gathered in the dataset with occlusions.

we acquire images in the dataset. By estimating the distance information, we can also

find the distance score between images. We then normalize this distance score, and

combine this information with the distance measure. This distance filter can deny acti-

vation from a distant place cell. This distance filter have a trade off to find location of

itself. We will discuss about this in later section.

5.1.2 Navigation task

We apply our algorithm to the dynamic environment (Appendix A). Before we per-

form a navigation task, we explore and gather images from previously set locations

in an environment. We set an area that we consider navigating within a square, and

manually set the locations to explore (see figure 5.4). We use two different exploration

routes. One has 24 images in the dataset over the entire environment. This route cycles

an environment twice. It is set to reduce the odometer error during exploration. If we
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Figure 5.5: Navigation routes. (left) (100, 0)→(54, 81)→(0, 0)→(0, 100)→(100,

100)→(100, 0), (right) (100, 0)→(54, 81)→(100, 0)→(0, 0)→(0, 100)→(100, 0)

use a route that is too long to travel, a severe error in estimating the current location

will occur. We separately run two cycles for this route. Another exploration route

has more images, and we cover a wider area of the environment. These images are

gathered during the exploration phase, and the SIFT descriptors for each image are

calculated in the dataset. These exploration routes are set manually, but we also use

this algorithm with a random exploration in a later section. In the exploration phase

there are many passengers in the scene (figure 5.4 (b) shows a case that includes occlu-

sion). With these images in the dataset, we also remember where these images were

taken using given coordinates. With this information, it is able to find the location

itself by the distance measure. In the above figure, the range from 0 to 100 is our area

of interest for navigation, and this in real coordinates is 3.5m. We thus conduct a navi-

gation task within this range. We obtained many dataset images during the exploration

phase, and we use them to conduct a simple navigation task that follows previously set

locations. It also starts at location (100, 0). From this starting point, a mobile robot

moves to a location at (54, 81), which is one of the locations in the second exploration

route. After moving to the location, it moves along the previously set locations in fig-

ure 5.5. We also have other types of navigation routes, in addition to these two routes.

In this simulation, we move a robot along the previously explored locations to show

that it can find its current location by comparing images. If it is not at a previously

explored location, it decides its current location is the nearest explored location, which

causes errors. This assumption does not always work. The robot can be anywhere in

a given environment, and localization errors can often occur. These errors exist most
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of time, but are at the same level and are not increased by moving. This implies that

the odometer error can be compensated for by this localization algorithm; the error

will be further discussed in a later section. After it moves to first location, the robot

gathers a current omnidirectional image. It then executes the SIFT matching algorithm

using both this current image and images in the dataset. With these matching results,

it calculates the distance measure, as mentioned in a previous section. With these sim-

ilarity measure, or distance measures, it decides its current location, and based on this

it decides which way to move and the distance to the next location. It repeats this

until it moves one cycle. We conducted this experiment in all the environments in the

environment section. Environment 3 has a number of passengers in it, and there are

many bystanders. We use this environment to show an example of matching in fig-

ure 5.6 where the result of SIFT matching can be seen. The upper matching result is

the SIFT matching between the current image and the image from its nearest location.

A number of occlusions can be seen on the image, and these are caused by the people

within it. However, although occlusions exist, the robot is able to find matching pairs

of interest points with high accuracy. In contrast, lower matching results are shown in

SIFT matching between the current image and an image from a distant location, where

a larger number of mismatches are found and a bigger detected angle difference, or

distance measure. Figure 5.6(b) shows the distance measure using an image from (0,

100), which is from the images in the dataset. The smallest one at 11th one is from (1,

100). This result is reasonable. There are other smaller images at the second, fourth,

and seventeenth which are from (-2, 111), (-9, 104), and (6, 94), which are points near

the current image. This result implies that the algorithm can find its nearest point using

this distance measure and that the robot can find its current location well. We simulate

navigation route 1 in environment 3. As the robot moves, place cells in figure 5.6 (c)

are activated in a sequence. This result shows that the robot can find its current location

using this distance measure. We used this result for simulations in other environments,

using other exploration and navigation routes. The results are sensitive to an illumina-

tion change, and contain a portion of occlusion, but the robot can still find its current

location with high accuracy.

