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Abstract

Returning home from an outward journey is a skill importamtthe survival of many
insects and other animals. Animals have developed nagigakills using various
senses, including visual, auditory, olfactory, magnetitj internal motion sensors as
odometry. Their homing performance is shown to be robuspited by their efficient
navigation capabilities, researchers have begun degjdnatinspired navigation al-
gorithms for robotic experiments. Here we pay attentiom&landmark navigation of
insects due to their excellent navigation performance.

Vision-based homing navigation has been studied throughnaber of bio-inspired
algorithms. Since vision contains richer information tlzeny other senses, many ad-
vanced techniques can be adopted by the vision-based tianigd remembered view
of home location from a variety of positions was used for teealiopment of the nav-
igation algorithm. In this thesis, among several differgmes of the methods and
objectives of the homing navigation, we focus on searchirggdirection of move-
ment as a way to reach the goal location from an arbitrarytiposinamed as homing
navigation.

A visual homing method exploits the intensity of images aelies on landmarks.
Various ideas have been suggested regarding the feat@eisel criterion and the
correspondence-matching algorithm for the landmark-dbaseigation. As a step to-
ward developing the visual homing method, we designed thibgeetives in this thesis:
(1) to suggest a new homing navigation algorithm, (2) to wstd the performance of
the suggested navigation method in various perspectivegyakith the comparison
with other existing vision-based navigation methods, &@8)dd apply the method to
robotic experiments and to analyze the results.

First we suggest a new algorithm for the homing navigatioa¢alled the distance-
estimated landmark vector (DELV) method. The method usesathdmark informa-
tion in snapshot images as vectors, which is used to deteratioming vector. Second
its performance is measured in various forms, such as vewps, angular error, and
the success rate in homing with catchment area. Compasimgsults to those of other
existing navigation methods, we demonstrate the effeatigs of our method. Other
navigation methods were compared to the DELV method withvaitttbut a reference
compass. Lastly the robotic experiments were conductedruma different environ-
ments: one with artificial landmarks and the other with ratlandmarks such as desk,



flower pot, chair and others.

In conclusion we propose a new algorithm for landmark-bdeeding navigation and
investigate its performance in various point of views. Thalgsis results on the char-
acteristics of the method suggest a future direction fothmr enhancements in the
navigation algorithm.
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Chapter 1

Introduction

Small insects and other animals have their own simple n#wvigalgorithms. Al-
though they operate with small number of neurons, they dstnate great ability in
accurately returning to their nests. Such a mechanism,hwhifeasible for the lower
level organisms, has inspired many researchers condustetcame the problem of
complexity of the conventional navigation algorithms irbotics. By modeling the
biological methods of insects and other animals, the n&oigaystems can be more
effective yet simpler. Further they do not require a largapant of memory than the
conventional algorithms. In this chapter, we introduce@ibspired robotic naviga-
tion system, especially with emphasis on the use of visdaiimation, and present the
motivation and objectives of the paper.

1.1 Why bio-inspired model for robotic navigation?

Many animals as birds, fish, and turtles migrate seasonadly thousands of kilome-
ters distances, while insects as bees and ants return totempplaces after foraging
or exploring the environment. Returning home after an otdvj@urney is an impor-

tant skill required for the survival of many insects and otheimals. Animals have
developed navigation skills using various senses, innidisual (Wehner and Raber,
1979), auditory (Rossier et al., 2000), olfactory (PapR@9 magnetic (Luschi et al.,
1996), and internal motion senses(Collett and Collett0200

Navigation skills of animals show robust performance welgard to homing. In-
spired by such efficient navigation capabilities, reseansihave begun designing bio-

1



2 Chapter 1. Introduction

inspired algorithms for robotic systems. Ethologist stadihe behavior of animals
by examining how they explore the environment and returndnanmmediately after
finding and collecting food. The performance of animals imigation and environ-
ment perception exceeds that of any other mathematicaladetieveloped for mobile
robots. Therefore, it is natural for researchers to attehmptmitation of the behavior
of animals and to obtain the level of their natural perforoen

Recently there have been a number of researches modeliagaslpstems after ani-
mals. Mimicking the appearance of insects and other aniledi® a novel movement
or unigue function in robots, and modeling the behavioratima@ism of the animals
have guided researchers to the development of their wor&rniows perspectives.

For example, recently a climbing robot mimicking the bebawf gecko was devel-
oped (Kim et al., 2008). The robot’s gait and motion coortiorawas introduced from
the characteristics observed from the gait of a gecko. Timysbn the adhesive foot
of a gecko led to the development of a novel material withdiomal adhesion, which
enables the climbing ability of a gecko-robot. The robotmd®l of cricket phonotaxis
(Webb, 1995) and robotic model and system of olfactory-edielxploration strategies
of invertebrates (Grasso, 2001) were suggested by modilengehavior of animals
using unique senses. In addition, the navigation of Sahadiog the polarized light
compass was inspired by studies of homing behavior in thertlast (Lambrinos et al.,
1997). Biomimetics is an important field of research for bartilgineering and biology.
In a technological point of view, we can obtain a more effit®rstem inspired by an-
imals while the implementation of the behavior of animalsamputational methods
allows biologist to verify and examine hypotheses in a mdnedaiive and numerical

way.

One of the advantages of a bio-inspired system is its allditgspond to an external
stimulation in a simple and immediate manner. Insects amel @inimals are not able to
compute complex mechanisms to process perceived infawmatid make judgements
as computers. Animals are specialized to particular semsmhanisms. Therefore,
systems modeling the sensory and mechanical system of Bnivoald lead to much

simpler and adaptive system than the other mechanical eé®vidence, studying the
behavioral mechanism of the animals and applying theirrdlgns computationally

can be associated with implementation of a compact inglliggystem in robotics.

In this respect, the bio-inspired researches are worthystgdand therefore can be
expected to show various performance.



1.2. Vision-based robot navigation 3

1.2 Vision-based robot navigation

Since it takes richer information than any other senses siathle to adopt many ad-
vanced techniques, vision has been widely researched fogateon. Early works

mainly focused on the mapping of environmental structurtaaba mobile robot could
detect objects and navigate through the environment aotoasly. A geometrical in-

terpretation of the environment allows the robot to estenist own position and iden-
tify the structure of the environment. One of the early wooksnapping in visual

navigation was elaborated by Moravec (1977). In this workteaeo vision is used
with the binocular set of cameras to reconstruct the enwaient. Objects in an in-
door environment are set with cones on the floor. After edtmgahe position and

the size of the objects and mapping them on a 2-D map as arctiéystee object-free
area is assigned as an allowed region for the path from thierdyposition to the goal
position. Recently, a number of researches have investigadth mapping and lo-
calizing the moving agent simultaneously, which is oftelleceSLAM (Simultaneous

Localization and Mapping) (Davison, 2003).

However, due to its complexity and the requirement of largenory space, mapping
an environment is considered to be not plausible for inssutisother small animals.
Thus, for modeling the navigation algorithms of insects ananals, it is more con-
vincing to focus on simpler information processing. Indtedgeometrical mapping,
insects may use a topological representation of space artexge no stored informa-
tion about the space but only focus on the current view andigmorized scene from
a goal point. The navigation in this paper concerns a typewigation which plans a
path and trajectory in its own way to reach the goal point autha geometrical map
of the environment.

Since various types of the navigation methods implemenyedrnimals and insects
exhibit the extremely large range of navigation in naturalli§tel (1990) defined nav-
igation aghe capacity to plan and execute a goal-directed paltile Franz and Mallot
(2000) edited and defined as below.

“Navigation is the process of determining and maintainimgarse or
trajectory to a goal location.”

Following this definition, we may narrow the scope of navigiato determining the
direction of movement as a way to reach the goal location faorarbitrary position.
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View-based homing navigation has been studied through dauof bio-inspired al-

gorithms. These methods were developed to navigate homg asemembered view
of the home location from a variety of positions. We consitierlandmark navigation
of insects because of their excellent navigation perforean

1.3 Motivation and objectives

Motivated by the simple yet robust vision-based navigatbrinsects, we propose
various ideas to model the landmark-based navigation ithg@s. The main purpose
of this research is to find a novel and efficient homing navegatethod.

The detailed objectives are as follows:

Suggestion of vision-based homing navigation method. We introduce Distance- Es-
timated Landmark Vector (DELV) model as one of the landmaaked homing
navigation algorithms. We also suggest a method based artigeid landmark
distances.

Perfor mance comparison with and without a reference compass. We compare our
suggested method with several existing image-based rtemgaethods, which
do not require any reference compass. We also compare thlesresthe DELV
method with the reference compass information combinet thié suggested
landmark navigation algorithm and evaluate the perforraamearious perspec-
tives.

Robotic experiments and further evaluation on the method. We present the results
of robotic experiments for the suggested method. In additwaluate the ro-
bustness of the method and compare it with other methods.

1.4 Organization of dissertation

In this chapter, we introduced the motivation and concepi@finspired research and
the objectives of the vision-based homing robot navigatethods, which we propose
and investigate in this paper.
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In Chapter 2, background on the existing visual navigatigorghms is given by re-

viewing earlier works. Vision-based navigation can haveyrdifferent types. Among
different types, we focus on homing navigation. The homiagigation can be clas-
sified as one of the guidance methods. The visual homing rdethibich relies on

image information, can be divided into two groups: holistiethod and landmark-
based method. Several methods in each classification willisiissed later in the
following chapters for the performance comparison.

In Chapter 3 we propose the landmark-based homing navigalgorithm. The method
consists of three major steps: a distance estimation, gation of a reference map and
localization step, and the arrangement matching of lanklwetors. Starting from ba-
sic concepts of the proposed algorithm, we describe thélel@{arocedure of method
along with the mathematical description. The performarfde®proposed method is
shown in the following Chapter 4. The simulation experinsentvarious conditions
are provided with respect to the angular error for deterchimeming vectors, and the
success rate in homing. Results of robotic experimentsremersfor the two different
types of environments with artificial and natural landmarRgsults are compared to
those of the image-based navigation methods without aenefercompass.

In Chapter 5, we apply the quantized distance informatidhégroposed DELV nav-
igation model. The concept of the estimated distance ceetidn is explained and
experimental results are presented. The results of thempeahce in both simulation
and robotic experiments are shown.

Our DELV navigation method does not necessarily requiree¢fierence compass in-
formation, and shows a similar level of performance with aksmount of enhance-
ment when the reference compass is applied. Thus, in Chéptee DELV method
with a reference compass is compared to another landmaedbzavigation method
which requires compass information. For the appropriatepgarison in performance,
detailed conditions were set equally for both methods. 4laith the comparison of
the angular error and the percentage of catchment areaplthistness of the method
is examined with respect to the occlusion problem.

Finally, the performance results from different experitseand environments are dis-
cussed in Chapter 7. We explain the advantages of the DELYodeind discuss the
future directions as an extension of this research work.






Chapter 2

Background

Many insects and other animals determine a homing direttam®d on visual infor-
mation. A ‘snapshot model’ was suggested to explain theirgagéion system. The
shapshot model compares a current snapshot image with aipstsot taken at a goal
location to obtain a direction toward the goal. A number otimes have been sug-
gested to process the snapshot image. Holistic methodssatbsesimilarity between
the current and the goal images, and the agent navigates dirdttion that decreases
the discrepancy because the difference between the twaswaguld be minimized at
the goal point. On the other hand, landmark-based methaousdzr particular features
in several images in order to match the common regions. binfemk-based methods,
distinctive features are selected and identified. Thendbg®ns are matched based on
the correspondence of the features in order to derive a mewewector. To propose
a new homing navigation algorithm, we examine the centedsdn the algorithms of
both methods, and probe the advantage and weakness of etwidme

2.1 Navigation in animals

The most popularly known navigation method for insects atiéroanimals is path
integration, which is also known a&ead reckoning The path integration is known to
be used in many animals such as desert ants (Muller and Wel9&8), fiddler crabs
(Zeil and Hemmi, 2006), honeybees (Collett and Collett, ®0fhd gerbils (Etienne
and Jeffery, 2004; Mittelstaedt and Mittelstaedt, 198MisTapproach integrates the
distance and direction of movement to enable animals to fieat tvay home. Based

7
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on movement speed and directional information, they coatly calculate their posi-

tion relative to the starting point. An internal referenampass and internal motion
sensors are required to perform the path integration. Afteumulating the angle and
distance data until foraging or exploration ends, animatfs lzave the direct path in-
formation consisting of the direction and the distance tottrget position, which is

usually home. This information will allow agents to headedity toward their goal

position within some errors. The path integration techaiguuseful in an unfamiliar

environment, especially when no visual landmarks existgdagmce cues.

An outstanding example of the path-integration-usingahisea desert ar€ataglyphis
fortis (Muller and Wehner, 1994). Figure 2.1 shows the path of adesit of returning
home after an outward journey for foraging food. Comparetthéatortuous outbound
path (solid line), the inbound path is closer to a straighe listippled line). The path
integration is important and useful to desert ants, sineg tive in a desert which
is usually a featureless large area with no prominent lamkisnal he foraging desert
ants keep track of their own current position with respedidme by integrating the
trajectory of the movement. Since the vector summation tf are not as precise as
we do by the computer, but rather done by simple approximatie method produces
small navigational errors. The desert ant can return honmg ysth integration even
after a journey of hundreds of meters (Wehner and Srinivalz8il).

Mittelstaedt and Mittelstaedt (1980) showed the homindjtstmf gerbils, Meriones
unguiculatusy path integration. In the experiment, gerbils could esteitheir youngs
from a circular arena by returning to the nest location stgrirom the border of the
arena. When the platform was rotated, they returned to teéipowhere they thought
was home, which was actually a deviated point from the realdnby the amount of
which the platform was rotated. The performance indicateddiothetic behavior of
gerbils, yielding that the vertebrate as well as the in\mete species perform path
integration for navigation using internal cues.

The path integration has been studied widely and implendentearious forms includ-
ing simple robotic navigation (Yamauchi et al., 1999) ancearal model (Haferlach
et al., 2007).

However, since path integration depends on the integrate@ment paths, errors may
arise after a long-term exploration. As the navigationabmr are also accumulated
along with the useful information during the exploratidme resulting vector pointing
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Figure 2.1: Foraging trip of an individual ant, Cataglyphis fortis. Outbound trips are
depicted by solid lines and inbound trajectories by stippled lines. N represents the nest,
and F is the food location. The length of the outbound path is 354.5m and the maximal
distance from the nestis 113.2m. Time marks depicted as small filled circles are given

every 60sec. (Reprinted from Muller and Wehner (1994))

the target position would possess a considerable amouetatbn. Errors in motion
or reference direction accumulate, meaning that the lotigeoutward trip, the more
difficult will be the return trip. However, if it were possibto exploit additional infor-
mation to path integration, the number of accumulated ewaruld decrease. When
no information is available about the integrated path, thimal can use visual senses
such as the image of the horizontal skyline surrounding #st (Basten and Mallot,
2010) or a distribution of landmarks (Wehner et al., 1996b).

Researchers have observed that desert ants are able toletae successfully after
short wanderings when they are displaced to an unknownidwgamndicating that ants
use visual information in addition to path integration (Wehet al., 1996a). They
compared the homing path of normal ants and that of the ardsewector information
is removed. As in Figure 2.2, the ants without vector infatiorareturned home in
almost the same path as it did with the homing vector from padigration. Combining
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Figure 2.2: Homing path of two desert ants Cataglyphis fortis. N is the nesting site,
and F is the feeding site. The ants had arrived at F (dotted trajectory) and were subse-
guently, after returning to N, displaced back to F to return home with vector information
removed (solid trajectory). Both paths show similar returning. (Reprinted from Wehner
et al. (1996a))

multiple sources of information leads to more successfahing. As well as desert
ants, crabs (Hemmi and Zeil, 2003), and gerbils (Etiennd.e1896) also combine
internal motion cue and the vision-based information wrdohtinuously interact in
a complementary way to return home more accurately. Thealviatormation is an
external cue while the self-motion is considered as annalerue. The simplest way
of binding these two different informations is to first usépategration to get near the
nest, and then switch to the searching for the familiar ‘isuas near the nest. Both
hamsters (Seguinot et al., 1993) and ants (Muller and Weli9894) use this type of
method to combine path integrator and visual guide.

