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Abstract

Returning home from an outward journey is a skill important for the survival of many

insects and other animals. Animals have developed navigation skills using various

senses, including visual, auditory, olfactory, magnetic,and internal motion sensors as

odometry. Their homing performance is shown to be robust. Inspired by their efficient

navigation capabilities, researchers have begun designing bio-inspired navigation al-

gorithms for robotic experiments. Here we pay attention to the landmark navigation of

insects due to their excellent navigation performance.

Vision-based homing navigation has been studied through a number of bio-inspired

algorithms. Since vision contains richer information thanany other senses, many ad-

vanced techniques can be adopted by the vision-based navigation. A remembered view

of home location from a variety of positions was used for the development of the nav-

igation algorithm. In this thesis, among several differenttypes of the methods and

objectives of the homing navigation, we focus on searching the direction of move-

ment as a way to reach the goal location from an arbitrary position, named as homing

navigation.

A visual homing method exploits the intensity of images and relies on landmarks.

Various ideas have been suggested regarding the feature selection criterion and the

correspondence-matching algorithm for the landmark-based navigation. As a step to-

ward developing the visual homing method, we designed threeobjectives in this thesis:

(1) to suggest a new homing navigation algorithm, (2) to evaluate the performance of

the suggested navigation method in various perspectives along with the comparison

with other existing vision-based navigation methods, and (3) to apply the method to

robotic experiments and to analyze the results.

First we suggest a new algorithm for the homing navigation, so-called the distance-

estimated landmark vector (DELV) method. The method uses the landmark informa-

tion in snapshot images as vectors, which is used to determine a homing vector. Second

its performance is measured in various forms, such as vectormaps, angular error, and

the success rate in homing with catchment area. Comparing its results to those of other

existing navigation methods, we demonstrate the effectiveness of our method. Other

navigation methods were compared to the DELV method with andwithout a reference

compass. Lastly the robotic experiments were conducted under two different environ-

ments: one with artificial landmarks and the other with natural landmarks such as desk,
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flower pot, chair and others.

In conclusion we propose a new algorithm for landmark-basedhoming navigation and

investigate its performance in various point of views. The analysis results on the char-

acteristics of the method suggest a future direction for further enhancements in the

navigation algorithm.
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Chapter 1

Introduction

Small insects and other animals have their own simple navigation algorithms. Al-

though they operate with small number of neurons, they demonstrate great ability in

accurately returning to their nests. Such a mechanism, which is feasible for the lower

level organisms, has inspired many researchers conduct to overcome the problem of

complexity of the conventional navigation algorithms in robotics. By modeling the

biological methods of insects and other animals, the navigation systems can be more

effective yet simpler. Further they do not require a larger amount of memory than the

conventional algorithms. In this chapter, we introduce a bio-inspired robotic naviga-

tion system, especially with emphasis on the use of visual information, and present the

motivation and objectives of the paper.

1.1 Why bio-inspired model for robotic navigation?

Many animals as birds, fish, and turtles migrate seasonally over thousands of kilome-

ters distances, while insects as bees and ants return to important places after foraging

or exploring the environment. Returning home after an outward journey is an impor-

tant skill required for the survival of many insects and other animals. Animals have

developed navigation skills using various senses, including visual (Wehner and Räber,

1979), auditory (Rossier et al., 2000), olfactory (Papi, 1990), magnetic (Luschi et al.,

1996), and internal motion senses(Collett and Collett, 2000).

Navigation skills of animals show robust performance with regard to homing. In-

spired by such efficient navigation capabilities, researchers have begun designing bio-

1



2 Chapter 1. Introduction

inspired algorithms for robotic systems. Ethologist studied the behavior of animals

by examining how they explore the environment and return home immediately after

finding and collecting food. The performance of animals in navigation and environ-

ment perception exceeds that of any other mathematical methods developed for mobile

robots. Therefore, it is natural for researchers to attemptthe imitation of the behavior

of animals and to obtain the level of their natural performance.

Recently there have been a number of researches modeling robotic systems after ani-

mals. Mimicking the appearance of insects and other animalsled to a novel movement

or unique function in robots, and modeling the behavioral mechanism of the animals

have guided researchers to the development of their work in various perspectives.

For example, recently a climbing robot mimicking the behavior of gecko was devel-

oped (Kim et al., 2008). The robot’s gait and motion coordination was introduced from

the characteristics observed from the gait of a gecko. The study on the adhesive foot

of a gecko led to the development of a novel material with directional adhesion, which

enables the climbing ability of a gecko-robot. The robotic model of cricket phonotaxis

(Webb, 1995) and robotic model and system of olfactory-guided exploration strategies

of invertebrates (Grasso, 2001) were suggested by modelingthe behavior of animals

using unique senses. In addition, the navigation of Sahabotusing the polarized light

compass was inspired by studies of homing behavior in the desert ant (Lambrinos et al.,

1997). Biomimetics is an important field of research for bothengineering and biology.

In a technological point of view, we can obtain a more efficient system inspired by an-

imals while the implementation of the behavior of animals incomputational methods

allows biologist to verify and examine hypotheses in a more objective and numerical

way.

One of the advantages of a bio-inspired system is its abilityto respond to an external

stimulation in a simple and immediate manner. Insects and other animals are not able to

compute complex mechanisms to process perceived information and make judgements

as computers. Animals are specialized to particular sensormechanisms. Therefore,

systems modeling the sensory and mechanical system of animals would lead to much

simpler and adaptive system than the other mechanical devices. Hence, studying the

behavioral mechanism of the animals and applying their algorithms computationally

can be associated with implementation of a compact intelligent system in robotics.

In this respect, the bio-inspired researches are worth studying, and therefore can be

expected to show various performance.



1.2. Vision-based robot navigation 3

1.2 Vision-based robot navigation

Since it takes richer information than any other senses and is able to adopt many ad-

vanced techniques, vision has been widely researched for navigation. Early works

mainly focused on the mapping of environmental structure sothat a mobile robot could

detect objects and navigate through the environment autonomously. A geometrical in-

terpretation of the environment allows the robot to estimate its own position and iden-

tify the structure of the environment. One of the early worksof mapping in visual

navigation was elaborated by Moravec (1977). In this work, astereo vision is used

with the binocular set of cameras to reconstruct the environment. Objects in an in-

door environment are set with cones on the floor. After estimating the position and

the size of the objects and mapping them on a 2-D map as an obstacle, the object-free

area is assigned as an allowed region for the path from the current position to the goal

position. Recently, a number of researches have investigated both mapping and lo-

calizing the moving agent simultaneously, which is often called SLAM (Simultaneous

Localization and Mapping) (Davison, 2003).

However, due to its complexity and the requirement of large memory space, mapping

an environment is considered to be not plausible for insectsand other small animals.

Thus, for modeling the navigation algorithms of insects andanimals, it is more con-

vincing to focus on simpler information processing. Instead of geometrical mapping,

insects may use a topological representation of space or even have no stored informa-

tion about the space but only focus on the current view and thememorized scene from

a goal point. The navigation in this paper concerns a type of navigation which plans a

path and trajectory in its own way to reach the goal point without a geometrical map

of the environment.

Since various types of the navigation methods implemented by animals and insects

exhibit the extremely large range of navigation in nature, Gallistel (1990) defined nav-

igation asthe capacity to plan and execute a goal-directed pathwhile Franz and Mallot

(2000) edited and defined as below.

“Navigation is the process of determining and maintaining acourse or
trajectory to a goal location.”

Following this definition, we may narrow the scope of navigation to determining the

direction of movement as a way to reach the goal location froman arbitrary position.
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View-based homing navigation has been studied through a number of bio-inspired al-

gorithms. These methods were developed to navigate home using a remembered view

of the home location from a variety of positions. We considerthe landmark navigation

of insects because of their excellent navigation performance.

1.3 Motivation and objectives

Motivated by the simple yet robust vision-based navigationof insects, we propose

various ideas to model the landmark-based navigation algorithms. The main purpose

of this research is to find a novel and efficient homing navigation method.

The detailed objectives are as follows:

Suggestion of vision-based homing navigation method. We introduce Distance- Es-

timated Landmark Vector (DELV) model as one of the landmark-based homing

navigation algorithms. We also suggest a method based on quantized landmark

distances.

Performance comparison with and without a reference compass. We compare our

suggested method with several existing image-based navigation methods, which

do not require any reference compass. We also compare the results of the DELV

method with the reference compass information combined with the suggested

landmark navigation algorithm and evaluate the performance in various perspec-

tives.

Robotic experiments and further evaluation on the method. We present the results

of robotic experiments for the suggested method. In addition, evaluate the ro-

bustness of the method and compare it with other methods.

1.4 Organization of dissertation

In this chapter, we introduced the motivation and concept ofbio-inspired research and

the objectives of the vision-based homing robot navigationmethods, which we propose

and investigate in this paper.
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In Chapter 2, background on the existing visual navigation algorithms is given by re-

viewing earlier works. Vision-based navigation can have many different types. Among

different types, we focus on homing navigation. The homing navigation can be clas-

sified as one of the guidance methods. The visual homing method, which relies on

image information, can be divided into two groups: holisticmethod and landmark-

based method. Several methods in each classification will bediscussed later in the

following chapters for the performance comparison.

In Chapter 3 we propose the landmark-based homing navigation algorithm. The method

consists of three major steps: a distance estimation, the creation of a reference map and

localization step, and the arrangement matching of landmark vectors. Starting from ba-

sic concepts of the proposed algorithm, we describe the detailed procedure of method

along with the mathematical description. The performance of the proposed method is

shown in the following Chapter 4. The simulation experiments in various conditions

are provided with respect to the angular error for determined homing vectors, and the

success rate in homing. Results of robotic experiments are shown for the two different

types of environments with artificial and natural landmarks. Results are compared to

those of the image-based navigation methods without a reference compass.