5.1.3 Localization error

With this algorithm, the robot estimates its location using its nearest previously ex-

plored location. This way of estimation causes some localization errors when it is not
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Figure 5.6: (a) (upper) SIFT matching result with close occluded images; (lower) SIFT

matching result with distant occluded images. (b) Distance measure from gathered

images in the dataset with occlusions. (c) Sequencial goals.

exactly at a previously explored location (the difference between its current location

and its nearest previously explored location is this localization error). We simulated

this situation and found a characteristic of this error in figure 5.7. We placed a robot on

(62, 97), which was not a previously explored location (the nearest previously explored

location is at (74, 87)). The robot considered this location as its current location. This

error in this estimation is related to the distance between these locations. The robot

tries to move to (100, 0), but it moves to (87, 11) because of the estimating error, or

localization error. This implies that this error will then propagate to its next move.

However, (87, 11) is a previously explored location on, and after it moves there it is
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Figure 5.7: A successful case when a mobile robot is not on previously explored loca-

tion.

able to find its current location correctly. After that, it follows set locations without

error. We are certain that this error does not depend on the number of step the robot

moves, and the error does not increase with the robots movement. Localization using

the odometer creates a problem that increases with movement. This memory-based

localization has the advantage of the robot being able to find its current location. The

localization error occurs randomly, and we expect that it is highly related to the density

of place cells within an environment. When there are many images in the dataset, or

place cells in a given environment, the localization error is expected to be smaller than

in other cases.

5.1.4 Randomly explored environment

In previous section, we manually set the place cells in the environment. However,

this manual process may have limitations, and may cause an error when estimating the

current location. We consider that we can gather these images from a place cell au-

tomatically, and adaptively. This gathering process depends on the environment, and

the robot needs to decide whether to gather images from its current location during

the exploration phase. This situation is simulated; to gather images in an environment

it is necessary to find the current location by comparing images. It also cope overall

environment with random movement. We firstly simulate random movement; we ran-
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Figure 5.8: (a) Randomly moving trajectories. Generated place cells with different

threshold values: (b) 150, (c) 100, (d) 50

domly control the robot and record its trajectory. Upper random movement decides its

moving direction completely randomly. The upper two random movements have dif-

ferent moving distance ranges, but these results do not cover the entire environment.

We then reduce the random factor and the tendency to move forward, but if it is over

the area of interest, it changes its moving direction drastically. These results with dif-

ferent moving range. We use this movement to gather images in a given environment.

We repeat this random movement four times with different starting orientations (these

trajectories are shown in figure 5.8 (a) and are sequential the order is red, green, blue,

and black). The robot randomly moves and images are obtained at every step; an or-

der is then obtained. Using this information, we simulate generating place cells with

random movement, and with these random movements the robot decides whether to

store a current image at each step by comparing the current image to those previously
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Figure 5.9: Performance comparison of different threshold values: (a) with distance

filter; (b) without distance filter.

explored or stored in the dataset. If a current image is not different from the images

in dataset, no current image is taken. When it obtains enough images that are differ-

ent, it stores the images in the dataset. When using this procedure, deciding whether

a current image has enough difference from the images in dataset requires a threshold

value. We vary this threshold value from 150, 100, to 50, and gather images using these

threshold values (results are shown in figure 5.8 (b), (c), (d)). If the threshold value is

high, sparse place cells are generated, but if we use a lower threshold value dense place

cells occur. We evaluate the distribution for each generated place cell with a different

threshold value. New images in a given environment are gathered, and their location is

shown in figure 5.9 (c). We gather 30 images for random locations in the environment,

and evaluate these images. We thus have a dataset with different threshold values and

we evaluate the distributions with how accurately the current location is found. The

current location is found in each of 30 testing images. For localization errors, we cal-

culate the average localization error for 30 testing images, and figure 5.9 (a), (b) shows

these results, where 5.9 (a) shows results using a distance filter to find the distance

measure, and (b) shows results without this distance filter. We thus conclude that it

is necessary for the robot to use this distance filter to find the current location with a

higher accuracy. We also conclude that when the place cells have a denser distribution

the performance is better.
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(a)

(b) (c)

Figure 5.10: The SIFT matching result. (a) Matching features in panoramic image. (b)

Window images around correct matching features. (c) Window images around incorrect

matching features.