Various methods were suggested to explain the algorithmsgfats and other animals
handling the visual information. Different visual imagepessing strategies lead to
different types of movement and performance in navigation.

Rodents and gerbils exploit the place cells of hippocampugifocessing visual in-
formation (Butz et al., 2010). The hippocampus is a neuralvokk structure that
supports the spatial representation in mammals (Trulhereyer, 2000; Touretzky
and Redish, 1996). Place cells are associated with censuiaMocations, and when
the animal explores specific region in space, the place asdlactivated based on the
places visited, leading to the production of cognitive m@pallier and Meyer, 2000).
The firing pattern is the place fields (Muller, 1996) (see Feg2.3). The firing place
cells correspond to the local environment in the neuromaksentation. This topolog-
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Figure 2.3: Summary of the firing properties of a CAl Hippocampal Place Cell. The
figure at the top shows the ‘firing rate map’ with the time-averaged firing rate of the cell
as a function of the rat’s head position. Two maps at the bottom show the spike activity
on two separate paths through the field. The black line indicates the moving path of the
rat, red dots are the location at which action potentials were fired, and the grey pixels
indicate the location of the firing field, copied from the rate map. (Reprinted from Muller
(1996))

ical representation of the environment can be used to iiyeht present location and
to navigate to the desired endpoint (O’Keefe and Burge36)19

While mammals as rodents and gerbils use place cells forisimwvbased navigation,
insects use a much simpler representation of the environnvamy hymenopterans,
socially organized insects, are known to perform visuatilaark-based navigation
to guide them in their return to their nest. Insects perfoomimg navigation using
shapshot images taken at specific locations, which is sortedifferent from rodents.
Such method is called ‘snapshot model’ (Cartwright and €ll1983, 1987; Col-
lett, 1996). The snapshot model basically compares therusnapshot image with
the snapshot image taken at the goal location to obtain tleettbn toward the goal.
Comparing snapshot images, among the several possib&idire, the moving direc-
tion that decreases the discrepancy between two imagesastasicthosen as a homing
direction. The snapshot model has shown its potential tochealy used in insects
through experiments (Cartwright and Collett, 1983), amteiit is a simple and ef-
fective method proved its performance in various suggeséspational algorithms.
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Detailed characteristics of such algorithms will be giverhe following.

2.2 Local visual homing

Many insects and other animals return home by exploitingalimyformation in differ-
ent methods (Wehner et al., 1996a; Hemmi and Zeil, 2003nkéet al., 1996). Nav-
igation can be in many different types suchpdace recognition-triggered response,
topological navigation, metric navigation, and guidar{@eullier et al., 1997). Trullier
et al. (1997) and Franz and Mallot (2000) elaboratedgtindancenavigation method
in classifying navigation into several categories. Coesity the configuration of the
surrounding objects, thguidancemethod can process an egocentric object informa-
tion and determine the goal direction (Franz et al., 199&h@m and Collett, 2002).
Therefore, acquiring spatial information of the envirommehe agent obtains direc-
tion to the goal point, its current location compared to thalgand the configuration
of the objects surrounding.

For the navigation of animals, returning to the startinghpoif a journey is the most
important and interesting task but yet the simplest formadigation for animals in-

cluding humans. This type of navigation is called homingiclltould be classified as
one of the guidance methods. Many social insects as ants, &e@wasps do foraging
trips and exploring the surrounding environment of thestnd hese trips may range
from hundreds to thousands of meters (Wehner and Sriniya881d). Therefore, local
homing along with the simple and computationally cheap getion method is an im-
portant point of view in the simple navigation of insects,jethalso receives attention
from the neuroethology.

Based on multiple snapshot images, the agent can obtaih d&prmation of the
view. Several approaches were suggested using multiglenvéensors to extract ac-
curate depth information (Sturzl and Mallot, 2002) or spksensors as panoramic
stereoscopic sensor (Huang and Klette, 2009). Howeverpiheting inspired by the
navigation of insects, it is more appropriate to use a sim@®n sensor. The infor-
mation that can be easily obtained with the common snapstagie is the intensity.

The intensity of the snapshot image can be easily obtaireed &n ordinary image
through vision sensor. The visual homing method by expigithe intensity of im-
age can be coarsely classified into two groupstistic methodandlandmark-based
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method Holistic method treats the obtained image as a whole. I do¢ require any

matching procedure neither any feature selection proesdaind deals with the im-
age intensity information as taken. On the other hand, inathemark-based method,
features in the environment are consideredaasimarks and the navigation method
attempts to establish features between two images. Thisadefries with respect to
the feature selection criterion and the correspondencetmmagt algorithm.

2.2.1 Holistic methods

Holistic methods assess the similarity between the cumedtthe goal images, and
the agent navigates in the direction that decreases theedacy because the differ-
ence between the two images would be minimized at the goat.pdolistic methods
perform local visual navigation without any correspondentatching procedures. By
treating the image as a whole, the methods avoid the comespce problems aris-
ing when features are not distinctive enough to distingoisé from another. While
correspondence matching methods require both featuraatixin and the matching
procedures, the feature matching between images is nossegein holistic meth-
ods. Different metrics are used to calculate the level dedehce; the direction of
movement can be determined based on the descent of the instmyscg using the root
mean-square difference of pixel intensities (Zeil et 802 or through the Euclidean
distance in some parameter space, in which the parametersecderived from the
whole image. Th®ID(descent in image distance) methaad thewarpingare two of
the various algorithms in holistic methods.

Descent-in-image-distances(DI)ethod has been introduced by Zeil et al. (2003)
and investigated by many researchers (Sturzl and Zeil7; 2d0ller et al., 2007). The
image difference becomes much smaller when two points asechs in Figure 2.4.
Although the shape and smoothness of the curve varies wstiect to the illumina-
tion and display, the characteristics of the minimum imaffer@nce at the goal point
is maintained (Sturzl and Zeil, 2007). By applying simptadjent descent methods,
the navigation algorithm successfully finds the directiornihte goal location. Maoller
and Vardy (2006) showed the extension of the DID method biyding the prediction
concept. “Matched filter” indicates the fixed template flowdsefor purely transla-
tional movement. That is, by projecting the intensity geadiionto the matched filter,
the agent could predict the image it would obtain when theesponding movement
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Figure 2.4: Difference function of the r.m.s. pixel differences of the image. The location
of the reference image has the steepest value of the difference function. (Reprinted
from Zeil et al. (2003))

is performed. Therefore, the method yields the homing tdoady computing the
descent in image distance of the matched-filter.

Another method of the holistic methods is tharping Franz et al. (1998) suggested
the method of appropriately distorting the current snapghage to best match the
target snapshot image as described in Figure 2.5. The agedit{s new image for
every possible directions to move from the current locabipnvarping the image in a
predicted manner. This prediction is equivalent to the ephof projecting the one di-
mensional landmark information on the matched filters of fieds. Then the method
determines the homing direction, which matches the predichage best with the ref-
erence image. However, The predictive warping methodgelgaffected by the char-
acteristics of the environment. When there are too manyctdbja the environment,
the performance is degraded. Moller (2009) elaboratedvidrping method compu-
tationally and showed the performance for several databadseaddition to original
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Figure 2.5: Warping method. The warping is applied to produce a warped(distorted)
view from the original current view. The warped view is compared to the reference
shapshot image to determine the image distance. Differently hatched squares in the
figure indicate pixels with different intensities. The one-dimensional images are closed
in horizontal direction as indicated for the snapshot image. (Reprinted from Moller
(2009))

warping method, 2D-warping method was also suggested miphaved performance
(Moller et al., 2010). Similar to the descent-in-imagstdnce (DID) method, fitting
the warped image with the appropriate curve to the minimumtpaf the computed
distance in images yields the horizontal and vertical amgleathematical way.

While the DID method searches the descent in image distaheeyarping method
searches for the minimum point of distance in the image astbdithe image to fit
the reference image. Since the warping does not requireerefe compass, it is a
competitive navigation method with fine performance.

2.2.2 Landmark-based methods

Landmark-based methods consider features or landmarks environment and set up
correspondence between features in two images: one frogoidieand the other one
from the current location. Since the landmark-based medebelmines a direction to
move by establishing a connection between features, orreedéttors that affects the
performance of the method is the type of features in the inlape selected.

One of the most popular feature SIFT (Scale Invariant Featuansform) has been
used to determine landmarks of the environment and loc#tieenobile agent (Se
et al., 2002; Lowe, 2004). Using SIFT can be efficient but gepuires large amount
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of computation. For simpler methods of selecting featuoeg, can use information
such as color of the objects, dark and bright regions, andsdgd corners. Color is
an efficient criterion to distinguish landmarks (Szenh@88&). Gourichon et al. (2002)
created one-dimensional panoramic snapshots with coéfisetl as HSV(Hue, Satu-
ration, and Value) parameters rather than RGB. The HSV septation is much less
dependent of luminance level than the RGB color model soitlcan robustly detect
landmarks. Goedemé et al. (2005) also suggested a redaocedof SIFT features
to work on color images by including the matching of coloratgsor of the feature
patch. Another type of simple feature extraction methodimer extraction (Vardy
and Oppacher, 2003). One of the popularly used corner dmtestheme is Harris
detector where only the local convolutions and sums arened)or the computation.

As it is shown above, selecting distinctive features leadthé necessary matching
procedure of each feature. Therefore the feature extraotiethod attempts to pro-
vide identifiable information for each feature. Insteadealesting distinctive features
the navigation method can select non-distinctive landsiarid include an additional
matching procedure. As suggested from the experimentssewts, the use of dark and
bright regions as the landmarks suggested through theiexgrais on insects provides
non-distinctive landmarks of a given image. In the navigabf honeybees, the sector
matching was done by pairing every light and dark sectoesgtp and landmark, in
the snapshot with the closest sector in the image of the sateresity (Cartwright and
Collett, 1987). Landmark extraction based on the lumindacel of the image has
shown to be useful in robotic experiments. Hong et al. (1@pJoited the luminance
intensity information of each one-dimensional circulamfoof snapshot. Lambrinos
et al. (2000) showed image processing for landmark nawigdity segmenting a region
into black and white areas obtained with omni-directioraatheras in Figure 2.6.

Weber et al. (1999) demonstrated a computation of the homiregtion based on
several non-distinctive landmarks. The correspondentedas landmarks does not
guarantee 100% correct matching, but only works as an appadon. To avoid the
complexity in computation, they decided to accept someadi®ri in homing direction
instead of searching for the optimal solution. The suggkstethod first computes a
correction vector based on the difference between thermgato a specific landmark
from the goal location and the current snapshot image. Tdri®ction vector is a di-
rection which makes the discrepancy between two bearingemthat is, if the agent
moves toward the correction vector, the bearing to the lawllrinom the current loca-
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Figure 2.6: Example of landmark extraction based on the luminance. After applying a
threshold to each pixel, a horizontal area is extracted. A pixel in the segmented horizon
will be black if more than 50% of the pixels in the corresponding column are black.
(Reprinted from Lambrinos et al. (2000))

tion becomes more similar to that of the goal location. Theestion vector will be
smaller if the angular difference between the bearings @fahdmark from the goal
and the current location is smaller (see Figure 2.8). Basethese characteristics,
the homing direction can be computed by summing all the ctae vectors for every
landmarks available. Since the method does not search &y evatching possibil-
ity but only consider few candidates, however, the arrareggnesan be mismatched
and lead to a wrong vector for some cases. Although this hgmiirection may not
correctly point the goal from the current location, the hogndirection computed at
the next step may improve the accuracy through iteratioms€guently, the homing
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Figure 2.7: Computing a homing direction with non-distinctive landmarks. Each land-
mark i produces a local correction vector V;, the summation of which determines the
homing direction Hs. Given only landmark bearing information, each correction vec-
tor attempts to improve the perceived bearing of its landmark to better match with that

observed from home H. (Reprinted from Weber et al. (1999))

performs successfully moving incrementally toward thel ¢maation.

The correspondence of ambiguous features between imagd®earched by com-
puting the distances between them (Matsumoto et al., 2@lagk matchingnethod
introduced in the work of Vardy and Moller (2005) decides thatch by searching
the smallest difference between points under the assumitat two images to be
compared were taken with the same orientation. The cornelgpe search by block
matching is not made for every position in the image but oatysbme sampled posi-
tions, which are considered as landmark. Established reafon every sampled points
lead to correspondence vectors. Each correspondence ideddly indicates the di-
rection of movement corresponding to the current snapshagjé emerging from the
reference snapshot. Inversely, by mapping every corresgae vectors on the image,
it is possible to point the direction of movement to the ga@hpwhere the reference
shapshot image was taken.

Unlike the navigation with perfect correspondence matghirsing the non-distinctive
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landmarks can result in serious deviation in homing vedfdandmarks are not dis-
tinctive, the matching between two images cannot be donasalg, but only in an
approximate or probabilistic way. In the landmark-basedgation method, if the
correspondence between features cannot be establisbatgdision of homing vector
relies on a roughly estimated result. However, we can expgcadual decrease of the
uncertainty of the estimated result through the explomais in the probabilistic data
association method used in SLAM.

There are also landmark-based methods without any comdspce matching. The
average landmark vector (ALV) model, suggested by Lamisretal. (2000), requires
an extraction of features but does not perform feature nrajckn the ALV model, all

the features are treated equally. The extracted feature®tpossess any character

istics to distinguish one from another. The ALV is calcuthfeom the unit landmark
vectors for each landmark and then it is compared with the Ahtained at the home
point. Each detected landmark vector has a unit length, lsm@verage of landmark
vectors at each point is considered to be sufficient to reptethe whole snapshot
image. This method uses a rather simple representatioredaduttrounding environ-
ment, since the only information that needs to be storedct kaation is one average
landmark vector. Instead of comparing two images, it is noaugh to compare two
average landmark vectors. Thus, instead of decreasingisheedancy between two
snapshots the agent can derive the homing vector by subtyaeto ALVs. By stor-
ing the ALV at the goal point, the ALV obtained at current [toa is compared with
the reference ALV from the goal location to determine theaction to home. The
vector representation is shown in Figure 3.6. The ALV metigmres other detailed
properties of the landmarks, such as the size or distance the agent, and only
considers the angular position as seen by the navigatos riavigation algorithm is
simple and computationally cheap, and shows an excellefarpgance (Lambrinos
et al., 2000). However, on the other hand, it requires a eefs¥ compass to deter-
mine the direction to move along. The ALV method can also ls#yeenplemented in
robotic experiments involving simple image processing\ator calculations. Since
the ALV method requires a reference compass, its use iniagquires a compass
sensor, the precision of which plays an important role inpgr@ormance of the model
(Moller, 2000). Studies on the behavior of animals have alestrated the possibil-
ity that the ALV model is adopted by insects and other smatharfs (Moller, 2001).
As mentioned earlier, due to the simple representationradrtaarks in the environ-
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Figure 2.8: Average landmark vector (ALV) model using edges as landmark features.
Vectors attached to the outer ring are landmark vectors contributing to the dashed ALV
computed for the snapshot position. The thin solid vector is the current ALV, and the

thick solid vector is the computed home vector. (Reprinted from Lambrinos et al. (2000))

ment, ALV can be implemented efficiently in the neural netnarchitecture (Hafner,
2001; Hafner and Moller, 2001; Wei et al., 2005; Smith et 2007), and in robotic
experiments (Goldhoorn et al., 2007).

2.3 Summary of Chapter 2

We examined various biologically inspired methods in logalial homing, which are
simple and can be easily implemented. They do not need $geaisor or platform but
only require information processed from the image intgr@isnapshot images. They
are simple and still show good performance in local homingiufnber of biological
mechanisms have been shown to be appropriate for the imptatien on the robot
navigation (Hong et al., 1991; Lambrinos et al., 2000). Fernore realistic imple-
mentation, it would be effective to combine two or more €géds to navigate through
the environment. As many researchers have compared diffeevigation methods,
the selection and application of an appropriate visual hgrhobming algorithm to the
robot is important for the implementation of the robot natign system.