In Chapter 5, we apply the quantized distance information tothe proposed DELV nav-

igation model. The concept of the estimated distance quantization is explained and

experimental results are presented. The results of the performance in both simulation

and robotic experiments are shown.

Our DELV navigation method does not necessarily require thereference compass in-

formation, and shows a similar level of performance with a small amount of enhance-

ment when the reference compass is applied. Thus, in Chapter6, the DELV method

with a reference compass is compared to another landmark-based navigation method

which requires compass information. For the appropriate comparison in performance,

detailed conditions were set equally for both methods. Along with the comparison of

the angular error and the percentage of catchment area, the robustness of the method

is examined with respect to the occlusion problem.

Finally, the performance results from different experiments and environments are dis-

cussed in Chapter 7. We explain the advantages of the DELV method and discuss the

future directions as an extension of this research work.





Chapter 2

Background

Many insects and other animals determine a homing directionbased on visual infor-

mation. A ‘snapshot model’ was suggested to explain their navigation system. The

snapshot model compares a current snapshot image with the snapshot taken at a goal

location to obtain a direction toward the goal. A number of methods have been sug-

gested to process the snapshot image. Holistic methods assess the similarity between

the current and the goal images, and the agent navigates in the direction that decreases

the discrepancy because the difference between the two images would be minimized at

the goal point. On the other hand, landmark-based methods consider particular features

in several images in order to match the common regions. In landmark-based methods,

distinctive features are selected and identified. Then the regions are matched based on

the correspondence of the features in order to derive a movement vector. To propose

a new homing navigation algorithm, we examine the central ideas in the algorithms of

both methods, and probe the advantage and weakness of each method.

2.1 Navigation in animals

The most popularly known navigation method for insects and other animals is path

integration, which is also known asdead reckoning. The path integration is known to

be used in many animals such as desert ants (Müller and Wehner, 1988), fiddler crabs

(Zeil and Hemmi, 2006), honeybees (Collett and Collett, 2000) and gerbils (Etienne

and Jeffery, 2004; Mittelstaedt and Mittelstaedt, 1980). This approach integrates the

distance and direction of movement to enable animals to find their way home. Based

7
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on movement speed and directional information, they continually calculate their posi-

tion relative to the starting point. An internal reference compass and internal motion

sensors are required to perform the path integration. Afteraccumulating the angle and

distance data until foraging or exploration ends, animals can have the direct path in-

formation consisting of the direction and the distance to the target position, which is

usually home. This information will allow agents to head directly toward their goal

position within some errors. The path integration technique is useful in an unfamiliar

environment, especially when no visual landmarks exist as guidance cues.

An outstanding example of the path-integration-using insect is a desert antCataglyphis

fortis (Müller and Wehner, 1994). Figure 2.1 shows the path of a desert ant of returning

home after an outward journey for foraging food. Compared tothe tortuous outbound

path (solid line), the inbound path is closer to a straight line (stippled line). The path

integration is important and useful to desert ants, since they live in a desert which

is usually a featureless large area with no prominent landmarks. The foraging desert

ants keep track of their own current position with respect tohome by integrating the

trajectory of the movement. Since the vector summation of ants are not as precise as

we do by the computer, but rather done by simple approximation, the method produces

small navigational errors. The desert ant can return home using path integration even

after a journey of hundreds of meters (Wehner and Srinivasan, 1981).

Mittelstaedt and Mittelstaedt (1980) showed the homing ability of gerbils, Meriones

unguiculatusby path integration. In the experiment, gerbils could retrieve their youngs

from a circular arena by returning to the nest location starting from the border of the

arena. When the platform was rotated, they returned to the position where they thought

was home, which was actually a deviated point from the real home by the amount of

which the platform was rotated. The performance indicated the idiothetic behavior of

gerbils, yielding that the vertebrate as well as the invertebrate species perform path

integration for navigation using internal cues.

The path integration has been studied widely and implemented in various forms includ-

ing simple robotic navigation (Yamauchi et al., 1999) and a neural model (Haferlach

et al., 2007).

However, since path integration depends on the integrated movement paths, errors may

arise after a long-term exploration. As the navigational errors are also accumulated

along with the useful information during the exploration, the resulting vector pointing
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Figure 2.1: Foraging trip of an individual ant, Cataglyphis fortis. Outbound trips are

depicted by solid lines and inbound trajectories by stippled lines. N represents the nest,

and F is the food location. The length of the outbound path is 354.5m and the maximal

distance from the nest is 113.2m. Time marks depicted as small filled circles are given

every 60sec. (Reprinted from Müller and Wehner (1994))

the target position would possess a considerable amount of deviation. Errors in motion

or reference direction accumulate, meaning that the longerthe outward trip, the more

difficult will be the return trip. However, if it were possible to exploit additional infor-

mation to path integration, the number of accumulated errors would decrease. When

no information is available about the integrated path, the animal can use visual senses

such as the image of the horizontal skyline surrounding the nest (Basten and Mallot,

2010) or a distribution of landmarks (Wehner et al., 1996b).

Researchers have observed that desert ants are able to return home successfully after

short wanderings when they are displaced to an unknown location, indicating that ants

use visual information in addition to path integration (Wehner et al., 1996a). They

compared the homing path of normal ants and that of the ants whose vector information

is removed. As in Figure 2.2, the ants without vector information returned home in

almost the same path as it did with the homing vector from pathintegration. Combining
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Figure 2.2: Homing path of two desert ants Cataglyphis fortis. N is the nesting site,

and F is the feeding site. The ants had arrived at F (dotted trajectory) and were subse-

quently, after returning to N, displaced back to F to return home with vector information

removed (solid trajectory). Both paths show similar returning. (Reprinted from Wehner

et al. (1996a))

multiple sources of information leads to more successful homing. As well as desert

ants, crabs (Hemmi and Zeil, 2003), and gerbils (Etienne et al., 1996) also combine

internal motion cue and the vision-based information whichcontinuously interact in

a complementary way to return home more accurately. The visual information is an

external cue while the self-motion is considered as an internal cue. The simplest way

of binding these two different informations is to first use path integration to get near the

nest, and then switch to the searching for the familiar visual cues near the nest. Both

hamsters (Seguinot et al., 1993) and ants (Müller and Wehner, 1994) use this type of

method to combine path integrator and visual guide.

Various methods were suggested to explain the algorithm of insects and other animals

handling the visual information. Different visual image processing strategies lead to

different types of movement and performance in navigation.

Rodents and gerbils exploit the place cells of hippocampus for processing visual in-

formation (Butz et al., 2010). The hippocampus is a neural network structure that

supports the spatial representation in mammals (Trullier and Meyer, 2000; Touretzky

and Redish, 1996). Place cells are associated with certain visual locations, and when

the animal explores specific region in space, the place cellsare activated based on the

places visited, leading to the production of cognitive maps(Trullier and Meyer, 2000).

The firing pattern is the place fields (Muller, 1996) (see Figure 2.3). The firing place

cells correspond to the local environment in the neuronal representation. This topolog-
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Figure 2.3: Summary of the firing properties of a CA1 Hippocampal Place Cell. The

figure at the top shows the ‘firing rate map’ with the time-averaged firing rate of the cell

as a function of the rat’s head position. Two maps at the bottom show the spike activity

on two separate paths through the field. The black line indicates the moving path of the

rat, red dots are the location at which action potentials were fired, and the grey pixels

indicate the location of the firing field, copied from the rate map. (Reprinted from Muller

(1996))

ical representation of the environment can be used to identify the present location and

to navigate to the desired endpoint (O’Keefe and Burgess, 1996).

While mammals as rodents and gerbils use place cells for the vision-based navigation,

insects use a much simpler representation of the environment. Many hymenopterans,

socially organized insects, are known to perform visual landmark-based navigation

to guide them in their return to their nest. Insects perform homing navigation using

snapshot images taken at specific locations, which is somewhat different from rodents.

Such method is called ‘snapshot model’ (Cartwright and Collett, 1983, 1987; Col-

lett, 1996). The snapshot model basically compares the current snapshot image with

the snapshot image taken at the goal location to obtain the direction toward the goal.

Comparing snapshot images, among the several possible directions, the moving direc-

tion that decreases the discrepancy between two images the most is chosen as a homing

direction. The snapshot model has shown its potential to be actually used in insects

through experiments (Cartwright and Collett, 1983), and since it is a simple and ef-

fective method proved its performance in various suggestednavigational algorithms.
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Detailed characteristics of such algorithms will be given in the following.

2.2 Local visual homing

Many insects and other animals return home by exploiting visual information in differ-

ent methods (Wehner et al., 1996a; Hemmi and Zeil, 2003; Etienne et al., 1996). Nav-

igation can be in many different types such asplace recognition-triggered response,

topological navigation, metric navigation, and guidance(Trullier et al., 1997). Trullier

et al. (1997) and Franz and Mallot (2000) elaborated theguidancenavigation method

in classifying navigation into several categories. Considering the configuration of the

surrounding objects, theguidancemethod can process an egocentric object informa-

tion and determine the goal direction (Franz et al., 1998; Graham and Collett, 2002).

Therefore, acquiring spatial information of the environment, the agent obtains direc-

tion to the goal point, its current location compared to the goal, and the configuration

of the objects surrounding.