5.2 SIFT based localization

There are many researches to find its current location using the SIFT algorithm (Jeon

et al., 2015). It depends on not only images from environment, but also external infor-

mation to find its current location. Also, it finds the camera position from matching

algorithm. This estimation consumes much calculation, and cause inaccurate results.

We suggest another localization algorithm using the SIFT matching result with the

simple measure with a different approach.

5.2.1 SIFT matching refinement

We apply the SIFT algorithm for panoramic images from omnidirectional camera in

figure 5.10 (a). It includes many correct, and incorrect matching pairs. We have to find

its correspondence between these points, and remove outliers. We set a window around

matching interest points in figure 5.10(b), (c). For correct matching pairs, the images
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Figure 5.11: (a) Normalized window for corresponding features. (b) Refined SIFT

matching result with different distance from target image.

are similar, and its overall shape is similar. In some case, they have some changes

by the difference of point of view. For incorrect matching features, they are distinc-

tively different, and we use this characteristic to refine matching of these features. We

normalize these this image into a specific range. We compare these normalized data,

and decide its correspondence by difference of them. As a result, we can find refined

matching results which does not include few outlier. There are just a few or none out-

lier in giving environment. We assume that result from the SIFT matching is reliable

after the refining process.

5.2.2 Localization using the SIFT matching result

These matching results are reliable in a given environment, and we use matching result

to localize itself. We assume that we have enough dataset in a given environment, and

also have an image from current location. With these data, we compare the current

image into the images in data set to find its current location. In this algorithm, we

depend on the result from the SIFT matching algorithm. We can find there is differ-

ence of results by distance between the locations where the images are taken. When

the distance is closer, there are more correct matching features. This then implies we

can estimate distance between images using these measures. With one specific target
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Figure 5.12: (a) Distance measure with the SIFT matching features. (b) Localization

result.

image, we count the number of observed the SIFT matching features in figure 5.12(a).

We set an image from at corner of the environment, and a center of the given environ-

ment. We can find it has peaks around the target location. To find the measure, we do

not use target image itself, or images from exact the location. In this result, a peak is

around the location, and the maximum one is adjacent one. We can find most similar

one by comparing this measure from images in dataset. With this, we can find most

closest location in dataset using result of the SIFT feature matching. We repeat this

with different target locations in overall are of environment in figure 5.12(b). We can

find all of estimated location is adjacent location. The average of localization error is

19.57Cm which is depending on distance between adjacent locations in environment.

With this result of the SIFT algorithm, and refining algorithm, we can find distance

relationship between two images from different locations.
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Figure 5.13: (a) Laser sensor(Hokuyo urg-04lx-ug01). (b) Sensor data plot. (c) Experi-

ment environment.

5.3 The SLAM algorithm using a laser sensor

5.3.1 Laser sensor

We conduct another experiment using a mobile robot by applying a simple SLAM algo-

rithm, and implementing this algorithm into the robot. We depend on using a laser sen-

sor to observe the surrounding environment (Hokuyo urg-04lx-ug01) in figure 5.13(a).

This sensor observes the distance within the environment in figure 5.10 5.13, and uses

a limited detecting range of -120◦ to 120◦. There are 681 data points with an equal

angle resolution, and each point dissects the distance of the obstacle from the sensor

with a specific angle. The robot is controlled using a mounted laptop, with a forward

moving action, and is rotated for specific angle control action. However, this control

causes control errors when it moves forward, as the velocity of the two wheels are not

exactly the same and this slight difference causes a change in the heading direction.

Thus, when it moves forward for a unit distance, the heading angle is changed by 0.3◦.

This change causes overall distortion of the data by the error in estimating the heading
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direction. By controlling the robot manually, it can gather laser sensor data along a

corridor on the 4th floor of the 1st engineering building of Yonsei university. Using

these laser sensor data, we implement a simple SLAM algorithm. There are many

steps involved in implementing a SLAM algorithm with the laser sensor data, and the

first is initialization of the map. We observe laser data at the first time, and remember

these laser sensor data by map. We set a origin at starting point of a mobile robot.