Chapter 3

Distance-estimated landmark vector
(DELV) method

In this chapter, we propose a new algorithm for homing ndiogadistance-estimated
landmark vector (DELV) method (Yu and Kim, 2010b). Our newdmark-based

navigation algorithm uses distance estimation and lankimatching based on the ar-
rangement order. The distance estimation is obtained fr@regomotion of the agent.
Since we exploit the distance information in addition todararks, we first apply the

distance concept to the landmark vectors instead of setiagandmark vectors as unit
length. The length of a landmark vector is set as an estindig¢dnce or as a quan-
tized distance. The next step is a demonstration of the landmavigation method

without a reference compass but with the distance estimafitandmarks. Replacing
the compass information with the landmark arrangementrpode navigation method

exhibits a successful homing performance. The DELV methad suggested in our
previous works (Yu and Kim, 2010b, 2011c) and the effect awlilts of quantized

distance applied to DELV were described as well (Yu and Ki@1,(a, 2011d).

3.1 Basic concepts

The distance-estimated landmark vector (DELV) methodae& of landmark vectors
in a way to determine the homing direction. The concept ofdahdmark vector in the
DELV method is similar to that of the ALV model but as a sigrafit difference.

The average landmark vector (ALV) model, suggested by Lambret al. (2000),

21
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calculates ALV based on the unit landmark vectors and thempeoe it with the ALV
of the home location. Each detected landmark vector has éemgjth, and the average
landmark vector at each point is considered to be sufficentepresent the whole
snapshot image. Subtracting the ALV of the home point froemAbV of the current
location, the agent can determine the homing vector. Toimlke homing vector
based on two average landmark vectors, however, it is n@gess have a reference
compass information. The ALV model only focuses on the diioecto the home point
without any estimation on the current location of the agent.

Since the ALV method requires a reference compass, its usebitics requires a
compass sensor, the precision of which thus plays an imtodke in the performance
of the model (Moller, 2000). Thus, it would be advantageibuke algorithm could
operate only with visual information and with no need for enpass or other sensors.

As noted above, several navigation models require compassver, the accuracy of
the compass sensor can be affected by the motor movementabitermobot. There-

fore, it is important to create a navigation method that doasrequire a reference
compass. In this regard, several visual homing methodg ukawhole image rather
than computed parameters have been suggested as navigatiood without a refer-

ence compass.

3.2 Methods

Figure 3.1 shows a landmark vector representation witradcs estimation in the
omni-directional view. Figure 3.1 (a) is the omni-direct#b ring with perceived land-
marks at the current location. Figure 3.1 (b) and (c) illagtrthe landmark vectors.
In the unit landmark vector model, all the landmark vectasgeithe same unit length
(as in Figure 3.1 (b)) and each landmark is considered to dsdme distance from
the agent. In our distance estimation method, the landnmectovs can have different
lengths depending on their distances to the agent.

Because of the added distance information to the landmartorse our proposed
method can operate in the absence of reference compasmation. The robotic
agent can determine the proper direction based on the |lakdhséribution even with-
out a compass. In this thesis, we discuss an efficient magaigorithm of landmark
arrangements by using the distance estimation. Since mgtelch individual land-
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Figure 3.1: Landmark vector representation with distance estimation: (a) a landmark
diagram, (b) unit-length landmark vectors, and (c) landmark vectors with distance (polar

coordination) (Reprinted from Yu and Kim (2011d))

mark in different scenes requires a significant amount afrmftion and a huge com-
putational cost, we decided to exploit the linear order nfilaark arrangements. With
landmarks of no distinctive features, we perform a simpblrdefor the appropriate
order rotating the landmark arrangement to determine thergpdirection. Repeating
the same process, the agent is gradually guided toward tine lpoint. We call this

method as distance-estimated landmark vector (DELV) naktaond will give a more

detailed description of the procedure in the following.

3.2.1 Distance estimation

In the DELV method, we use an omni-directional snapshot ertagacquire landmark
information. An omni-directional camera provides the n@bobot with a 360 view,
shapshot panoramic images of its surroundings. The omectitbnal snapshot gives
a panoramic image so that the agent can observe objectsmy @éivection. Since a
landmark does not disappear from the view with an omni-timeal camera as long as
the robot does not move significant distance, it is usefuetord the landmark posi-
tions. Therefore, the viewed objects are not limited tomgdar position of the agent
whereas the traditional cameras have a limited view. Thisiadirectional feature al-
lows more efficient (Sun et al., 2004) and unconstrained meve of the robot. In
addition to this advantage, the omnidirectional cameraiges a view similar to that
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Figure 3.2: Image shift of landmarks. The agent moves from the position P to C (mov-
ing distance d), the head orientation angle changes by ), and the viewing angle of a
landmark from 6 to 0+ & (Adapted from Yu and Kim (2010a))

of the insects’ eyes. In fact this camera has been used pbpuianany bio-inspired
navigation method (Franz et al., 1998; Huber and BultH$88).

The distance to the landmark can be estimated from the anghifaof the landmark
arising from the forward step move of the agent. The geomsttationship between
distance and angular shift are described in Figure 3.2.

For the distance estimation, let us assume that the agergsooe step from poifto

C as in Figure 3.2. The agent moves distadder one time step. As the agent moves
one step forward, the angular position of the landmark cbarigpm6 to 6+ 6. The
angled and0+ d indicates the bearings of landmark at the p&imndC, respectively,
while Y is the change of the heading direction in two points. For $icitp, the triangle
APLC in Figure 3.2 shows the relationship between each amgléree distance. The
distanceR from the locationC to the landmarkL is what we need to determine the
current location a€. And the distancd&® as the previous distance betwdemand P
will be stored in the reference map. Applying the sine lawhtriangle, Equation 3.1
is derived, leading to Equation 3.2.

sin(@+y) _ sin@—y) _ sin(6+3)

d R R 3.1)
_ dsin(6—y)
=SB y) (3.2)

The estimation of the distané€based on two sequential images is related to a stereo-
vision or optical flow analysis. If there exist moving obgat the environment, those
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objects can be separated from the background. Inverséhg pglatform moves instead
of the objects in the environment, the objects will give aimoparallax showing their
boundaries with respect to the backgrounds. The calibsiggdovision system would
provide more accurate distances, but two images in sequamnaggrovide sufficient in-
formation for the landmark distance estimation. To carritbis operation, the robot
takes two snapshots, one before and one after each stepproeisdure is called a
unit movement of the mobile robot, which is involved with #getimation of landmark
distances based on the agents egomotion. In order to estilmadistanc®, there
must be a correspondence of the landmarks between the pseaal current images.

3.2.2 Distance quantization

The distance to a landmark is estimated with Equation 3r&&eSihe equation includes
0, & andd, the accuracies of these variables can affect the estimalibe angular
positiond is affected by the noise in the captured image and therebgripelar devia-
tion dis, and the distance is mainly influenced by odometry error. Furthermore, it is
plausible to argue that insects or other animals may pertkersdistances to landmarks
in a simpler manner as several classes. In other wordsathstecalculating their ex-
act distances, they may place landmarks into broad disteaeses, such as, near, in
medium range, or distant. Therefore, we introduce the dgeethtlistance information.

The distance-quantization categorizes the distancestimiarks into several distance
levels. For instance, if the quantization level is 2, evarydmark in the view will be
sorted as either distant or near, while for level 3, they bdlcategorized as distant,
mid-range, or near. Quantization level 1 corresponds tceethedistant assumption,
as in the ALV method, that all landmarks lie at same distarfeethe discretization
level increases, the classifications become finer, and gdirttit of the highest level
guantization, the true distance can be obtained.

Distance discretization leads to the simplification of thedmark vector representa-
tion. The discretization is relatively insensitive to r@iags long as the landmark is
assigned to the correct class of the distance level. Evamgththe changes in dis-
tance can affect the perceived arrangement of landmaitksntthod is still useful for

navigation if such changes do not alter the relative digaricom the agent. Figure
3.3 shows an example of one and three-level quantizatioanalrhark distances. The
filled circles indicate the actual position of the landmank#h respect to the agent in
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Figure 3.3: Example of the landmark distance quantizations: (a) one-level quantiza-
tion, that is, an equidistance assumption and (b) an example of three-level distance
guantization (Adapted from Yu and Kim (2011d))

the center (black dots). Transparent circles show the ped@osition of landmarks
adjusted by the estimated distance quantization. The ere-tjuantization in Figure
3.3 assumes every landmark to be at the same distance fraagenée It has the same
concept of an equidistance assumption in the predictivg@maatching method, the
ALV model and the average correction vector (ACV) model sgggd by Hong et al.
(1992). Figure 3.3 (b) shows three levels of distance-guaindn yielding to the per-
ceived distance into three classes: the close one, thatisia, and the one in medium
distance. Based on their relative distance from the agewintiged distances are as-
signed to each landmark for each class landmarks belongherefore, for example,
in 3 level of discretization, each class, close, medium asthudt has certain prede-
teremined distances, and landmarks would be perceived dollgen those distances.
Through the quantization process, the perceived distarf¢ae landmarks do not rep-
resent the true distances any more. Still the overall cordigans remain the same as
the true ones. Let us label the bottom left landmiatkand proceed to number the rest
in a clockwise manner. Thed is the “actual” closest landmark and it is still the closest
one among the “perceived” locations. In this example, tis¢ oé the landmarks are
perceived to be at the same distance, however, the relasitamdes of landmarks from
the agent are not altered. For example, it will not claskByas being more distant
thanL2. The effectiveness of this distance discretization ptaoe will be shown in
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following experiments.

3.2.3 Reference map and localization

The ALV model stores the sum of landmark vectors at the horcatilon. In the aver-
age correction vector (ACV) model, the individual landmaeéctors with unit length
at home is memorized. The stored landmark vectors are thepa®d with those
obtained at the current location in order to determine thmihg direction. Similarly,
in the distance estimation method, each landmark vectbeatest is stored in a refer-
ence map. The reference map is defined as a set of landmadts/petrceived at the
nest and does not possess any detailed information on tireement beyond the sim-
ple landmark vectors. The reference map includes the distand angular direction
from the starting point to each landmark. The reference naapbe created with the
distance estimation by Equation 3.1 applying the unit maxeintechnique. Equation
3.2 computes the distan& of a landmark in the reference map.

_ dsin(6+9)
~sin(8—y)

For every perceivedtth landmark (= 1,2,...,N) in the environment, the landmark

(3.3)

vectorLV, = (R, 6;) can be found, wherl is the number of landmarks. The distance
R is obtained from Equation 3.3 a¢lis the angular position of the landmark viewed
from the home location.

An agent at an arbitrary position with the stored referenap and perceived landmark
vectors can derive the current location by projecting tineltaark vectors to the refer-
ence map. That is, the estimated distances and the angsiéiopse of the landmarks

can serve as a basis information for the localization of tfenain the environment.

Once the reference map is built at the home location, the lenadfbot does not need to
collect any additional information on the environment orv@ment directions during
the exploration phase until it decides to return home. Thaihg phase is composed
of a series of unit movements. The mobile robot repeateéystanapshots and moves
one step forward so that it can continuously determine thaihg direction. The
agent localizes itself by projecting the landmark vectargha current location to the
reference map. The homing direction can be calculated gimh a vector from the
current position to the home location.
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(@) (b) (c)

Figure 3.4: Rotational shift of landmark arrangements. Projecting perceived landmark
vectors (X1,X2,X3) (black arrows) into the reference map (large circles) depends on
the landmark arrangements (X; indicates the projection of the i-th landmark) (a) cor-
rectly matched arrangement, (b) (L1,L2,L3) match (x3,X1,X2), respectively, and (c)
(L1,L2,L3) match (x2,X3,X1), respectively (Reprinted from Yu and Kim (2011d))
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Figure 3.5: Landmark vectors in the reference map with the estimation of head orien-
tations; (x1,X2,X3) are the projected landmark vectors for (a) correct head angle (b) a
deviation angle 45° of the head orientation (c) a deviation angle 90° of the head orien-
tation. (Reprinted from Yu and Kim (2011d))

3.2.4 Arrangement matching with landmark vectors

In order to project perceived landmark vectors into theresfee map, the DELV
method has the correspondence problem between landmaittks aurrent view and
those stored in the reference map. The robot must matchnldenkarks in the correct
order and direction without a reference compass, and it eaacbomplished by the
rotational arrangement matching.
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Figure 3.4 shows the method of the rotational shift of landnarangements where
the heading direction of the agent is the same as that in teereee map. The figure
illustrates a simplified matching process by fixing the heagkction at the desired sit-
uation which can be an arbitrary direction, in fact. Cirdledicate landmarks whose
relative positions to the nest are known with egomotion aoded in the reference
map. Black arrows$xi, X, x3) indicate the inversed landmark vectors perceived at the
current location of the agent. Because the agent has namat@n on the heading
direction and the identification on landmarks, it is necesta match the landmarks
in the reference map with the perceived landmarks at theecutocation. Since we
have the reference map and perceived landmark vectorggiirgj the inversed land-
mark vectors into the reference map will yield the most cogive points, with the
estimation of the head direction and the correct landmadogement. The Figure 3.4
shows that when the landmark vectors are projected ontcefeesnce map with the
right arrangement order, the vectors are likely to pointheocst the same point.

In addition, Figure 3.5 illustrates the effect of headingdiion in the landmark vector
projection, where the landmark arrangements are correwdtched. When the esti-
mation of the head orientation is incorrect, there is no eaging point for the current
position. Reversely, we can estimate the head orientasioredl as the current location
of the agent in the reference map coordinate, by employiegtmvergence property
of the projected landmark vectors. Along with the availdaledmark arrangements,
possible head orientations ranging froft@® 360" within the angular resolution should
be tested to acheive the most converging case.

Even when there is no one-to-relation between landmarksarvtews, that is, if the
numbers of landmarks in two views are different, the sameiniag) process is applied.
If there are additional landmarks left in the reference maponly consider endpoints
of projected vectors to estimate the current location. @mother hand, if the number
of landmarks in the current view is larger than that in themefice map, additional
landmark vectors are ignored. Since we only consider line@tional matching of
landmark vectors, difference in the number of objects oleskmay influence the per-
formance in some cases. However, the overall performanChapter 5 shows that it
does not severely damage the homing rate or the averageiretioming vector. In
addition, the occlusion problem is likely to be the main @a$different landmark
numbers in views. As the occlusion problem and its influenc@@formance of the
method would be investigated in Chapter 5, showing the t®suth no one-to-one
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mathcing of landmarks.

Theoretically, the end points of projected landmark vex&brould converge into one
point, when the landmark arrangements and head oriensasiccorrectly matched
as in Figure 3.4. Due to various types of errors, the endpahprojected landmark

vectors would not converge to a single point, but rather lsavee errors. The distance
estimation process can be affected by the accuracy of pectéandmark bearings
and while the agent moves one step forward to take two sn&gshe moving distance

might have odometry errors. These errors can be reducedniynating some outliers,

which diverge from the rest of the points in serious amoudtaugraging the endpoints
of projected vectors. Our proposed navigation method |¢laelsagent to home by

applying the method repeatedly. Moreover, we will show thatnavigation method

can still operate within some error bound in real roboticeskpents.

Once the right head direction of the agent is determined,amepcoject the landmark
vectors into the reference map in the correct order, andikecthe agent in the refer-
ence frame. While the previous landmark vector models sachL¥ and ACV are
capable of computing only the homing direction, the DELV hoet provides the in-
formation on the current location, with some errors, and&sathe navigation even in
the absence of a compass.

3.3 Mathematical description

The proposed DELV method exploits the rotational arrangemeatching procedure
without a reference compass. Rotational arrangement magtphojects the perceived
landmark vectors into the reference map by searching headtation, and estimate
the current position of the robot. The algorithm of the DEL¥thod can be summa-
rized in Algorithm 1-3: Algorithm 1 is used for initializain, Algorithm 2 is the main

function, and Algorithm 3 determines the homing direction.