For the navigation of animals, returning to the starting point of a journey is the most

important and interesting task but yet the simplest form of navigation for animals in-

cluding humans. This type of navigation is called homing, which could be classified as

one of the guidance methods. Many social insects as ants, bees, and wasps do foraging

trips and exploring the surrounding environment of their nest. These trips may range

from hundreds to thousands of meters (Wehner and Srinivasan, 1981). Therefore, local

homing along with the simple and computationally cheap navigation method is an im-

portant point of view in the simple navigation of insects, which also receives attention

from the neuroethology.

Based on multiple snapshot images, the agent can obtain depth information of the

view. Several approaches were suggested using multiple vision sensors to extract ac-

curate depth information (Stürzl and Mallot, 2002) or special sensors as panoramic

stereoscopic sensor (Huang and Klette, 2009). However, in modeling inspired by the

navigation of insects, it is more appropriate to use a simplevision sensor. The infor-

mation that can be easily obtained with the common snapshot image is the intensity.

The intensity of the snapshot image can be easily obtained from an ordinary image

through vision sensor. The visual homing method by exploiting the intensity of im-

age can be coarsely classified into two groups:holistic methodand landmark-based
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method. Holistic method treats the obtained image as a whole. It does not require any

matching procedure neither any feature selection procedures and deals with the im-

age intensity information as taken. On the other hand, in thelandmark-based method,

features in the environment are considered aslandmarks, and the navigation method

attempts to establish features between two images. This method varies with respect to

the feature selection criterion and the correspondence matching algorithm.

2.2.1 Holistic methods

Holistic methods assess the similarity between the currentand the goal images, and

the agent navigates in the direction that decreases the discrepancy because the differ-

ence between the two images would be minimized at the goal point. Holistic methods

perform local visual navigation without any correspondence matching procedures. By

treating the image as a whole, the methods avoid the correspondence problems aris-

ing when features are not distinctive enough to distinguishone from another. While

correspondence matching methods require both feature extraction and the matching

procedures, the feature matching between images is not necessary in holistic meth-

ods. Different metrics are used to calculate the level of difference; the direction of

movement can be determined based on the descent of the image distance using the root

mean-square difference of pixel intensities (Zeil et al., 2003) or through the Euclidean

distance in some parameter space, in which the parameters can be derived from the

whole image. TheDID(descent in image distance) methodand thewarpingare two of

the various algorithms in holistic methods.

Descent-in-image-distances(DID)method has been introduced by Zeil et al. (2003)

and investigated by many researchers (Stürzl and Zeil, 2007; Möller et al., 2007). The

image difference becomes much smaller when two points are closer as in Figure 2.4.

Although the shape and smoothness of the curve varies with respect to the illumina-

tion and display, the characteristics of the minimum image difference at the goal point

is maintained (Stürzl and Zeil, 2007). By applying simple gradient descent methods,

the navigation algorithm successfully finds the direction to the goal location. Möller

and Vardy (2006) showed the extension of the DID method by including the prediction

concept. “Matched filter” indicates the fixed template flow fields for purely transla-

tional movement. That is, by projecting the intensity gradient onto the matched filter,

the agent could predict the image it would obtain when the corresponding movement
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Figure 2.4: Difference function of the r.m.s. pixel differences of the image. The location

of the reference image has the steepest value of the difference function. (Reprinted

from Zeil et al. (2003))

is performed. Therefore, the method yields the homing direction by computing the

descent in image distance of the matched-filter.

Another method of the holistic methods is thewarping. Franz et al. (1998) suggested

the method of appropriately distorting the current snapshot image to best match the

target snapshot image as described in Figure 2.5. The agent predicts new image for

every possible directions to move from the current locationby warping the image in a

predicted manner. This prediction is equivalent to the concept of projecting the one di-

mensional landmark information on the matched filters of flowfields. Then the method

determines the homing direction, which matches the predicted image best with the ref-

erence image. However, The predictive warping method is largely affected by the char-

acteristics of the environment. When there are too many objects in the environment,

the performance is degraded. Möller (2009) elaborated thewarping method compu-

tationally and showed the performance for several databases. In addition to original
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Figure 2.5: Warping method. The warping is applied to produce a warped(distorted)

view from the original current view. The warped view is compared to the reference

snapshot image to determine the image distance. Differently hatched squares in the

figure indicate pixels with different intensities. The one-dimensional images are closed

in horizontal direction as indicated for the snapshot image. (Reprinted from Möller

(2009))

warping method, 2D-warping method was also suggested with improved performance

(Möller et al., 2010). Similar to the descent-in-image-distance (DID) method, fitting

the warped image with the appropriate curve to the minimum point of the computed

distance in images yields the horizontal and vertical anglein mathematical way.

While the DID method searches the descent in image distance,the warping method

searches for the minimum point of distance in the image and distort the image to fit

the reference image. Since the warping does not require reference compass, it is a

competitive navigation method with fine performance.

2.2.2 Landmark-based methods

Landmark-based methods consider features or landmarks in the environment and set up

correspondence between features in two images: one from thegoal and the other one

from the current location. Since the landmark-based methoddetermines a direction to

move by establishing a connection between features, one of the factors that affects the

performance of the method is the type of features in the imageto be selected.

One of the most popular feature SIFT (Scale Invariant Feature Transform) has been

used to determine landmarks of the environment and localizethe mobile agent (Se

et al., 2002; Lowe, 2004). Using SIFT can be efficient but yet requires large amount
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of computation. For simpler methods of selecting features,one can use information

such as color of the objects, dark and bright regions, and edges and corners. Color is

an efficient criterion to distinguish landmarks (Szenher, 2008). Gourichon et al. (2002)

created one-dimensional panoramic snapshots with colors defined as HSV(Hue, Satu-

ration, and Value) parameters rather than RGB. The HSV representation is much less

dependent of luminance level than the RGB color model so thatit can robustly detect

landmarks. Goedemé et al. (2005) also suggested a reduced form of SIFT features

to work on color images by including the matching of color descriptor of the feature

patch. Another type of simple feature extraction method is corner extraction (Vardy

and Oppacher, 2003). One of the popularly used corner detection scheme is Harris

detector where only the local convolutions and sums are required for the computation.

As it is shown above, selecting distinctive features leads to the necessary matching

procedure of each feature. Therefore the feature extraction method attempts to pro-

vide identifiable information for each feature. Instead of selecting distinctive features

the navigation method can select non-distinctive landmarks and include an additional

matching procedure. As suggested from the experiments on insects, the use of dark and

bright regions as the landmarks suggested through the experiments on insects provides

non-distinctive landmarks of a given image. In the navigation of honeybees, the sector

matching was done by pairing every light and dark sectors, the gap and landmark, in

the snapshot with the closest sector in the image of the same intensity (Cartwright and

Collett, 1987). Landmark extraction based on the luminancelevel of the image has

shown to be useful in robotic experiments. Hong et al. (1991)exploited the luminance

intensity information of each one-dimensional circular form of snapshot. Lambrinos

et al. (2000) showed image processing for landmark navigation by segmenting a region

into black and white areas obtained with omni-directional cameras in Figure 2.6.

Weber et al. (1999) demonstrated a computation of the homingdirection based on

several non-distinctive landmarks. The correspondence between landmarks does not

guarantee 100% correct matching, but only works as an approximation. To avoid the

complexity in computation, they decided to accept some deviation in homing direction

instead of searching for the optimal solution. The suggested method first computes a

correction vector based on the difference between the bearings to a specific landmark

from the goal location and the current snapshot image. This correction vector is a di-

rection which makes the discrepancy between two bearings smaller, that is, if the agent

moves toward the correction vector, the bearing to the landmark from the current loca-
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Figure 2.6: Example of landmark extraction based on the luminance. After applying a

threshold to each pixel, a horizontal area is extracted. A pixel in the segmented horizon

will be black if more than 50% of the pixels in the corresponding column are black.

(Reprinted from Lambrinos et al. (2000))

tion becomes more similar to that of the goal location. The correction vector will be

smaller if the angular difference between the bearings of the landmark from the goal

and the current location is smaller (see Figure 2.8). Based on these characteristics,

the homing direction can be computed by summing all the correction vectors for every

landmarks available. Since the method does not search for every matching possibil-

ity but only consider few candidates, however, the arrangement can be mismatched

and lead to a wrong vector for some cases. Although this homing direction may not

correctly point the goal from the current location, the homing direction computed at

the next step may improve the accuracy through iteration. Consequently, the homing
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Figure 2.7: Computing a homing direction with non-distinctive landmarks. Each land-

mark i produces a local correction vector Vi , the summation of which determines the

homing direction Hs. Given only landmark bearing information, each correction vec-

tor attempts to improve the perceived bearing of its landmark to better match with that

observed from home H. (Reprinted from Weber et al. (1999))

performs successfully moving incrementally toward the goal location.

The correspondence of ambiguous features between images can be searched by com-

puting the distances between them (Matsumoto et al., 2002).Block matchingmethod

introduced in the work of Vardy and Möller (2005) decides the match by searching

the smallest difference between points under the assumption that two images to be

compared were taken with the same orientation. The correspondence search by block

matching is not made for every position in the image but only for some sampled posi-

tions, which are considered as landmark. Established matches for every sampled points

lead to correspondence vectors. Each correspondence vector ideally indicates the di-

rection of movement corresponding to the current snapshot image emerging from the

reference snapshot. Inversely, by mapping every correspondence vectors on the image,

it is possible to point the direction of movement to the goal point where the reference

snapshot image was taken.