From this point, the location of each observed obstacle is decided. We thus have in-

formation about the observed angle, distance from the robot, and the orientation of the

robot, and we can thus estimate the locations of obstacles with coordinates. The robot

remembers all data points and uses them as map information; after obtaining an initial

map it moves to a designated location by the control action. The robot rotates itself

using the controlling wheels to look at the designated location and then moves forward

to reach the location. This is the method used in the control model. After reaching

the location, it detects the range data again and uses the current data and map to find a

relationship between them. There are many solutions for this problem, and we chose

the most simple one. For each current data point, the robot finds the distance between

that particular point and the points on the previous map and chooses the shortest one.

If this shortest distance is less than the previously set threshold value, these points are

matched. We repeat this matching process for all current data points and find matching

points between the current data and map points. Using this information, we then apply

the SLAM algorithm. We set a state variable of the Kalman filter as position informa-

tion of the robot. In general case, it also contains position of map, or data points, but

this data is too many to handle with this state variable. For this reason, we use a differ-

ent map update technique to solve this problem. We set a state variable that includes

information about the robots position. We use the control model, and we can find the

robots location after moving by path integration. With this information, we have the

prediction of a position, or belief in the position. Covariance is also varied using this

control action. We then apply this mean and covariance of prediction to the Kalman

filter. Innovation is another aspect used in the SLAM algorithm, and this part of the

Kalman filter is used to interpret observed data. The robot uses the data information

to estimate its current location and its covariance. We then have matching between the

current location and map points, and by associating these data, we can find its current

location and covariance. We consider these as the mean and covariance of innovation.

We gain prediction from the motor command, estimation from the detected data, and

apply the Kalman filter to update the robots position. With this, we can localize the
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(a) (b)

Figure 5.14: (a) Data from laser sensor. (b) Map using a different method to find the

corresponding map.

position of the robot, but we do not update its map because we have another map-

updating process. We use the previously matched points and associate these to find the

proper location. Many data points are not matched, and we add these new points to the

map using the updated position information. After these processes, the position of the

robot has been updated, in addition to the map. With this, the robot moves to a new

location, and the process is repeated.

We implement a simple SLAM algorithm to a mobile robot and move this robot along

a corridor that has two windows of different lengths at the side. We also travel this

wings, and this traveling generated location of being repeatedly. Figure 5.14 shows

the results of mapping. Figure 5.14(a) shows the gathered range data, and building the

map of the environment. This map is reasonable and can express details of the environ-

ment. In this algorithm, there are many different parameters that need fitting; one is the

threshold value used to find corresponding points and the other is its initial covariance

of position. At the first time, it start on origin, but it also has initial covariance. This

decide it follows control action, or estimation from distance data. Another important
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one is that increment of covariance for every step for prediction. This also decide it

depends on its control action, or measurement. In this algorithm, we assume that the

covariance remains after movement and it can be shifted, rotated, or warped by the

robot’s movement and control action. In most cases, different models of motion exist

for finding this change of covariance, but we assume that this covariance remains.

5.4 Summary of Chapter 5

We suggest an algorithm to compare with the SIFT features, and its matching proce-

dure. This SIFT algorithm provides the robots corresponding points on images. These

features enable it to be very robust to occlusion. This is the reason we use this feature

based algorithm to compare these images. With SIFT matching, we suggest the use

of distance measures to find similarity between images and with this similarity infor-

mation the robot can find its current location with high accuracy. We have conducted

many experiments to show this algorithm can works in occluded environments, and

also suggest that this algorithm can enable the robot to find its current location and can

navigate along set locations. This deciding procedure have an important shortage to

find current location with similarity measure. Which is it includes most of times. We

analysis about this error, and show this error can be compensated by its moving. Thus,

this error is not increasing by its movement. This error level is maintained by its mov-

ing. This error is decided by the density of the place cells in a given environment. We

also simulated random generation of these place cells where we chose random move-

ment with a reason, and gathered images by random moving. We decided whether to

use a current image depending on its similarity with a current image and images in the

dataset. These results depend on a threshold value which decides whether a current

image is similar or not. We determined the effect of this threshold value. It decide

overall density of place cells. With different distribution.
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Conclusions

The navigation is one of complex task to find proper way. It have to find its current

location which is the localization problem. To define its current location, it have to have

its own map. This mapping problem is another issue of the navigation task. Commonly,

it is solved by the SLAM algorithm which is based on probabilistic approach, but there

is another approach inspired from behaviour of animals and insects. This approach

have an advantage that is simple, and it does not requires much calculation. Despite of

their simple structure, it guarantee navigation task can be achieved from this behaviour.