In this section, we describe this procedure mathematiealtyanalyze its convergence.
We will show the rigorous analysis on the landmark vectossuggest that the ALV
model can be represented as a variation of the DELV methdtthatlevel-1 quantized
distance information. Following the convergence proofhaf ALV method presented
by Moller (2000), we also provide the proof of convergené¢he movement to the
goal point within the proposed landmark vector method.
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Algorithm 1 Initialization
1: lp «+ takeSnapshd} //image taken at the nest

2: moveForwardd)
3: |1 < takeSnapshoy
4: LViet < estimateDistandgy, 11) //landmark vectors in the reference map

Algorithm 2 Homing
1: Initialization

2: loop
3.  lp« takeSnapsh@} //image taken at the nest
moveForwardd)
l1 — takeSnapshoy
LVhew < estimateDistandgy, 1) //landmark vectors in the reference map

4
5
6
7 h«— matchindLVief, LVhew) //determine homing direction
8:  turn to the homing directiorhj

9

. end loop

3.3.1 Landmark matching in the arrangement order

Landmark arrangement matching requires two steps: thesteptis to create a refer-
ence map at the beginning of the exploration, and the sesaiedroject the currently
received landmark vectors into the landmarks in the refexenap in order to obtain
an estimate of the current position. The correct headingction and the landmark
arrangement order is obtained by computing the variancstohation of the located
position. The landmark vector is a vector pointing to thedlaark from the current
location. Thus, by projecting the reversed landmark veictiar the landmarks in the
reference map, the current location can be obtained. Tteallg this procedure
should return a single point if landmarks in the snapshogerexactly match those in
the reference map. However, due to several noise factah,aslimage noise and the
error in the distance estimation process, some deviatignomaresent. Therefore, we
compute the mean point and the standard deviation of eaakeldposition.

The average point of the projected landmark vectors is difaseX(x) as following
Equation 3.4. The landmark vectors are projected on theeete map with thé&-th
arrangement while there akelandmarks available in the environment.
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Algorithm 3 Matching
1. /lfor all N possible arrangement orders

2: for k=1toN do

3:  for a=1°to 360 do

4: pX — LV Projectior(LVief, LVhew O, K)
5

6

7

if convergencg®) < convergencg™") then
/lcompare variance of the convergence points

p™n" — pk /ffind the location with appropriate arrangement of minimum

variance
8: Omin < o //find the head orientation with minimum variance
9: end if
10:  end for
11: end for

12: return[p™", omin)

NZ\ (o, 01 ) —Vi(x, )] (3.4)

where x= (Xx,y) is the current position of a roboty %= (X0, Yo) is the homing location,

the head orientations anda, are at the current location and in the reference map,
respectivelyV:R(xo, 0, ) is the landmark vector for thieth landmark in the reference
map, and/i"(x, a) is thei-th landmark vector with the matching ordeat an arbitrary
location x whilek is one ofN possible arrangements based on the rotational matching.
As a result,pk(x) represents the estimated current position relativg to

This matching process will be tested by the rotational sififandmarks in the refer-
ence map, that is, only by changing the arrangement ordemalihharks in sequence
resulting inN possible arrangements. Since a linear order of landmarkethagional
shift reduces the computation time maintaining perfornedegel, we do not consider
all the permutations of landmark ordering.

We find the best matching order and head orientdtigm,| based on the convergence
criterion with the equation:

argmln[zI 1 VR (%o, 0r) = VIK(x, ) — p*(X)] [ViR (X0, 0r) — V¥(x, 01) — (%BS)
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The inner product of two vectorgV;¥(xo, o) —VK(x,a) — p"(x)] and its transpose
leads to the variance of the endpoints of projected landwegtors. The arrangement
is found with minimum variance of the vector sum. This shdagdun for all possible
linear orders of arrangements and possible head anglear gxperiments, an angular
resolution of 2 for head orientation angles were tested.

We can project landmark vectors in an appropriate order atetchine the mean point
p“(x) as the estimated location of the agent relativedavith appropriatez. In the
equation,z is the matching arrangement which yields the best convesgeh end
points of the projected landmark vectors, ands the head orientation angle with the
convergence point.

PPX) == [MR(Xo,0r) = (X, 02)] (3.6)

The p?is the vector pointing from home to the estimation of the enttocation. Thus,
the homing vectoH (x) is negative ofp” and can be written as:

N

H(x) = i; [VE(X) = ViR (Xo)] Zlvz éviR(XO) ~ Xo— X (3.7)

where the first term is the sum of landmark vectors in a newsmatgmage and the
second is that in the reference map (we use the sum of veciotise homing vector
instead of the average for convenience). However, we havaioo information of
the current position x, and inste@d(x) can be used for an estimate of homing vector,
H (x).

N
H(x) = ,zl[vf(pZ(x))—,ZviR(xo)}:—p2<x> (3.8)

Interestingly, the two terms in Equation 3.7 can be intedgatas the average landmark
vector (ALV) suggested by Lambrinos et al. (2000). In the Aldédel, two averaged
vectors at the current location and at the home location oaahuyge the homing vector
while the DELV method uses similar process, but with thesshse estimation involved
in each landmark vector. In the ALV model, every landmarkteebas the same unit
length, regardless of the distance from the agent. In oupqeed DELV method,
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(@) (b)

Figure 3.6: Visualization of the (a) DELV and (b) ALV model in same environment. In (b),
landmark vectors are represented as dashed arrows, and solid arrows are the average
landmark vectors. The large thick solid line arrow is the homing vector (Adapted from
Yu and Kim (2011b)).

the distance estimation is applied to the landmark vectorthat distant landmarks
have longer landmark vectors. The difference in representaf landmark vectors

is illustrated in Figure 3.1. In the ALV model, all trajecies converge to the target
location for homing navigation (Moller, 2000) and follavg a similar procedure, we
show the global convergence in our distance estimation mode

3.3.2 The DELV method and the average landmark vector (ALV)

model

By introducing landmark vectors with continuous distarecthe unit-length landmark
vector model, we can see the effect of distance quantizatiocess for a simple rep-
resentation of the reference map and landmark vectors.

Figure 3.6 (b) illustrates the homing mechanism of the ALVdelo A unit vector is
aimed at each landmark from the current location while laadinvectors in Figure
3.6 (a) have different lengthd\ landmarks are represented by the landmark vectors
Vi, wherei = 1,2,...,N. The sum of the landmark vectors is stored as the ALV. For a
current position vector x, the landmark vectprvith unit length is:
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L —x
Vi(X) = 3.9
=G &9
and when the distance estimation is included as well, thénhamk vector is repre-
sented as
LVi(x) =L —x (3.10)
The average landmark vector is
ALV (x Zv. (3.11)

The ALV method estimates the average landmark vector frarstiapshot image of
a given location of the mobile robot. The homing vector fromusmknown location

X = (X,y) directed to the home poingx= (X, Yo) is obtained by subtracting the average
landmark vector atxfrom that at point x as follows:

H(X) = ALV(X) — ALV (Xo) (3.12)

In order to show the convergence of the homing vector in the Alodel, the potential
function is derived Moller (2000). The homing vector carrépresented by a gradient
of the potential as

H(x) = —vU(X) (3.13)

whereU (x) = TN, Uj(x) with
Ui(x) = [ILi —x[| — e

whereL; = (x,yi) and x= (X,y).

To find the minimum otJ (x), we use the determinant of the Jacobian matrix:

whereUxx= 313 (i —Y)?/[|Li—X| |3, Uyy= 31 (i =%)?/[|Li =] |%, andUyy = — Ly (xi —
X)(yi —y)/||Li — x||3. Thus, we obtain

(yi—y XJ—X Zi —Y)(X] >(y1 y)

||X| —X|| Ixj x|

-3 % ((>Q—><)(y1—y)—(><j—><)<yi—y))2 (3.14)
i=1 j=i1+1

Ixi —x[1% [[x; —x|°
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Based on the equation, it is alwaiXx,) > 0, Uxx(Xo) > 0, andvU (X,) = O since
H(Xo) = 0. Finally,U (x) has the minimum value at the poing.x

Similarly, convergence in the proposed landmark vectohoeiith continuous dis-
tance can be shown. Since the landmark vector is not restrict the unit length,
Equation 3.7 can be rewritten to represent the homing vestor

2
e

H(x) = ZlVZ 21 R(%0) = 3 [Li %o — P*(X)] = 3 [Li —Xo]

- ;[_pZ(x)] (3.15)

Assuming that the current location and the head orientatrerestimated accurately
through the matching process, the homing vector is a gradiethe potential as
H(x) = —-vU(x) and

Ui(x) = %HLi —X|[?= (Li —Xo) - (Li —X) (3.16)
We obtainUyx = [ (3 (x —X)%+ (Yi —¥)?))],, = —1,Uyy= —1 andUyy = 0

Therefore,
D =Uplyy—U3 = (-1)>-0*>0

The equations confirm the convergence of the homing vecttdraiandmark vector
model with continuous distance wi(xy) > 0, Uyx(Xo) > 0, andvU (xo) = 0.

The mathematical convergence presented in this sectionpigrely theoretical ap-
proach to the homing navigation. The error in head direcéistimation, landmark
segmentation, or occlusion problem would affect the perntorce.

Now we introduce the quantized distance estimation insdé#te continuous distance
scheme, that is, the discretization of distance into a eo@solution. The discretized
distance changes the representation of landmark vectding imathematical descrip-
tion. Contrary to the case of continuous distance, the lamknaectors in the dis-
cretized distance do not represent the actual distancesttatiiimark any more. For
example, with two level discretization, the landmark vectan be represented as:

a_Li—x _
i~ { BT Il

HL XH

(3.17)

NIY Pl

if |Li—x]|| >
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Since the distances are discretized relative to the predeta, the discretized land-
mark vector is effectively a scaled version of the unit lénigindmark vector shown
in Equation 3.9. Therefore, a series of homing vectors abthiby the discretized
landmark vector method also converge to the home pginh the same way as the
procedure described above.

3.4 Summary of Chapter 3

This chapter suggests a new algorithm, the distance-dsiihtendmark vector (DELV)
for homing navigation. While it takes the concept of landknagctors used in the pre-
vious models, the method is markedly different from its gi@ebssors in taking account
of the distance information merged into the vector. Theadliseé to the landmark is es-
timated by the angular shift from the one step movement ofatient based on the
omni-directional snapshot image. Landmark vectors obthiat the target location
are stored as a reference map, which is used to localizé atsgldetermine the hom-
ing direction. Consequently, the DELV method can matchespondence between
the current landmark vectors and those in the reference repwithout a reference
compass. The arrangement matching of landmark vectordesntile agent to deter-
mine an appropriate landmark correspondence as well agdtditng direction. The
overall procedure is described in a mathematical form aleitig the investigation of
the convergence characteristics. The performance of aposed method is given in
the following chapters.






Chapter 4

Navigation performance

In this chapter, we present the navigation performance ppoaposed method. As-
suming that landmarks have no distinctive features, weyaaut a simple landmark
arrangement search to determine the homing direction,hwiBi@lso effective even
when the discretization of distances is applied.

The experiments are conducted in both computer simulatindsobotic experiments.
In the landmark configuration of robotic experiments, théitgorobot is able to cap-

ture snapshot images through the omni-directional camegalatermine the homing
direction by processing the landmark information from timages. The environment
for simulation experiments were set similar to that of a-kgatld robotic experiment.

For the simulation experiment, a various types of landmariigurations are tested
and results were analyzed. In this chapter, the performescdts of the DELV method

are compared to those of a image-based navigation methd giredictive image-

matching method suggested earlier by Franz et al. (1998)coiing to the clas-

sification which we introduced in Chapter 2, the predictage-matching method
is a holistic method while our DELV method can be classifiecadandmark-based
method. However, since the DELV method is able to operatbowit any reference
compass information, we compare the results with the naeiganethod within the

same condition. Since the reference compass is requiresssetly for many exist-

ing landmark-based homing navigation methods, we alsotheeomparison of the
reference-compass-enabled DELV method in Chapter 5.

First, we discuss the results of our newly suggested DEL\Vhowebn its own (Yu and
Kim, 2011c). Applying the quantized distance scheme, wengxa the sensitivity of

39
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the method on the accuracy of the estimated distances (Yiand2011d). Since
animals as well as humans might perceive the distance imvekense rather than in
the absolute values, the quantization in several levelsasgoper for the bio-inspired
navigation model. The results are then compared to those the predictive image-
matching method. Robotic experiments were conducted irdifferent environments,
one with artificial landmarks (Yu and Kim, 2010b) and anotimethe unstructured
environments with natural landmarks (Yu and Kim, 2011d)e @halysis of the results
from experiments can be expressed in mainly two differenhf a homing vector
map and a success rate in homing. The data include a vectarangplar errors,
and the success rate of returning home accurately or thbroattt area. The detailed
criterion is described along with the results.

4.1 Performance evaluation

The performance results of our method are compared to otnagation method in
various perspectives. Image-based navigation methaatssitied as holistic methods,
determine homing direction based on the image differenndsugually does not re-
quire any reference compass information. The differendenage distance between
a pair of images taken at different locations increases whemlistance between the
locations increases (Zeil et al., 2003), and as a visual hgmmethod, descending in
the image distance measure will lead an agent to the godidodMoller and Vardy,
2006). Similar visual homing approaches calculate thectdor of movement based
on the intensity of each pixel in the image (Moller, 2009r3t and Zeil, 2007; Zeil
etal., 2003).

In this paper, the performance results are compared to #diqgbive image-matching
method suggested by Franz et al. (1998) which is one of the fmo®us image-based
homing navigation methods. As in the chapter introducingkjeounds of vision-
based navigation methods, the method by Franz et al. (1298)e classified as holis-
tic method. The predictive image-matching method of Frared.§1998) determines
the direction of movement by comparing a snapshot takenaeHocation with the
predicted image at the current location. The mobile robesitas a prediction image by
estimating the landmark movement as the robot moves in gaettidn. Comparing
predicted images with the image taken at the target locati@image with the least
discrepancy in the size and bearing of landmarks is chosémeadirection to move.
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Figure 4.1: Description of the predictive image-matching method (Franz et al., 1998);
(a) the possible directions of movement for the agent and (b) the prediction of the cap-
tured image for each corresponding direction of movement (Reprinted from Yu and Kim
(2011c)).

The predictive image-matching process is described inrBigul. The broken line
arrows diverging from the agent in Figure 4.1 (a) indicategildle directions to move,
and the number of directions determines the resolution@ptiediction step. Figure
4.1 (b) shows predicted images for 8 possible moving divesti The predictive image-
matching algorithm assumes equidistance for every lankimdrich does not reflect
real situations. This is an egocentric model of the visiasda navigation system and
the method is in good accordance with the real method tham#eets and animals use
to recognize the environment. The pixel-based image magahethod has advantages
in that it does not require a landmark segmentation proeedua reference compass.
The method provides a robust homing performance withoufexeece compass as
it is based only on visual information without any additibmdormation. Since the
method does not require reference compass, it is a conweatdvigation method with
fine performance. However, the predictive image matchinthoteis extremely sen-
sitive to the captured image of the surroundings and the rumblandmarks in the
environment. With few landmarks in the snapshot image etiea high probability
that the robot could misjudge its direction to home while rihigot cannot distinguish
and recognize the individual landmarks.
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4.2 Simulation experiments

In this section, we provide the simulated robotic experitagesults of the DELV
method without a reference compass. In DELV, we use theiootaif landmark ar-
rangement to localize the robot in the reference map insiétdek reference compass.

For the simulation of robotic navigation, we set the expenial environment as a
square ing of landmarks of different sizes and distributidhe center of the area is
marked as home of the mobile robot and so served as the sthre@mning point. It
is assumed that the robot can take an omnidirectional vielaraimarks around the
agent and estimate the landmark distances with it egomofitie robot determines
the direction of movement using a set of landmark vectorse dinow in the vector
map indicates the movement direction at each point. Thereifice between the angle
of the arrow in the vector map and a straight line drawn frochgaoint to the goal
was regarded as the angular error. The angular error gréyolsexrors with respect
to the distance from home, one of the criteria for assessiagérformance of each
navigation method.