Unlike the navigation with perfect correspondence matching, using the non-distinctive
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landmarks can result in serious deviation in homing vector.If landmarks are not dis-

tinctive, the matching between two images cannot be done precisely, but only in an

approximate or probabilistic way. In the landmark-based navigation method, if the

correspondence between features cannot be established, the decision of homing vector

relies on a roughly estimated result. However, we can expecta gradual decrease of the

uncertainty of the estimated result through the exploration, as in the probabilistic data

association method used in SLAM.

There are also landmark-based methods without any correspondence matching. The

average landmark vector (ALV) model, suggested by Lambrinos et al. (2000), requires

an extraction of features but does not perform feature matching. In the ALV model, all

the features are treated equally. The extracted features donot possess any character-

istics to distinguish one from another. The ALV is calculated from the unit landmark

vectors for each landmark and then it is compared with the ALVobtained at the home

point. Each detected landmark vector has a unit length, and the average of landmark

vectors at each point is considered to be sufficient to represent the whole snapshot

image. This method uses a rather simple representation of the surrounding environ-

ment, since the only information that needs to be stored at each location is one average

landmark vector. Instead of comparing two images, it is now enough to compare two

average landmark vectors. Thus, instead of decreasing the discrepancy between two

snapshots the agent can derive the homing vector by subtracting two ALVs. By stor-

ing the ALV at the goal point, the ALV obtained at current location is compared with

the reference ALV from the goal location to determine the direction to home. The

vector representation is shown in Figure 3.6. The ALV methodignores other detailed

properties of the landmarks, such as the size or distance from the agent, and only

considers the angular position as seen by the navigator. This navigation algorithm is

simple and computationally cheap, and shows an excellent performance (Lambrinos

et al., 2000). However, on the other hand, it requires a reference compass to deter-

mine the direction to move along. The ALV method can also be easily implemented in

robotic experiments involving simple image processing andvector calculations. Since

the ALV method requires a reference compass, its use in robotics requires a compass

sensor, the precision of which plays an important role in theperformance of the model

(Möller, 2000). Studies on the behavior of animals have demonstrated the possibil-

ity that the ALV model is adopted by insects and other small animals (Möller, 2001).

As mentioned earlier, due to the simple representation of landmarks in the environ-
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Figure 2.8: Average landmark vector (ALV) model using edges as landmark features.

Vectors attached to the outer ring are landmark vectors contributing to the dashed ALV

computed for the snapshot position. The thin solid vector is the current ALV, and the

thick solid vector is the computed home vector. (Reprinted from Lambrinos et al. (2000))

ment, ALV can be implemented efficiently in the neural network architecture (Hafner,

2001; Hafner and Möller, 2001; Wei et al., 2005; Smith et al., 2007), and in robotic

experiments (Goldhoorn et al., 2007).

2.3 Summary of Chapter 2

We examined various biologically inspired methods in localvisual homing, which are

simple and can be easily implemented. They do not need special sensor or platform but

only require information processed from the image intensity of snapshot images. They

are simple and still show good performance in local homing. Anumber of biological

mechanisms have been shown to be appropriate for the implementation on the robot

navigation (Hong et al., 1991; Lambrinos et al., 2000). For the more realistic imple-

mentation, it would be effective to combine two or more strategies to navigate through

the environment. As many researchers have compared different navigation methods,

the selection and application of an appropriate visual homing homing algorithm to the

robot is important for the implementation of the robot navigation system.
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Distance-estimated landmark vector

(DELV) method

In this chapter, we propose a new algorithm for homing navigation, distance-estimated

landmark vector (DELV) method (Yu and Kim, 2010b). Our new landmark-based

navigation algorithm uses distance estimation and landmark matching based on the ar-

rangement order. The distance estimation is obtained from the egomotion of the agent.

Since we exploit the distance information in addition to landmarks, we first apply the

distance concept to the landmark vectors instead of settingthe landmark vectors as unit

length. The length of a landmark vector is set as an estimateddistance or as a quan-

tized distance. The next step is a demonstration of the landmark navigation method

without a reference compass but with the distance estimation of landmarks. Replacing

the compass information with the landmark arrangement order, our navigation method

exhibits a successful homing performance. The DELV method was suggested in our

previous works (Yu and Kim, 2010b, 2011c) and the effect and results of quantized

distance applied to DELV were described as well (Yu and Kim, 2010a, 2011d).

3.1 Basic concepts

The distance-estimated landmark vector (DELV) method setsa set of landmark vectors

in a way to determine the homing direction. The concept of thelandmark vector in the

DELV method is similar to that of the ALV model but as a significant difference.

The average landmark vector (ALV) model, suggested by Lambrinos et al. (2000),

21
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calculates ALV based on the unit landmark vectors and then compare it with the ALV

of the home location. Each detected landmark vector has a unit length, and the average

landmark vector at each point is considered to be sufficient to represent the whole

snapshot image. Subtracting the ALV of the home point from the ALV of the current

location, the agent can determine the homing vector. To obtain the homing vector

based on two average landmark vectors, however, it is necessary to have a reference

compass information. The ALV model only focuses on the direction to the home point

without any estimation on the current location of the agent.

Since the ALV method requires a reference compass, its use inrobotics requires a

compass sensor, the precision of which thus plays an important role in the performance

of the model (Möller, 2000). Thus, it would be advantageousif the algorithm could

operate only with visual information and with no need for a compass or other sensors.

As noted above, several navigation models require compass,however, the accuracy of

the compass sensor can be affected by the motor movement of a mobile robot. There-

fore, it is important to create a navigation method that doesnot require a reference

compass. In this regard, several visual homing methods using the whole image rather

than computed parameters have been suggested as navigationmethod without a refer-

ence compass.

3.2 Methods

Figure 3.1 shows a landmark vector representation with distance estimation in the

omni-directional view. Figure 3.1 (a) is the omni-directional ring with perceived land-

marks at the current location. Figure 3.1 (b) and (c) illustrate the landmark vectors.

In the unit landmark vector model, all the landmark vectors have the same unit length

(as in Figure 3.1 (b)) and each landmark is considered to be the same distance from

the agent. In our distance estimation method, the landmark vectors can have different

lengths depending on their distances to the agent.

Because of the added distance information to the landmark vectors, our proposed

method can operate in the absence of reference compass information. The robotic

agent can determine the proper direction based on the landmark distribution even with-

out a compass. In this thesis, we discuss an efficient matching algorithm of landmark

arrangements by using the distance estimation. Since matching each individual land-
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Figure 3.1: Landmark vector representation with distance estimation: (a) a landmark

diagram, (b) unit-length landmark vectors, and (c) landmark vectors with distance (polar

coordination) (Reprinted from Yu and Kim (2011d))

mark in different scenes requires a significant amount of information and a huge com-

putational cost, we decided to exploit the linear order of landmark arrangements. With

landmarks of no distinctive features, we perform a simple search for the appropriate

order rotating the landmark arrangement to determine the homing direction. Repeating

the same process, the agent is gradually guided toward the home point. We call this

method as distance-estimated landmark vector (DELV) method, and will give a more

detailed description of the procedure in the following.

3.2.1 Distance estimation

In the DELV method, we use an omni-directional snapshot image to acquire landmark

information. An omni-directional camera provides the mobile robot with a 360◦ view,

snapshot panoramic images of its surroundings. The omni-directional snapshot gives

a panoramic image so that the agent can observe objects in every direction. Since a

landmark does not disappear from the view with an omni-directional camera as long as

the robot does not move significant distance, it is useful to record the landmark posi-

tions. Therefore, the viewed objects are not limited to its angular position of the agent

whereas the traditional cameras have a limited view. This omni-directional feature al-

lows more efficient (Sun et al., 2004) and unconstrained movement of the robot. In

addition to this advantage, the omnidirectional camera provides a view similar to that
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Figure 3.2: Image shift of landmarks. The agent moves from the position P to C (mov-

ing distance d), the head orientation angle changes by ψ, and the viewing angle of a

landmark from θ to θ+δ (Adapted from Yu and Kim (2010a))

of the insects’ eyes. In fact this camera has been used popularly in many bio-inspired

navigation method (Franz et al., 1998; Huber and Bülthoff,1998).

The distance to the landmark can be estimated from the angular shift of the landmark

arising from the forward step move of the agent. The geometric relationship between

distance and angular shift are described in Figure 3.2.

For the distance estimation, let us assume that the agent moves one step from pointP to

C as in Figure 3.2. The agent moves distanced for one time step. As the agent moves

one step forward, the angular position of the landmark changes fromθ to θ +δ. The

angleθ andθ+δ indicates the bearings of landmark at the pointP andC, respectively,

while ψ is the change of the heading direction in two points. For simplicity, the triangle

△PLC in Figure 3.2 shows the relationship between each angle and the distance. The

distanceR from the locationC to the landmarkL is what we need to determine the

current location atC. And the distanceR′ as the previous distance betweenL andP

will be stored in the reference map. Applying the sine law to the triangle, Equation 3.1

is derived, leading to Equation 3.2.

sin(δ+ψ)

d
=

sin(θ−ψ)

R
=

sin(θ+δ)

R′
(3.1)

R=
dsin(θ−ψ)

sin(δ+ψ)
(3.2)

The estimation of the distanceRbased on two sequential images is related to a stereo-

vision or optical flow analysis. If there exist moving objects in the environment, those
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objects can be separated from the background. Inversely, ifthe platform moves instead

of the objects in the environment, the objects will give a motion parallax showing their

boundaries with respect to the backgrounds. The calibratedstereovision system would

provide more accurate distances, but two images in sequencecan provide sufficient in-

formation for the landmark distance estimation. To carry out this operation, the robot

takes two snapshots, one before and one after each step. Thisprocedure is called a

unit movement of the mobile robot, which is involved with theestimation of landmark

distances based on the agents egomotion. In order to estimate the distanceR, there

must be a correspondence of the landmarks between the previous and current images.