We are inspired from this navigation algorithms of animals, and we suggest navigation

algorithm with different types of landmarks. We suggest a navigation algorithm with

the HOG descriptors. This algorithm depends on the HOG descriptors, and use them

as landmarks. With these observed landmarks, we show it can find direction to target

location with reasonable performance. We also show different types of feature can be a

solution for this problem. We apply the SIFT features, the SURF features, and vertical

line features to find proper direction to home with these landmarks.

6.1 HOG methods to estimate the homing vector

There is one important assumption for our algorithm which is observed object have

its unique gradient characteristic. From this idea, we extract this gradient pattern us-

ing the HOG descriptors, and use this algorithm as landmarks to find proper direction

to home. We show this algorithm can work with indoor environments with objects.

We also show our algorithm can work in environment with many objects. These ob-
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ject cause some occlusion, but this algorithm rely on rest of gradient to find proper

direction. We also conduct experiments on different types of environment, but over-

all performance is not very well cause image has bad characteristic of gradient. We

show that this algorithm will work with distinctive, and clear gradient patterns around

environment to find proper direction. We show this algorithm has robustness against

blurring, and interpolation. This robustness of changing of size cause reduction of

calculation. We also show this algorithm have robustness against blurring effect on

images. This blurring can not affect overall gradient of images, but it is only occur

when we apply the blurring filter. When it is not equally blurred by some error from

camera, it cause degrade of overall performance. This algorithm also has weak charac-

teristic against addictional noise on images. It depends on gradient pattern, but noise

severely defect this gradient characteristic. In this paper, we suggest an algorithm to

find direction to home by comparing two snapshot images from the current location,

and home location based on the HOG descriptors.

6.2 Feature based bio-inspired navigation

The ALV (Average Landmark Vector) algorithm estimates the direction toward the tar-

get location relative to the current location. This requires identifying landmarks, but

this has difficulty in the image processing in terms of robustness and efficiency. Thus,

a holistic approach like image distance method has been attractive for homing navi-

gation. In this paper, we suggest a robust landmark detection based on edge features.

The method shows a quite effective homing navigation in real environment. Many

landmark-based methods experience much difficulty in landmark extraction. The sug-

gested method uses vertical edges which are mostly invariant to warped images and

the edge feature over neighbor pixels can be good candidates of landmarks. It is not

known yet what kind of visual processing or landmark extraction process insects use.

Our method may possibly provide a hint of understanding landmark-based navigation

for insects.

We also apply computer vision techniques to solve navigation problem. Finding land-

mark correspondence is one of important problems. We show the SIFT algorithm can

be a solution of this problem. With this SIFT algorithm, we can find home direc-

tion well. The performance is not quite reliable, but still this algorithm work. In this

problem, we need to decide using how many landmarks is optimal. With the SIFT
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algorithm, we can conclude using more landmarks is better.

We also apply the SURF algorithm to find out correspondence of landmarks. In con-

trast, performance with SURF algorithm is better with less landmarks. We calculate

angular error by number of landmarks. The result say using just three landmark is

optimal number, but there is large error in some locations. We conclude five or around

number of landmarks are better.

There is a major factor to degrade its performance, the mismatching. We suggest a way

to reduce this effect. The way is applying weighted landmark vector algorithm by its

matching score. We assume a mismatching has lower matching score. Based on this

assumption, we expect this can reduce error. Result with just five landmarks says there

is no improvement, because its performance is enough good. We also apply this algo-

rithm to using many landmarks. This performance is incredibly increased. This result

implies we can reduce its disturbance of mismatching by applying weighted average

landmark vector algorithm.

There is a important issue of navigation. That is the occlusion problem. Detected ob-

ject can be disappeared by its moving in real situation. Most of navigation algorithm

is weak to this change. We expect that, since this algorithm includes a procedure to

classify existence of landmark first by calculating matching score, it will robust to oc-

clusion. We set some environment, and simulate with it. The result is reliable, even we

remove or add many objects. We show this algorithm has robustness to occlusion.