Three types of assessments are given. The first is the veapr(see Figure 4.2),
which consists of arrows at every location to indicate thenimg direction. If the
arrow points directly to the goal location, it has zero aagwrror, while the error
increases as the arrow deviates from the desired direcliba.error is plotted as an
angular error graph. The error graphs are shown as meams@ee Figure 4.4). At
each distance, the mean of the errors was calculated. Térebams indicate the mean
values and thé-distribution deviations at the 95% percent confidencelléMee third
performance assessment is the success rate representddasent area as shown in
Figure 4.5. The mobile robot heads home from an arbitrargtion, and the success
rate is the number of trials in which the robot returns honmhwvia certain time limit.

Vector maps graphically represent the computed homingveesults for a set of grid
points. For a comparison in various environments, threedyg landmark environ-
ments were constructed. All three environments containdglindrical landmarks but
with different sizes and angular positions. The first envin@nt is shown in Figure 4.2
(a). Four landmarks are asymmetrically surrounding thednlmmation at (500,500) in
environment 1. The environment 2 has a uniform distributiblandmarks (Figure 4.2
(b)). Since there are four landmarks surrounding the gaeailtion, the bearing angle of
each landmark, as seen at the goal location, differs Byfreén that of its neighboring
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Figure 4.2: Vector map with the DELV method applied in three different environments:

(a) environment 1, (b) environment 2, and (c) environment 3.
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Figure 4.3: Spatial errors in homing vector; Marker of each point indicates the amount
of angular error (.: less than 45°, x: between 45° and 90°, and A: greater than 90°)

with corresponding vector maps in Figure 4.2.

landmark. The third environment contains an asymmetritidigion of landmarks.
As seen in Figure 4.2 (c), all four landmarks in the third eonment are cornered
to one side of the home location. These tests in three diffexavironments assess
the effect of landmark distribution. From Figure 4.2, we Idosee that the method
performs perfectly when landmarks surround the goal potiside of the convex
hull of landmarks, some points show errors in decided hordirgction, however, not
severely affecting the performance level. A quantitateresentation of the perfor-
mance comparison can be obtained from the spatial errohgiag-igure 4.3 and error
graphs in Figure 4.4.

The spatial error graphs corresponding to the vector mapgime 4.2 are shown in
Figure 4.3. We classified the homing vector result at eachtpoio three categories
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Figure 4.4: Error graphs for the DELV results in three different environments 1, 2, and

3 shown in the vector maps in Figure 4.2.

based on the amount of angular error, which defined as therelifte between the
decided homing direction and the angle of a desired strdigatfrom the current
location to the home location. The points indicated witrs@dhave small errors (less
than 45), while the points represented as staydfave errors greater than 4but
less than 90 Finally, points with angular errors greater thart @0e indicated with
a triangle(\). The spatial graphs in Figure 4.3 show the angular errdepatn the
spatial map. It shows that the DELV method work effectivalgil three environments.

Another focus of this study is to investigate the homing pdith the landmark-based
homing methods, which is the goal of homing algorithms. Tbenimg ability, to
accurately return to home location, is more important thaguéar error, although the
angular error indirectly influences the homing performafidee actual homing ability
can be affected by various conditions such as trap poirntacatrs, and obstacles. The
catchment area is defined as a region from which an agent dyad can ultimately
return to the goal point. That is, starting from a point cdsof the catchment area,
the agent would not be able to reach home. Instead, the agermd Wwe stuck in some
single location or would circle around a certain region, \Wnaas trap point. Even
though the vector map results reveal a sufficiently low nundesrror points, even
a few trap points can keep the agent from moving toward thélgoation and thus,
degrade the homing performance.
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Figure 4.5: Catchment area with vector map for each environment. (a) 98.52%, (b)
95.41%, and (c) 77.66% of the environment. The squared region indicates that the

corresponding point is inside the catchment area.

Based on the results of angular errors and catchment aeeBEhV shows good per-
formance in various environments. Although it seems to fextdd by the distribution
of landmarks, they show sufficient level of success rate mihg.

We constructed a landmark map by estimating the distanoesty &andmark by mov-
ing the robot one step forward with moving distartcand observing the image shift.
As the distance estimation of a landmark is affected by tearacy of the image shift
(see Equation 3.2), the distantef one step can be a controlling factor in the method.
The landmark arrangement in the current environment is eoetpwith that in the ref-
erence map. Then the agent determines the moving directithetgoal point. Figure
4.6 shows vector maps in which arrows represent the moviegtithtns chosen by the
mobile robot at each location. Four vector maps show reguttsvarying distances
d, but there are no significant difference among the vector paderns. This indicate
that a set of landmarks collectively determine the homimgatdion, and the resolution
of the image shift for a single landmark is not important im approach.

Figure 4.7 shows the averaged angular errors for vector egpts shown in Figure
4.6. The angular errors do not differ by a large amount witlyivg moving distances
d. This shows that the moving distance rarely affects theoperénce of the method.
Through several tests in various environmeunts; 50cmis chosen for good perfor-
mance in the environment for a robot size about 15 cm in diamAs the vector map
results in Figure 4.6 with respect to the moving distancevshery similar patterns
in terms of homing performance, the angular errors are ntitalty affected by the
moving distanceal in our experiments. Smatls might have a slight improvement in
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Figure 4.6: Vector map with the landmark arrangement matching method with different
moving distance d: (a) d = 20, (b) d =50, (c) d = 100, and (d) d = 150,

the variance of the error or the angular error itself, butaberall performance in the
homing direction has similar patterns. To accurately séheamage shift, it is ad-
vantageous to increask which can lead to a clear difference between snapshots and
thus reduce the estimation errors. However, if a very largeing distance is applied,

it could be inconvenient in navigation finding the actual ldocation and also more
vulnerable to the odometric errors.

Figure 4.8 displays the vector maps of environments witiouarlandmark configura-
tions and number of landmarks according to the suggestedatieAs the simulation
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Figure 4.7: Performance of the DELV method with varying moving distances in angular

error graphs. Corresponding vector map results are in Figure 4.6.

results show, the method can effectively operate in therenments with asymmetric
and unbalanced distribution of landmarks and various lar@mumbers as well. The
number of landmarks varies from 3 to 5, and they are arbyrpasitioned. Figure 4.8
(f) shows the angular error graphs of three examples showigures 4.8 (b), (¢) and
(e). At a distance far from the nest, the angular errors age laut still smaller than
90°. We predict that the agent will be able to return home sufakgs this situation.

We now compare our method with the predictive image-matchiethod. In the pre-
dictive image-matching method shown in Figure 4.9 the hgndirection is computed
with a method suggested by Franz et al. (1998) and also iga¢stl in the work of
Moller (2009). In the simulation, first the 1-dimensionahpshot of the environment
is taken at home location and stored as the reference imdgesiZe of the image is
360 pixels in width which leads to”Jof resolution of the snapshot. Taking snapshot,
the landmarks are marked in the omni-directional image #siDELV method shown
in Figure 3.1 (a), however, the difference is that the ageasahot set landmark vectors
for each landmark but instead treat every pixel in the snapatdividually. At an arbi-
trary point, the agent takes a snapshot image, and the imaggaped with parameters
a,y, andp. The parameters are used as same as it has been mentionegioupr
works (Franz et al., 1998; Moller, 2009). Theis the difference between previous
heading direction and the moving directiap,s the difference in heading directions
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Figure 4.8: Vector maps and angular error performance; (a)-(e) vector maps with the
suggested DELV method in environments of various landmark distribution and (f) error

graphs for vector maps in (b), (c), and (e).
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Figure 4.9: Vector maps; (a) the DELV method and (b) the predictive image-matching
method (Adapted from Yu and Kim (2011c))
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Figure 4.10: Performance comparison of (a) error curves of angular difference for the
DELV method and predictive image-matching method and (b) the success rate among
100 trials with respect to the distance from home without a reference compass (Adapted
from Yu and Kim (2011c))

of two views andp is the relative distancp = d/r while assuming all landmarks to
be in the same distangefrom the current snapshot location. Bathand had 72
steps, which is a%resolution in the range of°Go 360" and 15 steps were used for
ranging from 0.1 to 0.8 for every 0.05 step. Using these patarg, a set of distorted
image would be produced and by searching the smallest destaith the reference
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Figure 4.11: Trajectories of a mobile robot at the same starting points for applying each
(a) DELV method (d = 50) and (b) predictive image-matching method. Black stars
indicate starting points. (Adapted from Yu and Kim (2011c))

image, the best matching parameters were selected. Eapedvamnage is compared
to the reference image by computing the distance betweegesndn the experiments,
the distance is measured with the absolute of the differbatgeen snapshot intensity
values.

The vector maps for DELV and predictive image-matching rodtim same environ-
ment are given in Figure 4.9, and Figure 4.10 (a) shows thelangrrors for both
methods. The DELV method suggested provides significantigller angular errors
than the predictive image-matching method do. This resditates that the suggested
method has a higher probability of resulting in a succes®fuirn to home. In fact,
the DELV approach rarely fails in homing and shows high ssscate for almost ev-
ery case, irrespective of the distance from the releasd pwthe nest. This result is
shown in Figure 4.10 (b). Thus, the DELV method is more slgté&dr homing naviga-
tion than is the predictive image-matching method. Figuid 4hows the trajectories
of robot navigation for our approach and the predictive iexagatching method when
the mobile robot is released at an arbitrary location withradom heading direction.
From the same release points, the robot shows differenbipeainces based on the
homing method used. The predictive image-matching approfien has difficulty in
locating the nest when the robot is in the outer zone of thértaark convex hull. The
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main reason for failure in agent movement with the predecitinage-matching method
is a convergence problem to a landmark. This is due to theepsoc which the agent
tries to maximize the matching score between images. Hawiétlge agent moves ex-
tremely close to the landmark, the size of the landmark iwwieuld be large enough
to make matching score sufficiently large to move toward. uerrors in the vector
map shown earlier, in Figure 4.9, a ‘trap point’ may be getaetavhich prevents the
agent from moving toward appropriate direction to home.

Our suggested method determines the goal point with a ssicaesgreater than 90%
(see Figure 4.10 (b)). For the suggested landmark-matchigthod, the worsening
performance at a far distance from the nest is related todbkesion of landmarks. If
the agent is surrounded by landmarks, that is, inside theesomull of landmarks, it
can easily localize itself in the environment using the faadk arrangement. When the
agent leaves the landmark-surrounded area, however, mékanay be occluded be-
hind another landmark close to the agent or more than onelaridcan be overlapped
in the view, both of which can influence the landmark arrangietsmatching process.
This result is also supported by the spatial error graphsgarg 4.3. The amount of
error inside the landmark surrounded-area is almost zendethe point with errors
are main located outside the area, where the agent mighea@wery landmark in itw
view.

4.3 Simulation experiments: with quantized distance

The results of DELV with quantized distance is shown in tieist®n as vector maps,
angular errors and catchment area. As in the previous dhatee the ALV model

cannot operate without a reference compass, we cannot certipese results with
those of the ALV model directly. Instead, we compare thenhtogixel-based image
matching method suggested by Franz et al. (1998) in thistehap well. The vector
maps shown in Figure 4.12 were obtained using the disccebEd V method without

a compass. The arrows indicate the movement direction asndieied by the algo-
rithm. The landmark distance quantization levels in Figu®2 (a) to (c) are 3to 5,
respectively. The discretization levels slightly influertbe homing directions, but still
show good performance. As in the case with continuous lankldiatance, the land-
mark arrangement with rotational shift does not guaran@®@4d matching between
landmarks from different view. There can be error in lando@rangement matching,
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Figure 4.13: Error curves and success rate: (a) error curve results by applying DELV
with quantized distances of level 1 to 5 of the corresponding vector map results in Figure

4.12 and (b) success rate for each method

thus in homing vector due to the occlusion of landmarks ompireeption of horizon
problem.

Figure 4.13 (a) shows the angular errors between the dhigactlly determined hom-
ing direction and the desired direction. The error graplessiwown for DELV with

1, 2, and 5 levels of quantization compared to the prediatage-matching method.
This error may be unavoidable with the lack of a compass, baba be seen in Fig-
ure 4.13 (a), the error mostly remains less than 30 degre&=ebtingly, the angular
errors do not change much depending on whether continuodisaretized distances
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are applied.

The agent does not know its actual heading direction witaoeference compass. Al-
though we show vector maps in Figure 4.12, the trajectoylt®esan vary depending
on the heading direction of the robot and its egomotion. &foee, another criterion
is required to compare performances, and the catchmenirafégure 4.12 and the
success rate in Figure 4.13 (b) show the percentage of sfatesturn trips. The
catchment area shown in Figure 4.12 along with the vector shaws the region of
starting points at which the agent can return home sucdfssflhe point with no
squared boundary is outside the catchment area. For thessucate graph in Figure
4.13 (b), a trial was regarded as a success if the mobile relached home and was
counted as failure if it became stuck or continually circéeldcation that was not the
home point. The success rate indicates the number of sidechesing out of 100
trials. The agent starting explore from the nest is removedl @aced at a random
location with a random heading direction. The agent thesngits to return home by
applying one of the navigation methods. Here, if a robotrretd to its home location
from a random position within 50 movements, it was considesgccessful. We as-
sumed that 50 movement steps were sufficient to return todheeHocation and 50
iterations of the landmark vector calculation had beeniadgdbr each starting posi-
tion. The main cause of the failure in homing was being staaeirtain location, the
‘trap point’ and continually circling a location due to ersan homing vector decisions.

The suggested algorithm with quantized distance applisdbban tested with different
numbers and configurations of landmarks. Figure 4.14 shiosvgdctor map results of
the environment with three to five landmarks in differentrisition. Landmarks in

Figure 4.14 (a) surrounded the home location with equaditritiuted angular position,
on the other hand, in Figure 4.14 (b) the home location ih#ligutside the convex
hull of the landmarks. The homing vector results show lowudaigerrors in various

environments, with slightly smaller error if the landmagigrounded home location
perfectly as in (a). Therefore, it is important to selectlianark features surrounding
the home location in the environment if the mobile agent cdact landmarks at the
start of the exploration. By choosing the landmark feataresind the home location,
the suggested method could yield better performance.
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Figure 4.14: Vector maps and angular error performance for quantized DELV: (a)-(e)

vector maps with the suggested DELV method with quantization level 3 in environments

of various landmark distribution and (f) error graphs for vector maps in (a), (d), and (e).
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(b)

Figure 4.15: Mobile robot and its environment: (a) an experimental environment with
four cylindrical landmarks and the (b) ROOMBA robot with an omnidirectional camera
on top. (Reprinted from Yu and Kim (2010b))

4.4 Robotic experiments

We showed simulation experiments and the performance avaifuof our tested ap-
proach in real robotic experiments. Further, in this segtwe show the results of real
robotic experiments along with the description on the expental environment and
the mobile robot.

4.4.1 Results with artificial landmarks

In this experiment, ROOMBA, the mobile robot is used to testhhoming navigation
methods. ROOMBA is a typical mobile robot with two wheels @sdnovement can
be controlled with simple commands. Figure 4.15 (a) and lfbysthe robot and the
environment with four landmark objects, respectively. Anradirectional camera is
mounted on the ROOMBA robot, and a laptop computer procébsasmptured images
from the camera to determine the moving direction. The diama the mobile robot
is 32cm, and the omnidirectional camera is placed on top @fréivot, which is 25
cm above the floor. The robot can rotate, move forward andveackwith simple
commands. Four landmarks are red-colored cylindricalatbjeand the experimental
environment has a total area of 1.8 meters by 1.8 meters.