3.2.2 Distance quantization

The distance to a landmark is estimated with Equation 3.2. Since the equation includes

θ, δ andd, the accuracies of these variables can affect the estimation. The angular

positionθ is affected by the noise in the captured image and thereby theangular devia-

tion δ is, and the distanced is mainly influenced by odometry error. Furthermore, it is

plausible to argue that insects or other animals may perceive the distances to landmarks

in a simpler manner as several classes. In other words, instead of calculating their ex-

act distances, they may place landmarks into broad distanceclasses, such as, near, in

medium range, or distant. Therefore, we introduce the quantized distance information.

The distance-quantization categorizes the distances to landmarks into several distance

levels. For instance, if the quantization level is 2, every landmark in the view will be

sorted as either distant or near, while for level 3, they willbe categorized as distant,

mid-range, or near. Quantization level 1 corresponds to theequidistant assumption,

as in the ALV method, that all landmarks lie at same distance.As the discretization

level increases, the classifications become finer, and, at the limit of the highest level

quantization, the true distance can be obtained.

Distance discretization leads to the simplification of the landmark vector representa-

tion. The discretization is relatively insensitive to noise as long as the landmark is

assigned to the correct class of the distance level. Even though the changes in dis-

tance can affect the perceived arrangement of landmarks, this method is still useful for

navigation if such changes do not alter the relative distances from the agent. Figure

3.3 shows an example of one and three-level quantization of landmark distances. The

filled circles indicate the actual position of the landmarkswith respect to the agent in
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Figure 3.3: Example of the landmark distance quantizations: (a) one-level quantiza-

tion, that is, an equidistance assumption and (b) an example of three-level distance

quantization (Adapted from Yu and Kim (2011d))

the center (black dots). Transparent circles show the perceived position of landmarks

adjusted by the estimated distance quantization. The one-level quantization in Figure

3.3 assumes every landmark to be at the same distance from theagent. It has the same

concept of an equidistance assumption in the predictive image-matching method, the

ALV model and the average correction vector (ACV) model suggested by Hong et al.

(1992). Figure 3.3 (b) shows three levels of distance-quantization yielding to the per-

ceived distance into three classes: the close one, the distant one, and the one in medium

distance. Based on their relative distance from the agent, quantized distances are as-

signed to each landmark for each class landmarks belong to. Therefore, for example,

in 3 level of discretization, each class, close, medium and distant has certain prede-

teremined distances, and landmarks would be perceived to beonly in those distances.

Through the quantization process, the perceived distancesof the landmarks do not rep-

resent the true distances any more. Still the overall configurations remain the same as

the true ones. Let us label the bottom left landmarkL1 and proceed to number the rest

in a clockwise manner. TheL4 is the “actual” closest landmark and it is still the closest

one among the “perceived” locations. In this example, the rest of the landmarks are

perceived to be at the same distance, however, the relative distances of landmarks from

the agent are not altered. For example, it will not classifyL3 as being more distant

thanL2. The effectiveness of this distance discretization procedure will be shown in
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following experiments.

3.2.3 Reference map and localization

The ALV model stores the sum of landmark vectors at the home location. In the aver-

age correction vector (ACV) model, the individual landmarkvectors with unit length

at home is memorized. The stored landmark vectors are then compared with those

obtained at the current location in order to determine the homing direction. Similarly,

in the distance estimation method, each landmark vector at the nest is stored in a refer-

ence map. The reference map is defined as a set of landmark vectors perceived at the

nest and does not possess any detailed information on the environment beyond the sim-

ple landmark vectors. The reference map includes the distance and angular direction

from the starting point to each landmark. The reference map can be created with the

distance estimation by Equation 3.1 applying the unit movement technique. Equation

3.2 computes the distanceR′ of a landmark in the reference map.

R′ =
dsin(θ+δ)

sin(θ−ψ)
(3.3)

For every perceivedi-th landmark (i = 1,2, ...,N) in the environment, the landmark

vectorLVi = (Ri ,θi) can be found, whereN is the number of landmarks. The distance

Ri is obtained from Equation 3.3 andθi is the angular position of the landmark viewed

from the home location.

An agent at an arbitrary position with the stored reference map and perceived landmark

vectors can derive the current location by projecting the landmark vectors to the refer-

ence map. That is, the estimated distances and the angular positions of the landmarks

can serve as a basis information for the localization of the agent in the environment.

Once the reference map is built at the home location, the mobile robot does not need to

collect any additional information on the environment or movement directions during

the exploration phase until it decides to return home. The homing phase is composed

of a series of unit movements. The mobile robot repeatedly takes snapshots and moves

one step forward so that it can continuously determine the homing direction. The

agent localizes itself by projecting the landmark vectors at the current location to the

reference map. The homing direction can be calculated simply with a vector from the

current position to the home location.
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Figure 3.4: Rotational shift of landmark arrangements. Projecting perceived landmark

vectors (x1,x2,x3) (black arrows) into the reference map (large circles) depends on

the landmark arrangements (xi indicates the projection of the i-th landmark) (a) cor-

rectly matched arrangement, (b) (L1,L2,L3) match (x3,x1,x2), respectively, and (c)

(L1,L2,L3) match (x2,x3,x1), respectively (Reprinted from Yu and Kim (2011d))
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Figure 3.5: Landmark vectors in the reference map with the estimation of head orien-

tations; (x1,x2,x3) are the projected landmark vectors for (a) correct head angle (b) a

deviation angle 45◦ of the head orientation (c) a deviation angle 90◦ of the head orien-

tation. (Reprinted from Yu and Kim (2011d))

3.2.4 Arrangement matching with landmark vectors

In order to project perceived landmark vectors into the reference map, the DELV

method has the correspondence problem between landmarks inthe current view and

those stored in the reference map. The robot must match the landmarks in the correct

order and direction without a reference compass, and it can be accomplished by the

rotational arrangement matching.
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Figure 3.4 shows the method of the rotational shift of landmark arrangements where

the heading direction of the agent is the same as that in the reference map. The figure

illustrates a simplified matching process by fixing the head direction at the desired sit-

uation which can be an arbitrary direction, in fact. Circlesindicate landmarks whose

relative positions to the nest are known with egomotion and stored in the reference

map. Black arrows(x1,x2,x3) indicate the inversed landmark vectors perceived at the

current location of the agent. Because the agent has no information on the heading

direction and the identification on landmarks, it is necessary to match the landmarks

in the reference map with the perceived landmarks at the current location. Since we

have the reference map and perceived landmark vectors, projecting the inversed land-

mark vectors into the reference map will yield the most converging points, with the

estimation of the head direction and the correct landmark arrangement. The Figure 3.4

shows that when the landmark vectors are projected onto the reference map with the

right arrangement order, the vectors are likely to point to almost the same point.

In addition, Figure 3.5 illustrates the effect of heading direction in the landmark vector

projection, where the landmark arrangements are correctlymatched. When the esti-

mation of the head orientation is incorrect, there is no converging point for the current

position. Reversely, we can estimate the head orientation as well as the current location

of the agent in the reference map coordinate, by employing the convergence property

of the projected landmark vectors. Along with the availablelandmark arrangements,

possible head orientations ranging from 0◦ to 360◦ within the angular resolution should

be tested to acheive the most converging case.

Even when there is no one-to-relation between landmarks in two views, that is, if the

numbers of landmarks in two views are different, the same matching process is applied.

If there are additional landmarks left in the reference map,we only consider endpoints

of projected vectors to estimate the current location. On the other hand, if the number

of landmarks in the current view is larger than that in the reference map, additional

landmark vectors are ignored. Since we only consider linearrotational matching of

landmark vectors, difference in the number of objects observed may influence the per-

formance in some cases. However, the overall performance inChapter 5 shows that it

does not severely damage the homing rate or the average errorin homing vector. In

addition, the occlusion problem is likely to be the main cause of different landmark

numbers in views. As the occlusion problem and its influence on performance of the

method would be investigated in Chapter 5, showing the results with no one-to-one
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mathcing of landmarks.

Theoretically, the end points of projected landmark vectors should converge into one

point, when the landmark arrangements and head orientations are correctly matched

as in Figure 3.4. Due to various types of errors, the endpoints of projected landmark

vectors would not converge to a single point, but rather havesome errors. The distance

estimation process can be affected by the accuracy of perceived landmark bearings

and while the agent moves one step forward to take two snapshots, the moving distance

might have odometry errors. These errors can be reduced by eliminating some outliers,

which diverge from the rest of the points in serious amount and averaging the endpoints

of projected vectors. Our proposed navigation method leadsthe agent to home by

applying the method repeatedly. Moreover, we will show thatthe navigation method

can still operate within some error bound in real robotic experiments.

Once the right head direction of the agent is determined, we can project the landmark

vectors into the reference map in the correct order, and localize the agent in the refer-

ence frame. While the previous landmark vector models such as ALV and ACV are

capable of computing only the homing direction, the DELV method provides the in-

formation on the current location, with some errors, and enables the navigation even in

the absence of a compass.

3.3 Mathematical description

The proposed DELV method exploits the rotational arrangement matching procedure

without a reference compass. Rotational arrangement matching projects the perceived

landmark vectors into the reference map by searching head orientation, and estimate

the current position of the robot. The algorithm of the DELV method can be summa-

rized in Algorithm 1-3: Algorithm 1 is used for initialization, Algorithm 2 is the main

function, and Algorithm 3 determines the homing direction.