There is a concept to estimate distance between two location by comparing two im-

ages. The image distance is one of them. We find the sum of matching score by the

SURF algorithm has similar characteristic. This sum of score increase by distance

smoothly, and there is no exceptional location by similarity of scene. This factor can

be used as image distance, and we expect this has more better performance.

We show the feature matching technique can be a solution of finding landmark corre-

sponding problem. Applying this algorithm has many benefit to other local navigation

algorithm. The conversion of navigation problem and feature matching technique bear

solutions.
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6.3 Future works

6.3.1 Landmark matching in complex environment

For most of algorithm, there is one common problem to find proper direction which is

distance between locations and observed distance cannot be estimated. The ALV al-

gorithm assume that this distances are almost equal, but it is not satisfied for common

environment. The outdoor environment show one of this example. it include some

landmarks with close range, and far range. This property cause severely degraded per-

formance. We estimate distance difference by compensating scale difference, but this

is not enough to improve overall performance. Estimating distance between landmarks

and locations allow to estimate correctly the current location relative to the home lo-

cation. There is another different assumption which is these environments are static.

In real environments, there are many moving people around given environment. This

difference also cause degrade of overall performance. In theoretically, using the SIFT,

and the SURF feature does not affected by these moving people. These feature match-

ing algorithm can discard these moving people while matching process, but most of

case have degrade of overall performance by mismatching features. The HOG method

also have degrade of overall performance. It does not have matching process, and de-

pends on overall images to find proper direction. This occlusion, or moving people

cause bad performance of this algorithm. There are many additional assumption for

the environment. Illumination of environment have to be sustained. Objects should

have similar characteristic with different point of view. Floor have to be flatten, and

height of camera does not changed. These assumptions have to be solved by algorithm

to have robustness characteristic.

6.3.2 Robust feature detection

The feature have to be robust against external changes. For navigation task based on

landmarks, finding corresponding landmarks is most important process. If it fails to

find corresponding landmarks, its overall performance will falls. For this problem,

observing robust landmarks has many limitation, since we rely on visual information

only. This visual information cannot provide additional information of observed land-

marks. To avoid this problem, there are many different solutions. The random sample

consensus (RANSAC) can be a solution for this problem. It assume conditions of ob-
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served landmarks, and find proper landmarks with this assumptions. For example, it

assume height of camera does not changed, and it find matching landmarks with same

height. It generate criteria of observed landmarks, and find proper landmarks. Re-

peating this guarantee optimal matching results. There is another way to detour this

problem which is using additional information. Using only camera has limited perfor-

mance, but using additional information lower mismatching pairs of landmarks. These

methods can improve matching of observed feature, or landmarks. This also cause

enhancement of overall performance.

6.3.3 Network based SLAM

There are many researches on mammal brain, and there is explaination their brain ac-

tivity (Hafting et al., 2005) in the dorsocaudal medial entorhinal cortex. This cortex

is involving to their navigation ability, but there was any understanding of this mecha-

nism. This work sense this cortex with proper mechanism, and explain how it works.

It shows the grid cells are highly involves to navigation ability of rodents, and this

cells are synchronized, or aligned with detected landmarks with distinctive features.

This also explain that this grid cells can be a part of path-integration-based map of the

spatial environment. In previous research, there is a heading direction cells to find its

orientation. They interact to find its position, and these are one of important role of

navigation ability of the rodents.

Form this architecture of navigation part of animals, or rodents, there is an approach

to solve the SLAM algorithm (Milford and Wyeth, 2010). The ”RatSLAM” is most

representative algorithm from animal behaviour. This algorithm is assume that these

animals are depending on their visual information. This algorithm is also assume that

we have our internal memory to remember where we have been, and images at the

locations. With these simple, and reasonable assumption, the ”RatSLAM” suggest a

robust, and persistent navigation, and mapping algorithm. This SLAM algorithm is

based on training of networks to mimic activity of their brain. In most of study, it

rely on entire images to activate the network. Otherwise, there are researches on an-

imals, and insects. These researches claim that they are rely on distinctive feature to

localize itself, or finding target direction. From this idea, we will train the network

with extracted feature to find its current location, or finding proper direction to target

location.