We tested the homing navigation of a mobile robot in a reairenment in which
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Figure 4.16: Omnidirectional camera and the captured image: (a) camera on the robot
and (b) the snapshot taken with the camera at home location (Reprinted from Yu and
Kim (2011c))

Figure 4.17: Panoramic snapshot image and landmark detection: (a) panoramic im-

age converted from the omnidirectional snapshot image as Figure 4.16 (b) and (b) the

landmark represented as white area (Adapted from Yu and Kim (2010b))

red-colored objects were discriminated from the backgdommage and marked as
landmarks in the omnidirectional ring. Figure 4.16 (b) iscamnidirectional snapshot
image taken from the camera on the mobile robot, and by ctingeit, we obtain
a panoramic environment snapshot image Figure 4.17 (a).rderdo simplify the
landmark detection procedure and focus on the performarataaion of the image-
based homing navigation methods, we set red cylindricaatbjas landmarks. Based
on the predetermined threshold HSV values of each pixetinearks could be easily
detected. The result in detection of red color region is shimwrigure 4.17 (b). Based
on the red-color detected panoramic image, we created iomendional ring image by
slicing the image of 10 pixels height and averaging vegcal he slicing height is
appropriately predetermined considering the height ofotin@idirectional camera on
ROOMBA.

The one step movement of robot for egomotion is 20 cm. The éensdgfts resulting
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Figure 4.18: Vector map obtained in the mobile robot experiments (a) with the DELV
method (adapted from Yu and Kim (2010b)) and the (b) predictive image-matching

method. The dots indicate the direction of decided homing vector.

from the egomotion determined the landmark distances, lagal lendmark arrange-
ments at the current location were projected onto the neferenap. The vector map
and the angular error results of the robotic experimentslaog/n in Figure 4.18 and
Figure 4.19. Figure 4.18 (a) is the vector map results of DELkbbotic experiments
with snapshot images and (b) is that with the predictive ieaamtching method. The
points with no arrows but dots in the vector map are those avtiex agent could not
take the snapshot due to the collision with landmarks. Wepawed the performance
of the results as angular error graphs in Figure 4.19. Thelangrrors of DELV in
real environment were greater than those in the simulatwit@ments, most likely
due to the landmark detection error from the snapshot imagewever, the method
still showed good performance in terms of returning to tliggelocation because the
angular errors were relatively small to allow for navigatto the nest.

For quantized distance applied DELV method, we also comalucibotic experiments
with artificial landmarks. The experimental environmenagssame as those shown
in Figure 4.15. Since the navigation method computes theirguhirection at each
location based on the landmark information in images, wetheeset of snapshot
images taken from the environment at uniform grid pointse Toving distance for
the one step movement in DELV method is 20cm, and snapshoéstalen for every
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Figure 4.19: Error graphs of the DELV and predictive image-matching methods based
on the vector map in Figure 4.18 (Adapted from Yu and Kim (2010b)).
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Figure 4.20: Vector map with the DELV method with different quantization levels of

landmark distances; (a) level 1, (b) level 4, and (c) level 5.

20cm point in the squared environment of size 1.8m by 1.8m.

Vector maps in Figure 4.20 show homing vector results of DEl&thod with distance
guantization of level 1, 4, and 5, respectively. White @sanhdicate the perceived land-
mark position with the quantized landmark distance whibeklcircles are the actual
landmark position. For example, in Figure 4.20 (a), landmare considered to be
in same distance from the agent due to quantization levelstabce of landmarks in
Figure 4.20 (b) are quantized into four levels, and one abttom-right is perceived
to have larger distance which does not appear in the aremalnharks with quantiza-
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Figure 4.21: Error curves results applying DELV with quantized distance of level 1, 2,

and 5 of corresponding vector map results in Figure 4.20

tion level 5 shows close approximation between perceivedsatual landmarks as in
Figure 4.20 (c).

Since the robotic experiments have additional cause ofsrtioe vector maps along
with the angular error graphs (Figure 4.21 show larger diran those of the simu-
lation experiments. The results of robotic experiments lsaraffected by errors in
landmark position extraction from the image or the odometmpr from the robot

movement. The error level compared to those in Figure 4.d%di show significant

increase, however, and maintained similar level of erratk mespect to the quantiza-
tion level.

Therefore, through the results of robotic experiments[iB&V method with quanti-
zation of landmark distances also showed to be effectivenapelied to the real-world
robotic system, as well.

4.4.2 Results with natural landmarks
For further verification, we performed robotic experimeintglifferent environment.

Robotic experiments shown previously were tested in arrenrient with artificially
set landmarks. To simplify the landmark extraction procedwve set red-colored
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Figure 4.22: Unstructured environment for robotic experiments with natural landmarks

such as a table, a flower pot and a drawer (Reprinted from Yu and Kim (2011d)).

o (b) o

(©) (d)

Figure 4.23: Panoramic snapshot images and segmentation of landmarks; (a) and (b)
are panoramic snapshots taken and (c) and (d) show the region of interests by elimi-
nating floor, ceiling and wall. The landmarks are marked as squared regions (Reprinted
from Yu and Kim (2011d)).

cylindrical objects as landmarks (see Figure 4.15 (a)).yTedp recognize the envi-
ronment and focus on the performance of the suggested navigaethod. Now we
test the method in an environment with natural landmarkguré 4.22 shows a new
environment for robotic experiment. The environment cstsf landmarks including
atable, lecture desk, flower pot, and a drawer. ROOMBA, theesaobile robot intro-
duced in Figure 4.15 (b) with omnidirectional camera, wesed.to test the navigation
method in the environment.

Previously in the environment with artificial landmarkse thndmarks were detected
based on the HSV level of each pixel, which is based on cofornmation. However,
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Figure 4.24: Vector map and homing path for several points from the experimental
environment shown in Figure 4.22. Landmarks are described as circles and rectangles
in the map showing (a) homing path and (b) homing vector (Reprinted from Yu and Kim
(2011d)).

in the environment with natural landmarks, landmarks cafreoextracted directly
from the snapshot image. In this paper, we applied the mi#inetustering method
(Comaniciu and Meer, 2002a,b) as a pre-processing of thganthen selected land-
marks based on color information. This procedure is shoviaigare 4.23. The Figure
4.23 (a) and (b) shows a panoramic snapshot image procassedmnidirectional
images obtained. After applying the mean-shift clustenreghod and eliminating the
backgrounds as floor, ceiling and wall, the remains are newvntieresting regions with
possible landmarks. Then landmarks were segmented fropath@amic image, and
relatively small landmarks were removed with a given thobdhThen the agent can
select landmarks based on color, size, and consideringthlentumber. The selected
landmarks are shown in Figure 4.23 (c) and (d) as squaredregi

The results are shown in Figure 4.24. Circles and rectamglig® map indicate land-
marks in the testing environment (see Figure 4.22). Homatioe is marked as small
square at (500,500). The arrows in the vector map indicaelétided direction to
move based on the suggested DELV method. The Figure 4.24d¢m)ssfour homing

paths, two starting from the upper region, on front he rigid ane from the lower
point in the map. Due to noise effects and the uncertainthetype and number of
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extracted features, the vector map and homing path show sames, however, the
graph shows that the mobile robot can successfully retunmeho

In the unstructured environment with natural landmarkssaeted landmarks are not
same in every snapshots. The agent may not perceive exhetlgame landmarks
as those in the reference map in the real-world robotic exyars. These affect the
landmark vectors and produce deviation of homing directi®ome points with error

in homing vector in Figure 4.24 are caused by matching dffetandmarks in two

snapshots. Solving this problem requires further work g@hith a more sophisticated
landmark extraction technique.

4.5 Summary of Chapter 4

This chapter 4 shows the navigation results of the DELV metlong with the com-
parison with the predictive image-matching method. Ifitithe distance information
in DELV is continuous, then, the quantization of distanceisoduced and applied.

Homing performance were shown in both computer simulatiosh @botic experi-
ments as vector map, catchment area or success rate. Foagsoman various envi-
ronments, several different landmark configurations wesgetd and the results show
low angular error in homing vector and high success rate mihg. As the landmark
distance is estimated through one step movement of an apentoving distance
can be a controlling factor in the method, and results wiffedintd are compared.
The vector map results showed similar patterns and anguiar kevel and had no
significant influence on the performance with respect toingrg.

The DELV with both continuous and quantized landmark dis¢gnshow small an-
gular error in homing vector decision and high success rat®ming. The distance
guantization might lead to the degradation in localizap@nformance since the lo-
calization in the DELV method significantly depends on thggté and angle of the
landmark vector. The larger number of failures in homingittesl from smaller num-

ber of quantization levels leading to error in localizatittowever, through the land-
mark arrangement and the heading direction matching wittiteark vector rotation,

the method determines the homing direction appropriat€hyee-level quantization

of each landmark distance is sufficient to guide the robotédnommany cases shown.
That is, even a rough estimation or a low resolution of landindéstances can lead to
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efficient homing performance of the method.

In addition, through simulation experiments in variousaymf landmark configura-
tions environment, the method shows lower angular errorerctar map results with
landmarks surrounding the target location. Thereforehéaf $selected landmarks in
environment surrounds home, the method would perform bette

Comparison to the predictive image-matching method indatdhat the suggested
method has a higher probability of resulting in a successfuirn to home. The land-
mark extraction step is required in DELV method while it does in the predictive
image-matching method, however, the results of accuratarigovector decision and
the higher success rate compensate the additional process.

The method is tested in the robotic experiments in additoothé analysis on simu-
lation results. The simple mobile robot ROOMBA with an omiredtional camera is
used for the experiment and the landmark environment is osspin two type, one
with artificial landmarks and another with natural landnsarka robotic experiments,
the method showed good performance in angular error andrgppath results, as

well.






Chapter 5

DELV with reference compass

In the previous chapters, we have proposed the DELV methoewdandmark-based
homing navigation method operating without a reference gasg, and investigated
its performance in the perspectives of spatial angular emd catchment area along
with the comparison with an image-based navigation mettidkdeopredictive image-
matching method.

In this Chapter, we present some experiments of the DELV auktVith a given refer-
ence compass. In our proposed navigation method, DELV datasatcessarily require
the reference compass information. Indeed the method carnhignheading direction
through the landmark rotational matching. To demonsttateapability, we show both
DELV experimental results with and without the referencepass. The results verify
that the method shows a good performance even without serefercompass.

Along with the performance evaluation of the method in aag@rror graphs and
catchment area, the results will be compared with othernsnll-based navigation
method too. In the previous chapter we compared the resu&bV without a ref-

erence compass to those of the predictive image-matchitigotheln this chapter, we
will make a comparison with the ALV and another method sutggeby Hong et al.

(1992) and Weber et al. (1999), which was introduced in Giraht This method com-
putes a correction vector of each landmark pair. By summihgoarection vectors,
the agent can find the homing vector to move along. In additotihe concept of
the correction vector initially suggested by Hong et al.92) in the work of Weber
et al. (1999), the correspondence matching of landmark®€ées simplified and re-
sults were improved as well. The method is similar to the ALdd®l in a way that

65
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it involves the creation of a unit landmark vector but difflet that it uses correction
vectors to compute the homing vector. In this paper, we b&lmethod the average
correction vector (ACV) method, since the method computedhibming vector based
on the correction vector of each landmark. The ACV methodgihie correction vec-
tor, as well as the ALV model, still requires a reference casgpinformation. Thus
its the precision plays an important role in the performanicthe model. The ACV

method was introduced in previous chapter as a method gharsimilar concept of

the landmark vectors. However, due to the different contprtal method of homing

vector, it requires a reference compass to operate the AC¥iade Therefore, it is

legitimate to compare our DELV results including a refeeonompass with those of
the ACV model in several perspectives. The bulk of this chajstreported in Yu and

Kim (2011b,a).

5.1 Performance evaluation

In this chapter, we compare DELV with another landmark-bas&vigation method,
the ACV approach for performance evaluation. The homingralgm suggested by
Weber et al. (1999) introduces a concept of correction vedtstead of directly ex-

ploiting the landmark vectors to obtain the homing vectbe torrection vector for
each landmark is computed first. The correction vector fehdandmark indicates
a direction to move to match the currently obtained landmator to that of the

home point. The correction vectors are then averaged torothta final homing vec-

tor. Unlike the DELV method, the landmark vectors are coesd as unit vector,
that is, landmark vectors only contain angular informatidme correction vector is
defined based on the difference between corresponding kkdvectors from two

snapshot images, and the length of the correction vectafisatl as the difference in
paired angles. The angle of the correction vector is pefipalat to the corresponding
landmark vector, and the direction decided by comparingtigdes. If the difference
between the angles of paired landmark vectors is large,dbhataobtains correction
vector with longer distance, influencing the homing vectocompensate the differ-
ence more. Following Equation 5.1 and 5.2 describe the @irafdandmark vector

and homing vector computation for DELV and ACV, respecinahd therefore show
the similarity and difference between methods.

In DELV, as described in Equation 5.1, the agent first stamesiihark vectors store
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landmark vectori;\/iR at home location which operate as a reference map for the sub-
sequent homing task. At an arbitrary location, perceivedaarkLV; is projected on

the reference map,\/iR and the result yields the projected vecR), for each land-
mark. Finally, a homing vectddV is determined by averaging the projected vectors.
Detailed computation is shown previously in Equation 3.btgh Equation 3.8 in
Chapter 3. In this chapter, we only show the simplified ver@bmathematical de-
scription of the method in order to compare the concept iiéhACV model, and the
detailed procedure was given in Chapter 3.

LVR = (R, 8) andLV; = (di,q)
PV = LV, — LVR (5.1)

HV = & 5L, PV

In ACV method, the correction vect@V is introduced. Since the landmark vectors
only consist of angular positions of landmarks, differebe¢ween paired angle;
anda; defines the correction vect@\M. The first equation in Equation 5.2 shows the
representation of landmark vector of ACV in polar coordenahd the second equation
shows the correction vector computation. Finally, the agerin correction vectors
define the homing vectdiV.

LVR = (1,6;) andLV; = (1,q))

ai +90° if 6 < q;
CVi| = |6 —aj| , ZCVv={ o (5.2)
ai —90° if 6 > q;

HV =5sN, CV

The graphical representations in three-landmark envierirare given in Figure 5.1.
The dotted arrows indicate the landmark vector perceivaleahome locatioh ViR,
while the solid arrows indicate new landmark vectb¥$ at the current location to
be compared to the stordzlsyiR. While two methods have significantly different types
of landmark vector and procedures to compute homing vettterresulting homing
vectors in both methods are similar and directed toward home
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(a) (b)

Figure 5.1: Summary of the homing vector (HV) computation in both (a) DELV and
(b) ACV method. Dotted arrows: landmark vectors at home location, solid arrows:

landmark vectors at current location (Reprinted from Yu and Kim (2011b))

Both methods exploit landmark information extracted frosmapshot image, and both
attempt to derive a homing vector in a step-wise fashion p@@priate landmark ar-
rangement matching between a pair of snapshots. The ditfefgetween two methods
existin the procedure for computing the homing vector aedtiterion used for the ar-
rangement decision. The DELV and ACV model have differembpotation methods
in computing homing vector from the landmark informatiortaobed from the snap-
shot, however, since the methods share similar concepgstinglandmark vector set,
we compare the performance of both methods in same expaahwamditions. Both
DELV and ACV method requires landmark matching. While in #inerk of Weber
et al. (1999) suggested various types of landmark matcloinly,rotational landmark
vector matching is considered in this paper for an approgpdamparison. The ACV
method requires a reference compass for orientation,fivereve compare the DELV
method with reference compass information even though #Heé/Dnethod is capable
of estimating the current heading direction through landkwactor rotation.

Applying these experimental conditions, we compare théopmance of navigation
methods and compare the characteristics in following sesti
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Figure 5.2: Vector map with DELV method applied in three different environments with

reference compass (Reprinted from Yu and Kim (2011b)).
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Figure 5.3: Spatial errors in homing vector. Marker of each point indicates the amount
of angular error (.: less than 45°, x: between 45° and 90°, and A\: grater than 90°) with

corresponding vector maps in Figure 5.2. (Reprinted from Yu and Kim (2011b)).

5.2 Simulation experiments

The vector maps of DELV method with reference compass is shawrigure 5.2.

Three different types of environment with different landieonfigurations were ap-
plied as in Figure 4.2 for DELV without the reference compa3ée spatial error
graphs corresponding to the vector maps in Figure 5.2 anershoFigure 5.3. We

divided the homing vector result based on three level of Emgrrors and depicted
the result graphically with dots, stars and triangles inrttag.