In this section, we describe this procedure mathematicallyand analyze its convergence.

We will show the rigorous analysis on the landmark vectors and suggest that the ALV

model can be represented as a variation of the DELV method with the level-1 quantized

distance information. Following the convergence proof of the ALV method presented

by Möller (2000), we also provide the proof of convergence of the movement to the

goal point within the proposed landmark vector method.
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Algorithm 1 Initialization
1: I0← takeSnapshot() //image taken at the nest

2: moveForward(d)

3: I1← takeSnapshot()

4: LVre f ← estimateDistance(I0, I1) //landmark vectors in the reference map

Algorithm 2 Homing
1: Initialization

2: loop

3: I0← takeSnapshot() //image taken at the nest

4: moveForward(d)

5: I1← takeSnapshot()

6: LVnew← estimateDistance(I0, I1) //landmark vectors in the reference map

7: h←matching(LVre f ,LVnew) //determine homing directionh

8: turn to the homing direction (h)

9: end loop

3.3.1 Landmark matching in the arrangement order

Landmark arrangement matching requires two steps: the firststep is to create a refer-

ence map at the beginning of the exploration, and the second is to project the currently

received landmark vectors into the landmarks in the reference map in order to obtain

an estimate of the current position. The correct heading direction and the landmark

arrangement order is obtained by computing the variance of estimation of the located

position. The landmark vector is a vector pointing to the landmark from the current

location. Thus, by projecting the reversed landmark vectorinto the landmarks in the

reference map, the current location can be obtained. Theoretically, this procedure

should return a single point if landmarks in the snapshot image exactly match those in

the reference map. However, due to several noise factors, such as image noise and the

error in the distance estimation process, some deviation may be present. Therefore, we

compute the mean point and the standard deviation of each located position.

The average point of the projected landmark vectors is defined aspk(x) as following

Equation 3.4. The landmark vectors are projected on the reference map with thek-th

arrangement while there areN landmarks available in the environment.
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Algorithm 3 Matching
1: //for all N possible arrangement orders

2: for k = 1 toN do

3: for α = 1◦ to 360◦ do

4: pk← LVPro jection(LVre f ,LVnew,α,k)

5: if convergence(pk) < convergence(pmin) then

6: //compare variance of the convergence points

7: pmin← pk //find the location with appropriate arrangement of minimum

variance

8: αmin← α //find the head orientation with minimum variance

9: end if

10: end for

11: end for

12: return[pmin,αmin]

pk(x) =
1
N

N

∑
i=1

[

VR
i (xo,αr)−Vk

i (x,α)
]

(3.4)

where x= (x,y) is the current position of a robot, xo = (xo,yo) is the homing location,

the head orientationsα andαr are at the current location and in the reference map,

respectively.VR
i (xo,αr) is the landmark vector for thei-th landmark in the reference

map, andVk
i (x,α) is thei-th landmark vector with the matching orderk at an arbitrary

location x whilek is one ofN possible arrangements based on the rotational matching.

As a result,pk(x) represents the estimated current position relative toxo.

This matching process will be tested by the rotational shiftof landmarks in the refer-

ence map, that is, only by changing the arrangement order of landmarks in sequence

resulting inN possible arrangements. Since a linear order of landmarks byrotational

shift reduces the computation time maintaining performance level, we do not consider

all the permutations of landmark ordering.

We find the best matching order and head orientation[z,αz] based on the convergence

criterion with the equation:

argmin
k,α

[

∑N
i=1

[

VR
i (xo,αr)−Vk

i (x,α)− pk(x)
][

VR
i (xo,αr)−Vk

i (x,α)− pk(x)
]T

]

(3.5)
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The inner product of two vectors,
[

VR
i (xo,αr)−Vk

i (x,α)− pk(x)
]

and its transpose

leads to the variance of the endpoints of projected landmarkvectors. The arrangement

is found with minimum variance of the vector sum. This shouldbe run for all possible

linear orders of arrangements and possible head angles. In our experiments, an angular

resolution of 1◦ for head orientation angles were tested.

We can project landmark vectors in an appropriate order and determine the mean point

pz(x) as the estimated location of the agent relative toxo with appropriatez. In the

equation,z is the matching arrangement which yields the best convergence of end

points of the projected landmark vectors, andαz is the head orientation angle with the

convergence point.

pz(x) =
1
N

N

∑
i=1

[

VR
i (xo,αr)−Vz

i (x,αz)
]

(3.6)

Thepz is the vector pointing from home to the estimation of the current location. Thus,

the homing vectorH(x) is negative ofpz and can be written as:

H(x) =
N

∑
i=1

[

Vz
i (x)−VR

i (xo)
]

=
N

∑
i=1

Vz
i (x)−

N

∑
i=1

VR
i (xo)≃ xo−x (3.7)

where the first term is the sum of landmark vectors in a new snapshot image and the

second is that in the reference map (we use the sum of vectors for the homing vector

instead of the average for convenience). However, we have noprior information of

the current position x, and insteadpz(x) can be used for an estimate of homing vector,

Ĥ(x).

Ĥ(x) =
N

∑
i=1

[

Vz
i (pz(x))−

N

∑
i=1

VR
i (xo)

]

≃−pz(x) (3.8)

Interestingly, the two terms in Equation 3.7 can be interpreted as the average landmark

vector (ALV) suggested by Lambrinos et al. (2000). In the ALVmodel, two averaged

vectors at the current location and at the home location can produce the homing vector

while the DELV method uses similar process, but with the distance estimation involved

in each landmark vector. In the ALV model, every landmark vector has the same unit

length, regardless of the distance from the agent. In our proposed DELV method,
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Figure 3.6: Visualization of the (a) DELV and (b) ALV model in same environment. In (b),

landmark vectors are represented as dashed arrows, and solid arrows are the average

landmark vectors. The large thick solid line arrow is the homing vector (Adapted from

Yu and Kim (2011b)).

the distance estimation is applied to the landmark vectors so that distant landmarks

have longer landmark vectors. The difference in representation of landmark vectors

is illustrated in Figure 3.1. In the ALV model, all trajectories converge to the target

location for homing navigation (Möller, 2000) and following a similar procedure, we

show the global convergence in our distance estimation model.

3.3.2 The DELV method and the average landmark vector (ALV)

model

By introducing landmark vectors with continuous distance to the unit-length landmark

vector model, we can see the effect of distance quantizationprocess for a simple rep-

resentation of the reference map and landmark vectors.

Figure 3.6 (b) illustrates the homing mechanism of the ALV model. A unit vector is

aimed at each landmark from the current location while landmark vectors in Figure

3.6 (a) have different lengths.N landmarks are represented by the landmark vectors

Vi , wherei = 1,2, ...,N. The sum of the landmark vectors is stored as the ALV. For a

current position vector x, the landmark vectorVi with unit length is:
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Vi(x) =
Li−x
‖Li−x‖

(3.9)

and when the distance estimation is included as well, the landmark vector is repre-

sented as

LVi(x) = Li−x (3.10)

The average landmark vector is

ALV(x) =
N

∑
i=1

Vi(x) (3.11)

The ALV method estimates the average landmark vector from the snapshot image of

a given location of the mobile robot. The homing vector from an unknown location

x = (x,y) directed to the home point xo = (xo,yo) is obtained by subtracting the average

landmark vector at xo from that at point x as follows:

H(x) = ALV(x)−ALV(xo) (3.12)

In order to show the convergence of the homing vector in the ALV model, the potential

function is derived Möller (2000). The homing vector can berepresented by a gradient

of the potential as

H(x) =−▽U(x) (3.13)

whereU(x) = ∑N
i=1Ui(x) with

Ui(x) = ‖Li −x‖−
Li−xo

‖Li−xo‖
· (Li−x).

whereLi = (xi ,yi) and x= (x,y).

To find the minimum ofU(x), we use the determinant of the Jacobian matrix:

D = UxxUyy−U2
xy

whereUxx= ∑N
i=1(yi−y)2/||Li−x||3,Uyy= ∑N

i=1(xi−x)2/||Li−x||3, andUxy=−∑N
i=1(xi−

x)(yi−y)/||Li−x||3. Thus, we obtain

D =
N

∑
i=1

N

∑
j=1

(yi−y)2

‖xi−x‖3
(x j −x)2

∥

∥x j −x
∥

∥

3 −
N

∑
i=1

N

∑
j=1

(xi−x)(yi−y)(x j −x)(y j −y)

‖xi−x‖3
∥

∥x j −x
∥

∥

3

=
N−1

∑
i=1

N

∑
j=i+1

((xi−x)(y j −y)− (x j −x)(yi−y))2

‖xi−x‖3
∥

∥x j −x
∥

∥

3 (3.14)
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Based on the equation, it is alwaysD(xo) > 0, Uxx(xo) > 0, and▽U(xo) = 0 since

H(xo) = 0. Finally,U(x) has the minimum value at the point xo.

Similarly, convergence in the proposed landmark vector method with continuous dis-

tance can be shown. Since the landmark vector is not restricted to the unit length,

Equation 3.7 can be rewritten to represent the homing vectoras

H(x) =
N

∑
i=1

Vz
i (x)−

N

∑
i=1

VR
i (xo)≃

N

∑
i=1

[Li−xo− pz(x)]−
N

∑
i=1

[Li−xo]

=
N

∑
i=1

[−pz(x)] (3.15)

Assuming that the current location and the head orientationare estimated accurately

through the matching process, the homing vector is a gradient of the potential as

H(x) =−▽U(x) and

Ui(x) =
1
2
||Li−x||2− (Li−xo) · (Li−x) (3.16)

We obtainUxx =
[

∑N
i=1

(1
2

(

(xi−x)2 +(yi−y)2
))]

xx =−1,Uyy =−1 andUxy = 0.