Appendix A

Environment & Image processing

A.1 Static environment

(a)

(b)

Figure A.1: (a) Omni directional image, (b) Converted panoramic image.

We use omni-directional camera, and take images on given environment. An example

of snapshot image is in figure A.1(a). It have scene around environment, and describe

overall objects. We warp this image into panoramic image in figure A.1(b). This

panoramic image allow us to know bearing information of observed objects. We use

this image as snapshot image from locations in environments.
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We gather image data in various environments in figure A.2. Each environment has its

own characteristic.

(a)

(b)

(c)

(d)

(e)

Figure A.2: (a) Indoor environment(13 by 13), (b) Indoor environment with objects(11

by 11), (c) Outdoor environment(11 by 11), (d) Featureless environment(11 by 11), (e)

Occluding people(11 by 11).

Figure A.2(a) shows an indoor environment. There are many object around environ-

ment. There are some distinctive objects, and also similar objects. These characteristic

can show validation of our algorithm. Figure A.2(b) shows an environment with many

object in given environment. This cause occlusion of snapshot. These objects cause

occlusion, and degrade of overall performance. We also conduct image with outdoor

environment in figure A.2(c). This outdoor environment has features at far distance.

These features are observed in same bearing of panoramic image, and cause some de-



A.2. Dynamic environment 107

grade of overall performance. There are another indoor environments which have its

own characteristic. One has featureless scene around environment. It is composed

of patternless walls, and similar colour. This environment has one advantage that has

many vertical lines. Another environment has passengers in environment. This pas-

senger also cause occlusion or defection of panoramic image. We show our algorithm

can work in this environment.

In these environments, we set an area which is composed of grid points. We have an

image from each grid point. Distance between adjacent points is about 20Cm. A size

of grid is 13 by 13, or 11 by 11. We set these environments, and show our algorithm

can works in various environments.

A.2 Dynamic environment

We conduct a navigation task in different types of environments. We have two static

environments, and two dynamic environment. In environment 1, we place artificial

objects which can be concrete, and distinctive landmarks. We place these object out-

side, and inside interest area. A scene of environment 2 is monotonous. Overall color

it can detect is similar, and there are similar objects around this interest area. This

environment is almost static. In this place, there are just few passengers during experi-

ment. On the other hand, an environment 3 has a number of passengers around it. This

also has monotonous scene, and color compositions. This environment also has one

characteristic to consider which is illumination change. Its illumination is from natural

sunlight. This illumination condition is varying by its time. Oppositely, environment

4 has artificial light, it maintain same illumination condition. It also has many passen-

gers in this environment. In these environment, we set an interest area to consider. In

environment 2, and 3, we conduct our experiments afternoon. When it is late, and it is

too dark, the SIFT matching have worse performance than other cases.
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(a) (b)

(c) (d)

Figure A.3: (a) Static indoor environment with artificial objects. (b) Static indoor envi-

ronment. (c), (d) Dynamic environments.
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Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., and Wehner, R. (2000). A mobile

robot employing insect strategies for navigation. Robotics and Autonomous systems,

30(1):39–64.

Lehrer, M. and Bianco, G. (2000). The turn-back-and-look behaviour: bee versus

robot. Biological cybernetics, 83(3):211–229.

Liu, M., Pradalier, C., Chen, Q., and Siegwart, R. (2010). A bearing-only 2d/3d-

homing method under a visual servoing framework. pages 4062–4067.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Com-

puter vision, 1999. The proceedings of the seventh IEEE international conference

on, volume 2, pages 1150–1157. Ieee.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Inter-

national journal of computer vision, 60(2):91–110.

Lucas, B. D., Kanade, T., et al. (1981). An iterative image registration technique with

an application to stereo vision.

Makadia, A. and Daniilidis, K. (2006). Rotation recovery from spherical images with-

out correspondences. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 28(7):1170–1175.

Mallot, H. A., Arndt, P. A., and Bülthoff, H. H. (1996). A psychophysical and compu-

tational analysis of intensity–based stereo. Biological cybernetics, 75(3):187–198.

Milford, M. and Wyeth, G. (2010). Persistent navigation and mapping using a bio-

logically inspired slam system. The International Journal of Robotics Research,

29(9):1131–1153.



Bibliography 115
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