In Chapter 4, we have shown the results of DELV method withloeireference com-
pass in same three environments. Therefore, we comparesh#és of both DELV
methods with and without the reference compass in angular graphs. Figure 5.4



70 Chapter 5. DELV with reference compass

60 ‘ ‘ ;
—%— environmentl
—e— environment2
50H —=—environment3 R
* - environmentl:compass
D e - environment2:compass
840, o environment3:compass
c
O
S
3]
£ 30+
©
S
('_U p
D 20¢ '
c
<
3
10+
O L

50 100 150 200 250 300 350 400 450 500
Distance from home

Figure 5.4: Error graphs for DELV results in three different environments 1, 2, and 3

shown in vector maps in Figure 4.2.
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Figure 5.5: Catchment area with vector map for each environment: (a) 92.01%, (b)
97.04%, and (c) 84.91% of the environment. The squared region indicates that the

corresponding point is inside the catchment area (Reprinted from Yu and Kim (2011b)).

depicts the angular error graphs of results shown in Figu2eadd Figure 5.2. The
first three graphs with solid lines show angular graphs iedl@nvironments for DELV
without reference compass and the last three with dotted lame the results of those
with the reference compass. Based on the error graphs, ttedwith the reference
compass shows slightly smaller errors in average, whichltsegom the error in the
heading direction estimation. However, the differenceveen methods are not as sig-
nificant while other methods show severely degraded pedoomor are even not able
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Figure 5.6: Vector maps: (a) DELV method (b) ACV method, and (c) ALV model with a

reference compass

to operate when deprived of the reference compass.

The performance of the DELV method can be also shown by cagnharea. In Figure

5.5 shows the catchment area with vector map for each emagah The percentage
of the catchment area for each environment is 92.01%, 97.@4%b 84.91% while

those of the results with DELV without reference compassvé&.52%, 95.41%, and
77.66%. In environment 1, shown in Figure 5.5 (a), the DELMhod showed even
better performance than without the reference compasg usiawn rotational match-
ing for heading direction estimation. The level of the catent area in environment 2
were similar in both cases, but lower in DELV without refezertompass for environ-
ment 3. The results imply that for the environment with sevessymmetric landmark
configurations, the heading direction estimation show triggd to more errors than in
other cases. However, The overall level of the methods ih bonditions show good
performance.

5.3 Robustness analysis

As we previously compared the DELV method with the predetmage-matching
method suggested by Franz et al. (1998) which also operathsut the reference
compass, in this chapter, ACV method is compared for theopmdnce evaluation of
the DELV method with reference compass.

The vector maps for DELV, ACV and ALV methods in same enviremtnare given
in Figure 5.6, and Figure 5.7 (a) shows the angular errorbdétih methods. In the
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Figure 5.7: Performance comparison of (a) error curves of angular difference for DELV,
ACV, and ALV method all with reference compass and (b) success rate among 100 trials

with respect to the distance from home with a reference compass
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Figure 5.8: Trajectories of a mobile robot at the same starting points for (a) DELV

method (d = 50), (b) ACV method, and (c) ALV model with starting point indicated
as black stars

vector map results from DELV method, points with error in hogwector, that is,
the deviated homing vector are randomly distributed. In A@&thod, the vector map
shows some flow in direction of decided homing vector (sear€i$.6 (b)). Therefore,
the overall homing vector can possess some errors, but titeeawdeviation in points
are fewer than that of the results of DELV method. The diffieesbetween methods is
also shown in error graphs. As in Figure 5.7, the error le¥@&@IBLV with reference
compass is smaller than the ACV method in most of the regionslightly higher in
some. Similarly, comparing the performance with ALV, DELNosv smaller angular
error in some regions, but higher in others.
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Success rate in Figure 5.7 (b) indicate the similar levelbofgrmance in both methods
as well. The DELV method with reference compass showee litiyher success rate
in closer starting points while it decreased for the furtarting point cases. Overall,
the navigation method shows similar performance level dasethe spatial angular
errors and the success rate in homing task. In addition rtbduinvestigate the char-
acteristics of the homing algorithms, we observe the resaflthe performance with
respect to the occlusion problem in the following section.

5.3.1 Occlusion problem

Previously in this paper, the homing vector computationeaastained based on the
assumption that the agent can perceive every landmark utinoy occlusion or the
horizon of perception problem. However, when one or morenéfiinarks disappear
compared to the view the agent initially perceived at honeation, the occlusion
problem occurs since the agent cannot match landmarks ierdwiew with those in
the reference map. When the agent moves sufficiently far rome it may encounter
occlusions or the disappearance of landmarks. Some lakdmaay be hidden by
other landmarks or background objects, or they could disapfsom the view due to
the distance. In addition, relatively small-sized landksanay be invisible in a noisy
environment. In real-world robotic experiments, occlusican also exist due to many
other factors, such as passing humans, the lighting condlitr faults in the feature
or landmark extraction procedure. Here, we assume that tilese cases classified as

occlusions.

In following simulation experiments, some landmarks mayrentionally removed
to monitor the effect of occluded landmarks. All three mekhavere explained under
the assumption that the robot would perceive the same larmkdmhserved at the home
location and the occlusion problem would affect the periamoe of navigation.

With the presence of several landmarks in the environmeatgetwill be some occlu-
sion regions, and more landmarks tend to produce more acnkidndependent to the
occlusions that would occur naturally by the other landmesdk simulated occlusions
by artificially removing one of the landmarks when a robotapted to perform hom-
ing navigation. As a result, the agent may not be able to seedbluded landmark.
Using this situation, we actually create discrepancy betwsvo snapshots and thus
can analyze the performance of each method in the preseareaziclusion.
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Figure 5.9: Graphs showing error points as the number of occluded landmarks in-

creases from (a) zero, (b) one to (c) two (Reprinted from Yu and Kim (2011b)).
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Figure 5.10: Catchment area with vector map for each environment: (a) 92.01%, (b)
82.04%, and (c) 59.11% of the environment. The number of landmarks is zero for (a)

and one, two for (b) and (c), respectively (Reprinted from Yu and Kim (2011b)).

The landmark occlusion simulation results in environmeatd shown in Figure 5.9
and Figure 5.10. The results are displayed with error pglated according to the
same criterion described in previous sections. The resitlsnone of the landmarks
being intentionally occluded is Figure 5.9 (a), while (b)Jaie) have one and two
occluded landmarks, respectively. The occluded numbearairharks are one, two
and three in Figure 5.10 (a), (b), and (c) as well.

Figure 5.9 shows that as the number of occluded landmarksase, the region of
homing vector with errors also increases. More detailederigal results and com-
parison with the ACV method is in Tables 5.1 and Tables 5.2 eiach method DELYV,
ACV, and ALYV, the error point percentage is shown along wité different numbers
of occluded landmarks in environment 1, 2, and 3 are showrabiel5.1. The first
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Occluded # none 1 2
Error amount] e> 45" | e>90° | e>45" | e>90° | e> 45 | e> 90°
DELV | 8.75 3.02 13.99 | 3.62 20.48 | 6.49
Environment 1 | ACV | 9.80 0.15 42.50 | 10.07 | 80.63 | 33.54
ALV | 0.00 0.00 8.64 1.92 12.07 | 3.34
DELV | 7.99 4.07 13.61 | 4.00 20.15 | 6.33
Environment 2 | ACV | 7.99 0.15 39.37 | 8.71 74.33 | 36.32
ALV | 0.00 0.00 10.24 | 2.60 1491 | 4.95
DELV | 6.79 3.92 8.33 3.24 14.78 | 4.68
Environment 3 | ACV | 33.33 | 2.71 53.47 | 12.18 | 73.88 | 27.63
ALV | 0.00 0.00 4.87 1.40 8.74 2.19

Table 5.1: Error point rate(%) for each environments with different landmark distribution
(Adapted from Yu and Kim (2011b))

row in the table, results of DELV in environment 1 corresptmlthe error graphs in
Figure 5.9. DELV method results of the first column with nolas®ns corresponds
to the vector map results and the angular error graphs inr€&fg2 and Figure 5.3.

Comparing the DELV and ACV methods, the DELV method exhibitsmaller error
rate and better performance. Even though an increase inrtberate is observed
for both methods as the number of occluded landmarks isaset the ACV method
exhibits much more rapid increase in the error rate comptardtiat of the DELV

model (see Table 5.1. It implied that the ACV method is momesgie to snapshot
discrepancies when determining the one-point homing vecto

In some normal environments, the ALV model shows perfectihgmector results

with no involved perception problem as listed in Table 5.widver, in some cases,
ALV shows a larger error rate. As we have examined in the presichapter, the
DELV performs better when selected landmarks surround dihget location. The

environments tested in Table. 5.2 include equally distaduandmarks configuration
with different landmark numbers, in which the DELV methodulcbshow the best

performance.

The vector maps and catchment area results along with thenlark occlusion in the
environment are shown in Figure 5.10 and numerical resnli&able 5.3 and Table
5.4. Comparing the results, the ACV method is found to yielakrger catchment area
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Occ # none 1 2 3
e>45 | e>90 | e>45 | e>90° | e>45 | e>90° | e>45 | e> 90
DELV | 5.23 2.69 6.43 0.75 36.62 | 9.12 - -

L=3 | ACV | 23.77 | 2.09 42,75 | 12.11 | 84.3 28.25 | - -

ALV | 0.00 0.00 13.62 |5.94 27.00 | 7.29 - -
DELV | 8.75 3.02 13.99 | 3.62 20.48 | 6.49 - -

L=4 | ACV | 9.80 0.15 42,50 | 10.07 | 80.63 | 33.54 | - -

ALV | 0.00 0.00 10.24 | 2.60 1491 | 4.95 - -
DELV | 13.29 | 7.10 12.39 | 4.08 27.19 |9.21 27.19 |9.21
L=5| ACV | 13.14 | 3.47 37.46 | 5.29 86.10 | 39.27 | 86.10 | 39.27
ALV | 0.00 0.00 5.80 1.75 12.08 | 3.71 17.07 | 6.65
DELV | 19.94 | 9.97 16.31 | 8.16 18.43 | 6.04 2795 | 7.10
L=6| ACV | 21.87 | 8.60 35.60 | 12.22 |51.43 | 18.25 | 27.90 | 7.09
ALV | 0.00 0.00 3.84 1.14 7.73 2.09 13.61 | 5.10

Table 5.2: Error point rate(%) for each environments with different landmark number
(Adapted from Yu and Kim (2011a))

with almost 100% than does the DELV method (92.01%). Thislse &ue in the
environment with one occluded landmark; the catchment peezentages are 49.11%
for DELV and 52.88% for ACV method. However, the percentafjeadchment area
in both methods severely decreases as the number of occladigcharks increases
which may be the natural consequences. An analysis of tlaénaut results reveals that
landmark occlusions affect the performances of the nawigatigorithms and increase
the angular error of the overall region. The occlusions algink the catchment area,
as shown in Table 5.3. The noticeable trend shown in the ialiteat the catchment
area generated with the ACV method shrinks more rapidly than of the DELV
method. As a result, the catchment area of the DELV methodesiscthe result of the
ACV method when two out of four landmarks are occluded in thdrenment. This
indicates that the ACV method, despite its large catchmesd @ the environment
with no occlusions, is one again vulnerable to the occluprilem compared to the
DELV method. An examination of the vector map results revéiaat the difference
between the vector maps from each method can be based oridteneg of the vector
flow. There are flows in resulting vector map when obtainedihgmectors for points
nearby have similar directions. This flow was one of the reagor an increase in the
angular error but the flow may possibly result in successfuhing.
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Occluded # none | 1 2

DELV | 92.01| 49.11| 40.3
Environment 1 | ACV | 100.0| 52.88| 24.14
ALV | 100.0| 7.84 | 20.44
DELV | 97.04| 53.96| 51.86
Environment 2 | ACV | 100.0| 54.99| 25.47
ALV | 100.0| 17.09| 23.10
DELV | 84.91| 69.08| 62.34
Environment 3 | ACV | 98.67| 45.34| 18.46
ALV | 100.0| 23.15]| 20.59

Table 5.3: Catchment area rate(%) for each environments with different landmark dis-
tribution (Adapted from Yu and Kim (2011b))

Similar patterns are shown in the results compared with Alsthod. The ALV
method, as well as in the error point rates results, showegidnoming ability with
catchment area rate of 100% when all landmarks are percel#tn one or more
landmarks are occluded, the rate of the catchment areaneldtaiith ALV method
rapidly decreases. Asin Table 5.3 and Table 5.4, the catetenea of the ALV method
is much smaller than those of the DELV method when landmaskgwccluded.

In this section, the characteristics and advantages ofaitgnhark-based methods in
certain environments and situations were investigatetth, pvimary focus on the hom-
ing vector and the rate of successful homing. When compahi@dELV with ACV
and ALV methods, the DELV method shows similar error ratdgntector map results.
With small occlusions, the ACV and ALV approach exhibitsteethoming ability,
however, the DELV method tolerates the occlusion probleth Wetter performance,
even if the method shows increased error rates as the nurhbetlasions increases.

5.3.2 Navigation method with visual reference compass

Many robotic navigation methods, such as ACV and ALV modedguire reference
compass information. However, in indoor environmentdjaifties in the use of a
magnetic compass or other reference compasses may be &reounThus, a navi-
gation method that is independent of the reference compasivantageous. Several
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Occluded # none | 1 2 3
DELV | 94.82| 100 | 17.46| -

3| ACV | 99.56|8.28 | 5.62 | -
ALV | 100.0| 9.82 | 10.36] -
DELV | 92.01| 49.11| 40.3 | -
L=4| ACV | 100.0| 52.88| 24.14| -
ALV | 100.0| 17.09| 23.10] -
DELV | 87.43| 87.13| 83.58| 2.96
L=5| ACV | 91.12| 85.06| 54.14| 1.78
ALV | 100.0| 12.46| 18.73| 8.98
DELV | 85.65| 84.32| 70.71| 2.96
6| ACV | 87.28| 77.96| 66.57| 3.4
ALV | 100.0| 13.74| 34.05| 11.74

L

L

Table 5.4: Catchment area rate(%) for each environments with different landmark num-
ber (Adapted from Yu and Kim (2011a)).

visual homing methods determine the homing direction witttmmpass information
through the use of a snapshot image, and the DELV method stegha this paper
also estimates the heading direction by landmark arrangematching.

In addition, the method named as “visual compass” (Zeil .€R8I03; Labrosse, 2006)
was suggested which determines the heading direction vigpgting the rotational
matching of two snapshots. The visual compass method hashggested by Labrosse
(2006) to estimate a heading direction based on snapshgesnahe method com-
putes the discrepancy between a pair of omnidirectionajj@ady rotating the image.
It then determines the current heading direction based @fieaence image. Setting
the heading direction of the snapshot at the goal locatidheseference, the visual
compass method offers the current head direction basedearothparison of another
snapshot, the reference. The method has it basis concegitrab¢ing the physical dis-
tance between the locations with the image distance by gifelences between two
snapshot images (Zeil et al., 2003). When the method isegpiireal-world robotic
experiments, the images obtained by the omnidirectiormakeca are compared. How-
ever, in this work, we applied the method in a simulation emvinent. Therefore,
organizing the environmental conditions could affect teefgrmance of the method.
In order to effectively apply the visual compass methodrappate background set-
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Figure 5.11: Vector maps and catchment area obtained with (a) DELV, (b) ACV and
(c) ALV algorithms along with the heading direction estimation obtained with the visual
compass method. Catchment areas for each case are 74.85%, 47.04%, and 40.68%,

respectively (Reprinted from Yu and Kim (2011b)).

tings of the simulation environment are required.

In this section, we compare the navigation results of DELEZVAand ALV applying
visual compass method instead of the given reference campfasmation. Substitut-
ing the reference compass with the visual compass obtamed the image enables
the navigation method to become independent of the exterf@mmation but to fo-
cus on the exploiting the snapshot image information. Iritaxdd applying the visual
compass method, which may not be perfect in estimating thaeihg direction, the
results show the dependency on the accuracy of the refecemeeass of the method.