Therefore,

D = UxxUyy−U2
xy = (−1)2−02 > 0

The equations confirm the convergence of the homing vector inthe landmark vector

model with continuous distance withD(xo) > 0,Uxx(xo) > 0, and▽U(xo) = 0.

The mathematical convergence presented in this section is apurely theoretical ap-

proach to the homing navigation. The error in head directionestimation, landmark

segmentation, or occlusion problem would affect the performance.

Now we introduce the quantized distance estimation insteadof the continuous distance

scheme, that is, the discretization of distance into a coarse resolution. The discretized

distance changes the representation of landmark vectors inthe mathematical descrip-

tion. Contrary to the case of continuous distance, the landmark vectors in the dis-

cretized distance do not represent the actual distance to the landmark any more. For

example, with two level discretization, the landmark vector can be represented as:

LVi(x) =







a
2

Li−x
‖Li−x‖ if ‖Li−x‖ ≤ a

2

a Li−x
‖Li−x‖ if ‖Li−x‖> a

2

(3.17)
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Since the distances are discretized relative to the preset valuea, the discretized land-

mark vector is effectively a scaled version of the unit length landmark vector shown

in Equation 3.9. Therefore, a series of homing vectors obtained by the discretized

landmark vector method also converge to the home point xo in the same way as the

procedure described above.

3.4 Summary of Chapter 3

This chapter suggests a new algorithm, the distance-estimated landmark vector (DELV)

for homing navigation. While it takes the concept of landmark vectors used in the pre-

vious models, the method is markedly different from its predecessors in taking account

of the distance information merged into the vector. The distance to the landmark is es-

timated by the angular shift from the one step movement of theagent based on the

omni-directional snapshot image. Landmark vectors obtained at the target location

are stored as a reference map, which is used to localize itself and determine the hom-

ing direction. Consequently, the DELV method can match correspondence between

the current landmark vectors and those in the reference map even without a reference

compass. The arrangement matching of landmark vectors enables the agent to deter-

mine an appropriate landmark correspondence as well as its heading direction. The

overall procedure is described in a mathematical form alongwith the investigation of

the convergence characteristics. The performance of our proposed method is given in

the following chapters.





Chapter 4

Navigation performance

In this chapter, we present the navigation performance of our proposed method. As-

suming that landmarks have no distinctive features, we carry out a simple landmark

arrangement search to determine the homing direction, which is also effective even

when the discretization of distances is applied.

The experiments are conducted in both computer simulationsand robotic experiments.

In the landmark configuration of robotic experiments, the mobile robot is able to cap-

ture snapshot images through the omni-directional camera and determine the homing

direction by processing the landmark information from the images. The environment

for simulation experiments were set similar to that of a real-world robotic experiment.

For the simulation experiment, a various types of landmark configurations are tested

and results were analyzed. In this chapter, the performanceresults of the DELV method

are compared to those of a image-based navigation method of the predictive image-

matching method suggested earlier by Franz et al. (1998). According to the clas-

sification which we introduced in Chapter 2, the predictive image-matching method

is a holistic method while our DELV method can be classified asa landmark-based

method. However, since the DELV method is able to operate without any reference

compass information, we compare the results with the navigation method within the

same condition. Since the reference compass is required necessarily for many exist-

ing landmark-based homing navigation methods, we also givethe comparison of the

reference-compass-enabled DELV method in Chapter 5.

First, we discuss the results of our newly suggested DELV method on its own (Yu and

Kim, 2011c). Applying the quantized distance scheme, we examine the sensitivity of

39
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the method on the accuracy of the estimated distances (Yu andKim, 2011d). Since

animals as well as humans might perceive the distance in a relative sense rather than in

the absolute values, the quantization in several levels is also proper for the bio-inspired

navigation model. The results are then compared to those from the predictive image-

matching method. Robotic experiments were conducted in twodifferent environments,

one with artificial landmarks (Yu and Kim, 2010b) and anotherin the unstructured

environments with natural landmarks (Yu and Kim, 2011d). The analysis of the results

from experiments can be expressed in mainly two different forms, a homing vector

map and a success rate in homing. The data include a vector map, angular errors,

and the success rate of returning home accurately or the catchment area. The detailed

criterion is described along with the results.

4.1 Performance evaluation

The performance results of our method are compared to other navigation method in

various perspectives. Image-based navigation methods, classified as holistic methods,

determine homing direction based on the image differences and usually does not re-

quire any reference compass information. The difference orimage distance between

a pair of images taken at different locations increases whenthe distance between the

locations increases (Zeil et al., 2003), and as a visual homing method, descending in

the image distance measure will lead an agent to the goal location (Möller and Vardy,

2006). Similar visual homing approaches calculate the direction of movement based

on the intensity of each pixel in the image (Möller, 2009; Stürzl and Zeil, 2007; Zeil

et al., 2003).

In this paper, the performance results are compared to the predictive image-matching

method suggested by Franz et al. (1998) which is one of the most famous image-based

homing navigation methods. As in the chapter introducing backgrounds of vision-

based navigation methods, the method by Franz et al. (1998) can be classified as holis-

tic method. The predictive image-matching method of Franz et al. (1998) determines

the direction of movement by comparing a snapshot taken at home location with the

predicted image at the current location. The mobile robot creates a prediction image by

estimating the landmark movement as the robot moves in each direction. Comparing

predicted images with the image taken at the target location, the image with the least

discrepancy in the size and bearing of landmarks is chosen asthe direction to move.
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Figure 4.1: Description of the predictive image-matching method (Franz et al., 1998);

(a) the possible directions of movement for the agent and (b) the prediction of the cap-

tured image for each corresponding direction of movement (Reprinted from Yu and Kim

(2011c)).

The predictive image-matching process is described in Figure 4.1. The broken line

arrows diverging from the agent in Figure 4.1 (a) indicate possible directions to move,

and the number of directions determines the resolution of the prediction step. Figure

4.1 (b) shows predicted images for 8 possible moving directions. The predictive image-

matching algorithm assumes equidistance for every landmark, which does not reflect

real situations. This is an egocentric model of the vision-based navigation system and

the method is in good accordance with the real method that theinsects and animals use

to recognize the environment. The pixel-based image matching method has advantages

in that it does not require a landmark segmentation procedure or a reference compass.

The method provides a robust homing performance without a reference compass as

it is based only on visual information without any additional information. Since the

method does not require reference compass, it is a competitive navigation method with

fine performance. However, the predictive image matching method is extremely sen-

sitive to the captured image of the surroundings and the number of landmarks in the

environment. With few landmarks in the snapshot image, there is a high probability

that the robot could misjudge its direction to home while therobot cannot distinguish

and recognize the individual landmarks.
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4.2 Simulation experiments

In this section, we provide the simulated robotic experiments results of the DELV

method without a reference compass. In DELV, we use the rotation of landmark ar-

rangement to localize the robot in the reference map insteadof the reference compass.

For the simulation of robotic navigation, we set the experimental environment as a

square ing of landmarks of different sizes and distribution. The center of the area is

marked as home of the mobile robot and so served as the start and returning point. It

is assumed that the robot can take an omnidirectional view oflandmarks around the

agent and estimate the landmark distances with it egomotion. The robot determines

the direction of movement using a set of landmark vectors. The arrow in the vector

map indicates the movement direction at each point. The difference between the angle

of the arrow in the vector map and a straight line drawn from each point to the goal

was regarded as the angular error. The angular error graphs show errors with respect

to the distance from home, one of the criteria for assessing the performance of each

navigation method.

Three types of assessments are given. The first is the vector map (see Figure 4.2),

which consists of arrows at every location to indicate the homing direction. If the

arrow points directly to the goal location, it has zero angular error, while the error

increases as the arrow deviates from the desired direction.The error is plotted as an

angular error graph. The error graphs are shown as mean values (see Figure 4.4). At

each distance, the mean of the errors was calculated. The error bars indicate the mean

values and thet-distribution deviations at the 95% percent confidence level. The third

performance assessment is the success rate represented as catchment area as shown in

Figure 4.5. The mobile robot heads home from an arbitrary location, and the success

rate is the number of trials in which the robot returns home within a certain time limit.

Vector maps graphically represent the computed homing vector results for a set of grid

points. For a comparison in various environments, three types of landmark environ-

ments were constructed. All three environments contain four cylindrical landmarks but

with different sizes and angular positions. The first environment is shown in Figure 4.2

(a). Four landmarks are asymmetrically surrounding the home location at (500,500) in

environment 1. The environment 2 has a uniform distributionof landmarks (Figure 4.2

(b)). Since there are four landmarks surrounding the goal location, the bearing angle of

each landmark, as seen at the goal location, differs by 90◦ from that of its neighboring
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Figure 4.2: Vector map with the DELV method applied in three different environments:

(a) environment 1, (b) environment 2, and (c) environment 3.
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Figure 4.3: Spatial errors in homing vector; Marker of each point indicates the amount

of angular error (�: less than 45◦, ⋆: between 45◦ and 90◦, and △: greater than 90◦)

with corresponding vector maps in Figure 4.2.

landmark. The third environment contains an asymmetric distribution of landmarks.