Figure 5.11 show the result of applying three navigationhmétwith visual compass
method as the compass information. Since the heading dégtimeccording to the
visual compass method does not guarantee 100% of accunaagdults show larger
error in the direction of the homing vector compared to thsults obtained when a
reference compass is given (see Figure 5.2 and Figure S5d@irg path analysis is
important since increasing the homing accuracy is the alingoal of the navigation
algorithms. The catchment area includes points that coutdessfully lead to the
home location using the decided homing vector. The sizest#tchment areas in the
maps for DELV, ACV, and ALV methods are 74.85%, 47.04%, 4@668spectively.
The reason for the low catchment areas with the ACV and ALVhoe$ seems to be
related to an increase in the trap points in the environment.

The error graphs are shown in Figure 5.12. The DELV methodhesler errors than
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Figure 5.12: Error graphs obtained from the DELV, ACV, and ALV methods with the
visual compass method. The corresponding vector maps are shown in Figure 5.11
(Reprinted from Yu and Kim (2011b)).

other models. In the results obtained with the referencepassinformation, the error
rate of the ALV model is found to be extremely low, while thasethe DELV and
ACV methods are quite similar in some environments. Howaweon application of
the visual compass method, the error of the DELV method idlsnthan that of the
ALV model, whose error rate is the most increased. The regudicates that the ALV
and ACV models are dependent on the compass informatiorthasdthe performance
of the navigation is vulnerable to the accuracy of the refeeecompass. Therefore, we
can assume that the DELV method is more robust when therersfe@nce compass
information.

The results show that the DELV method exhibits robust nawaggperformance not
only with respect to the spatial error rate, but also withardgto the homing path
analysis.

5.4 Summary of Chapter 5

This chapter investigated several perspectives of the DElethod with reference
compass. While the previous performance evaluation wasrsiocomparison with
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the predictive image-matching method, the holistic methibd DELV method with
reference compass is compared to the landmark-based tiamigeethod with similar
concept of landmark vector requiring the compass inforomati

First, the performance of the DELV with and without the refeze compass is com-
pared. Experimental results in the same environments shives the DELV method
shows similar level of performance even without the refeeecompass while many
navigation methods are significantly dependent to the@xegt and the accuracy of the
compass information. The results are also shown by appljgwgal compass method
to substitute the reference compass. The visual compasappéied for the heading
direction estimation to each DELV, ACV and ALV method. Theuks showed that
DELV method is less affected by the accuracy of the headirggtion estimation than
other two methods.

Then, the comparison with results of ACV and ALV method isegivn vector maps,

angular error graphs, success rate and trajectory. Thésdésam both methods do

not show significant difference in these perspectives, kewdhe advantage in the
DELV lies in that the method does not necessarily requiredference compass while
the ACV model does. Additionally, the robustness of metheee examined through
the investigation on the occlusion problem. In the serietesfts, the DELV method

showed higher robustness compared to the other methods.






Chapter 6

Conclusion

In this thesis, we investigate a new landmark-based honammgation algorithm with-
out any reference compass information. Our distance-agtariandmark vector (DELV)
model extracts landmark information from the snapshot ereayd incorporates it into
vectors to be used for the determination of the homing vedtbe model utilizes the
guantized distance information, which is demonstratedite g good performance
level in homing navigation. Chapters 3 and 5 describe theildet methods of the
proposed homing navigation. Chapters 4 and 5 provide thegoonding results of
experiments. The experiments were conducted in both canguhulations and in
robotic experiments. Although the proposed DELV methodsduat require a refer-
ence compass, the reference-compass-enabled method istedsluced in Chapter 5
for comparison.

The basic concept of the DELV model is to create a set of lamkvectors with the

estimated distances to landmarks and the angular pos#gabtained from the omni-
directional snapshot image. The landmark distance is agtiafrom the angular shift
of the landmark after one step movement. Using the geonretations, the distance
to the landmark can be determined from the previous anguoksitipn, the current an-

gular position of the landmark, the rotated angle in the @doce, and the moving
distance of the mobile robot. The reference map is definedsas$ af landmark vec-

tors with their bearings and distances at the target locaflthe same information of
landmark vectors at another location is now projected ihtoreference map so as
to obtain a homing direction. Landmark projection requitess landmark correspon-
dence matching in advance. In our navigation method, theespondence problem

83
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along with the heading-direction estimation is resolvedh®/landmark arrangement
matching with rotated vectors. The endpoints of the pregtandmark vectors on the
reference map converge best when applied with an apprepaiatimark order and the
heading direction. Therefore, by searching the two-dinweras configuration space of
possible landmark orderings and monitoring the variancdefendpoints, the agent
can determine the landmark matching between a pair of soapshges.

The landmark vector projection can be regarded as a kind afj@ncomparison in the
snapshot model. A search for the minimum variance of the @ntp of projected
landmark vectors corresponds to the minimization of therdigancy between snap-
shot images in the image-based navigation method. Theredtthough our homing
navigation method is classified as one of the landmark-basttods, the basic con-
cept and methodology of our method share some aspect of tgehimased holistic
method.

In experiments, we set up the experimental environments eyitindrical landmarks.
The mobile agent can perceive an omni-directional view ofaundings. The agent
is assumed to have started the exploration from the targatitm, and replaced at
an arbitrary location. At each location, the agent deteesithe homing direction
according to the methods provided, and the results arérliesl as vector maps. Based
on the vector maps, we obtain the angular error graphs. Tferatice between the
obtained angle in the vector map and the ideal directionclvie a direction of a
straight line from the current location to the target poistconsidered as an error
in the homing vector. The errors for the points in certairtafises from home are
averaged and plotted in terms of angular error graphs. Ttwess rate of homing and
the catchment area capture slightly different perspestorethe performance of the
method. While the vector map and the angular error graphs e performance in
a static point of view, the success rate is rather a contisnama sequential result of
performance.

6.1 Estimation and quantization of the landmark dis-

tance

The distance estimation is one of the essential parts of thpoged method. The
localization and correspondence matching are made by theqgbion of appropriate
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landmark vectors to the accurate reference map. The destantandmark is esti-
mated by the angular shift of the landmark in an omni-dim@i snapshot between
the movement. If the agent observes a moving object, motoallpax would give in-
formation on their distance. Conversely, if the agent manesstatic environment, it
will be able to estimate the position of each landmark in tdrenment. Although
the distance-estimation procedure used in this methodeaifffécted by the odometry
error and the accuracy of the landmark extraction resuitsresults in the previous
chapters demonstrate that, the homing performance of otlranés quite good.

The distance-quantization is one way to reduce the effeabdde in the estimation
of landmark distance. Since the quantization of landmaskadice employs discrete
levels to assign each landmark at the pre-determined destdime accuracy of the es-
timated distance becomes less important. Indeed, distprargization may affect the
accuracy of the localization results. In order to estimlagecurrent location accurately,
one should obtain the distance to each landmark along wjglogpiate projecting or-
der and heading direction. However, our method is provee teftective even with the
guantized distance. Even though the distance in the laridweator does not reflect
the actual distance to the landmark, we can obtain the dreof the homing vector
by deploying appropriate landmark order and heading daectn addition, the quan-
tization of the landmark distance has an advantage of radube amount of memory
required to store the landmark vectors.

6.2 Comparison with other methods

The performance results of our DELV method are mainly comgao two different
types of navigation methods. In the comparison, the DELVhoétwithout the ref-
erence compass is matched against the predictive imagetmagtmethod, while the
results of DELV method with the compass information enaldesl compared with
the ACV model. In the overall analysis, our DELV method destoates a successful
performance on the homing navigation.

While it requires an additional process of the landmarkaetion compared to the pre-
dictive image-matching method, the DELV method poses afsigntly smaller error
in the homing vector results and in the homing success rateelis There is no big
difference in the angular error or catchment area resuttgdsn the DELV and ACV
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method. Furthermore, the DELV method shows more robusbpegnce when the
perceived result of environment is damaged. For examplenwhe perceived envi-
ronment is damaged deliberately by hiding certain landsyattke DELV performed

better than other navigation methods. In addition, to exantihe effect on the ac-
curacy of the reference compass, we have applied the visaghass method to the
navigation methods. Both results indicated that the DEL\thoe is insensitive to the
accuracy of the environmental perception and the compas®saformation.

6.3 Future work

6.3.1 Landmark extraction

One of the important issues in the landmark-based navigatiethod is an effective

extraction of landmark information from the image backgruln this study, we em-

ployed color information to detect landmarks. In simulatexperiments, we used
red-colored cylindrical objects as artificial landmarksdgse they could be easily
detected by the threshold of pixel values. In a natural enmirent, we can select
landmarks based on the mean-shift clustering results, wéiie also based on color
information. Even though the comparison of the DELV methaith whe image-based

navigation method in Chapter 4 shows a better navigaticiopeance of our method,

the additional process required to extract the landmank$eadisadvantageous to our
method. Many researchers prefer to use the descent in thgeidiatance or image

warping methods including the predictive image-matchirgghad, which do not re-

quire an extraction of landmark features. These visualgsion methods may be
simpler as demonstrated in this thesis, but the landmaskéaavigation yields bet-

ter homing performance in the environment where landmaaksb®e distinguished.

Therefore, once an efficient and robust feature-extracotreme is implemented, the
landmark-based navigation methods can be more effective.

6.3.2 Localization

In the DELV method proposed in this thesis, when landmartadises are continuous,
the agent can localize itself with landmark vector pro@atiThough the performance
of localization has not been shown in this thesis, in add#éi@xperiments, we observe
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that the agent could localize itself accurately inside tieaaurrounded by landmarks.
On the other hand, however, when the agent is located outsedgrea surrounded by
landmarks, the localization results have errors in mangxa3he errors arise from
the wrong landmark order matching or heading directiomestion. The localization
problem is not crucial in homing task as we have shown thraliglexperiments in the
previous chapters. In most cases, the agent could reture Baotessfully without the
errors in localization. Moreover, in the DELV method, theaacy in the estimation
of the current position becomes higher as the agent movesddvome. Therefore, no
additional work was needed for the localization.

In the homing navigation, we only focused on the performasfdgoming vector and

homing path, but in the mapping or exploration of the unkn@nmironment, the lo-

calization is an important task. To improve the localizat@rformance, we can apply
the continuous and probabilistic update in localizatiomc& most of the error in the
location estimation is caused in the process of searchinigfamark arrangement or
heading direction with landmark vector rotation, addiibmformation on the right

order may improve the result. The information on the presimeation provides ad-

ditional information to determine the appropriate ordethe rotational projection of

landmark vectors. The previous location information carupédated in time or also

operate in a probabilistic manner leading to a gradual aszan probability of the

estimated location.

In this way, the performance of localization can be improaad the method can also
be applied in mapping or exploration tasks.

6.3.3 Occlusion problem

Another issue in the image-based homing navigation is imdhastness problem. The
robustness of the navigation methods are analyzed in twappetives: the occlusion
problem and the accuracy on a reference compass. The antlusiblem is a crucial
issue in the real-world robot navigation as well as in theudation experiments. As it
has been shown from the results, the points outside the arsmuaded by landmarks
pose larger errors than those in the insider. The main cdubesoesult is attributed to
the occlusion problem. In the real-world robotic experitsethe landmark detection
and even the shape of objects can affect the image processovignperson can
affect the view of the agent, and the false detection of |aaxttsican also lead to error
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in landmark matching. In the image-based navigation mettieedocclusion problem
has not been investigated much yet due to the complexityegdithblem. A solution on
the occlusion problem might significantly improve the periance of the image-based
navigation methods.

Using the distance-estimated landmark vector method aibisalifficult to overcome
the occlusion problem. One solution is to combine it withestmethods, especially
the image-based navigation methods. While the performahtee landmark-based
methods shows a difference between inside and outside odirtree surrounded by
landmarks, the image-based matching methods such as warmimtain a similar
level of performance, in spite of the larger errors in homamgaverage. Therefore,
the agent may apply image-based navigation method wheminoadetermine an
appropriate homing direction including the landmark osmuas, but use the landmark
vector method otherwise. Combining two methods in a comptegary manner, the
performance can be improved. The remaining problem, hows® determine when
and how to incorporate the image-based method. There magveeas strategies for
merging different methods. The agent can use one of themeasi#in method, and
be assisted by another method. When the agent detects wiemaih method does
not operate well at a certain point, another method can begiap, depending on the
current environment, and override the main method. In ordehoose the method
appropriately, the characteristics of the methods, thamtdges and weakness should
be investigated in advance. Based on their characteriskiesagent could apply the
selected results at each location. Investigation on thesggcould lead to navigation
method with better performance.

6.3.4 Interaction with odometry information

In the point of view of combinations, the most commonly knawethod is to combine
vision-based navigation with path integration. The pategmation is a long-range nav-
igation method which is affected by the accumulated ernaughout the exploration.
Using the path integration, the agent can return to the wycof a target location, but

pinpointing the target location accurately is difficult disethe accumulated errors.
Therefore, we may consider the method to combine the odgnméormation with the

vision-based navigation method as suggested in this th@sie agent can return to
the area near home with the long-range navigation and th&alsie the vision-based
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navigation method to accurately find the target locationc&ithe odometry informa-
tion includes errors from the long distance of exploratiod #ghe visual information
is more effective when the agent is near home area, the catidmal approach can
compensate for the weakness of each method.

The interaction between the odometry information and Vigufarmation has been
also observed in experiments on animals’ behaviors (E¢i@ama Jeffery, 2004; Collett
and Collett, 2000; Vladusich et al., 2005).

There are several different ways to combine informatiomfredometry and visual
input. The simplest way is to use path integration for a lorgjathce exploration
and to switch to a vision-based navigation method when itdwasnore odometry
information. More sophisticated method is to use an intevabetween two types of
information case-by-case. For example, in the experimamisoneybees (Vladusich
et al., 2005), bees showed behaviors indicating that theyinteractions of visual
odometry and landmark guidance during food search. As atsects, honeybees use
odometry information to find the target location while itsdiiitly is influenced by the
landmark information. In addition, when two cues confliapbybees relied on the
familiar landmark cues than the odometry information. Blase their behavior, one
method does not always override the other, and they intanittieach other to decide
the direction and distance to move.

Inspired by the behavior of insects and other animals shaywnavious works, we can
develop a navigation system with effective interactionasetn two different naviga-
tion cues. This type of combination method may show goodoperdnce in robotic

experiments.

6.3.5 Combination with place cell

Another method to be investigated is to introduce a plackoogicept. Mammals
including rodents and gerbils exploit the place cells ofpligampus for navigation.
Each place cell is associated with certain location in therenment, and when the
animal explores in a specific region, the place cell is atdtvaSeveral robotic systems
applying the concept of place cell have been suggested @bueet al., 2005). If
the agent obtains the snapshot image at visited points, tielerobot could return
home or navigate in the environment with localizing itseffdomparing the current
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shapshot image to the stored images. The images can be @amparcomputing
distance measure or matching several features in the imddewever, in order to
apply the method in mobile robot navigation with good perfance, a large number
of images should be stored. Since the distance-estimatddiark vector method has
been shown to be efficient in large area, it can assist the gkt navigation method.
A snapshot image may form a place cell and it can cover sifatamark features.
Therefore, combining the place cell concept with the vidiased navigation method,
the agent may move in the environment more efficiently.

6.3.6 Biological modeling

One of the purpose of the bio-inspired researches are testigg effective, robust yet
simple method with good performance inspired by the bemaia mechanisms of
insects and other animals. Insects and other animals ugéess@nsory-motor system.
Therefore, another future work would be to suggest a nawvigahethod that can be
modelled biologically as well. In order to model the methaoldgically, the method
should include simple sensory input as well as computatiitim e complexity.

Along with the analysis on the characteristics and the perémce level of our homing
navigation method, a simpler and more robust navigatiorhatetan be introduced.
The future work may focus on enhancing the performance oatgerithm in real-
world experiments with a simple and robust method.
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