As seen in Figure 4.2 (c), all four landmarks in the third environment are cornered

to one side of the home location. These tests in three different environments assess

the effect of landmark distribution. From Figure 4.2, we could see that the method

performs perfectly when landmarks surround the goal point.Outside of the convex

hull of landmarks, some points show errors in decided homingdirection, however, not

severely affecting the performance level. A quantitative representation of the perfor-

mance comparison can be obtained from the spatial error graphs in Figure 4.3 and error

graphs in Figure 4.4.

The spatial error graphs corresponding to the vector maps inFigure 4.2 are shown in

Figure 4.3. We classified the homing vector result at each point into three categories
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Figure 4.4: Error graphs for the DELV results in three different environments 1, 2, and

3 shown in the vector maps in Figure 4.2.

based on the amount of angular error, which defined as the difference between the

decided homing direction and the angle of a desired straightline from the current

location to the home location. The points indicated with dots(�) have small errors (less

than 45◦), while the points represented as stars(⋆) have errors greater than 45◦ but

less than 90◦. Finally, points with angular errors greater than 90◦ are indicated with

a triangle(△). The spatial graphs in Figure 4.3 show the angular error pattern in the

spatial map. It shows that the DELV method work effectively in all three environments.

Another focus of this study is to investigate the homing paths for the landmark-based

homing methods, which is the goal of homing algorithms. The homing ability, to

accurately return to home location, is more important than angular error, although the

angular error indirectly influences the homing performance. The actual homing ability

can be affected by various conditions such as trap points, attractors, and obstacles. The

catchment area is defined as a region from which an agent or a robot can ultimately

return to the goal point. That is, starting from a point outside of the catchment area,

the agent would not be able to reach home. Instead, the agent would be stuck in some

single location or would circle around a certain region, known as trap point. Even

though the vector map results reveal a sufficiently low number of error points, even

a few trap points can keep the agent from moving toward the goal location and thus,

degrade the homing performance.
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Figure 4.5: Catchment area with vector map for each environment. (a) 98.52%, (b)

95.41%, and (c) 77.66% of the environment. The squared region indicates that the

corresponding point is inside the catchment area.

Based on the results of angular errors and catchment area, the DELV shows good per-

formance in various environments. Although it seems to be affected by the distribution

of landmarks, they show sufficient level of success rate in homing.

We constructed a landmark map by estimating the distance to every landmark by mov-

ing the robot one step forward with moving distanced and observing the image shift.

As the distance estimation of a landmark is affected by the accuracy of the image shift

(see Equation 3.2), the distanced of one step can be a controlling factor in the method.

The landmark arrangement in the current environment is compared with that in the ref-

erence map. Then the agent determines the moving direction to the goal point. Figure

4.6 shows vector maps in which arrows represent the moving directions chosen by the

mobile robot at each location. Four vector maps show resultswith varying distances

d, but there are no significant difference among the vector mappatterns. This indicate

that a set of landmarks collectively determine the homing direction, and the resolution

of the image shift for a single landmark is not important in our approach.

Figure 4.7 shows the averaged angular errors for vector map results shown in Figure

4.6. The angular errors do not differ by a large amount with varying moving distances

d. This shows that the moving distance rarely affects the performance of the method.

Through several tests in various environments,d = 50cm is chosen for good perfor-

mance in the environment for a robot size about 15 cm in diameter. As the vector map

results in Figure 4.6 with respect to the moving distance show very similar patterns

in terms of homing performance, the angular errors are not critically affected by the

moving distanced in our experiments. Smallds might have a slight improvement in



46 Chapter 4. Navigation performance

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

(a) (b)

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

(c) (d)

Figure 4.6: Vector map with the landmark arrangement matching method with different

moving distance d: (a) d = 20, (b) d = 50, (c) d = 100, and (d) d = 150.

the variance of the error or the angular error itself, but theoverall performance in the

homing direction has similar patterns. To accurately sensethe image shift, it is ad-

vantageous to increased, which can lead to a clear difference between snapshots and

thus reduce the estimation errors. However, if a very large moving distance is applied,

it could be inconvenient in navigation finding the actual home location and also more

vulnerable to the odometric errors.

Figure 4.8 displays the vector maps of environments with various landmark configura-

tions and number of landmarks according to the suggested method. As the simulation



4.2. Simulation experiments 47

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

A
ng

ul
ar

 d
iff

er
en

ce
(o )

Distance from home

 

 

d=20
d=50
d=100
d=150

Figure 4.7: Performance of the DELV method with varying moving distances in angular

error graphs. Corresponding vector map results are in Figure 4.6.

results show, the method can effectively operate in the environments with asymmetric

and unbalanced distribution of landmarks and various landmark numbers as well. The

number of landmarks varies from 3 to 5, and they are arbitrarily positioned. Figure 4.8

(f) shows the angular error graphs of three examples shown inFigures 4.8 (b), (c) and

(e). At a distance far from the nest, the angular errors are large but still smaller than

90◦. We predict that the agent will be able to return home successfully in this situation.

We now compare our method with the predictive image-matching method. In the pre-

dictive image-matching method shown in Figure 4.9 the homing direction is computed

with a method suggested by Franz et al. (1998) and also investigated in the work of

Möller (2009). In the simulation, first the 1-dimensional snapshot of the environment

is taken at home location and stored as the reference image. The size of the image is

360 pixels in width which leads to 1◦ of resolution of the snapshot. Taking snapshot,

the landmarks are marked in the omni-directional image as inthe DELV method shown

in Figure 3.1 (a), however, the difference is that the agent does not set landmark vectors

for each landmark but instead treat every pixel in the snapshot individually. At an arbi-

trary point, the agent takes a snapshot image, and the image is warped with parameters

α,ψ, andρ. The parameters are used as same as it has been mentioned in previous

works (Franz et al., 1998; Möller, 2009). Theα is the difference between previous

heading direction and the moving direction,ψ is the difference in heading directions
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Figure 4.8: Vector maps and angular error performance; (a)-(e) vector maps with the

suggested DELV method in environments of various landmark distribution and (f) error

graphs for vector maps in (b), (c), and (e).
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Figure 4.9: Vector maps; (a) the DELV method and (b) the predictive image-matching

method (Adapted from Yu and Kim (2011c))
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Figure 4.10: Performance comparison of (a) error curves of angular difference for the

DELV method and predictive image-matching method and (b) the success rate among

100 trials with respect to the distance from home without a reference compass (Adapted

from Yu and Kim (2011c))

of two views andρ is the relative distanceρ = d/r while assuming all landmarks to

be in the same distancer from the current snapshot location. Bothα andψ had 72

steps, which is a 5◦ resolution in the range of 0◦ to 360◦ and 15 steps were used forρ
ranging from 0.1 to 0.8 for every 0.05 step. Using these parameters, a set of distorted

image would be produced and by searching the smallest distance with the reference



50 Chapter 4. Navigation performance

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

★

★

★

★

★

★

★

★

★

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

★

★

★

★

★

★

★

★

★

★

(a) (b)

Figure 4.11: Trajectories of a mobile robot at the same starting points for applying each

(a) DELV method (d = 50) and (b) predictive image-matching method. Black stars

indicate starting points. (Adapted from Yu and Kim (2011c))

image, the best matching parameters were selected. Each warped image is compared

to the reference image by computing the distance between images. In the experiments,

the distance is measured with the absolute of the differencebetween snapshot intensity

values.

The vector maps for DELV and predictive image-matching method in same environ-

ment are given in Figure 4.9, and Figure 4.10 (a) shows the angular errors for both

methods. The DELV method suggested provides significantly smaller angular errors

than the predictive image-matching method do. This result indicates that the suggested

method has a higher probability of resulting in a successfulreturn to home. In fact,

the DELV approach rarely fails in homing and shows high success rate for almost ev-

ery case, irrespective of the distance from the release point to the nest. This result is

shown in Figure 4.10 (b). Thus, the DELV method is more suitable for homing naviga-

tion than is the predictive image-matching method. Figure 4.11 shows the trajectories

of robot navigation for our approach and the predictive image-matching method when

the mobile robot is released at an arbitrary location with a random heading direction.

From the same release points, the robot shows different performances based on the

homing method used. The predictive image-matching approach often has difficulty in

locating the nest when the robot is in the outer zone of the landmark convex hull. The
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main reason for failure in agent movement with the predictive image-matching method

is a convergence problem to a landmark. This is due to the process in which the agent

tries to maximize the matching score between images. However, if the agent moves ex-

tremely close to the landmark, the size of the landmark in view would be large enough

to make matching score sufficiently large to move toward. Dueto errors in the vector

map shown earlier, in Figure 4.9, a ‘trap point’ may be generated, which prevents the

agent from moving toward appropriate direction to home.

Our suggested method determines the goal point with a success rate greater than 90%

(see Figure 4.10 (b)). For the suggested landmark-matchingmethod, the worsening

performance at a far distance from the nest is related to the occlusion of landmarks. If

the agent is surrounded by landmarks, that is, inside the convex hull of landmarks, it

can easily localize itself in the environment using the landmark arrangement. When the

agent leaves the landmark-surrounded area, however, a landmark may be occluded be-

hind another landmark close to the agent or more than one landmark can be overlapped

in the view, both of which can influence the landmark arrangement-matching process.

This result is also supported by the spatial error graphs in Figure 4.3. The amount of

error inside the landmark surrounded-area is almost zero, while the point with errors

are main located outside the area, where the agent might not see every landmark in itw

view.

4.3 Simulation experiments: with quantized distance

The results of DELV with quantized distance is shown in this section as vector maps,

angular errors and catchment area. As in the previous chapter, since the ALV model

cannot operate without a reference compass, we cannot compare these results with

those of the ALV model directly. Instead, we compare them to the pixel-based image

matching method suggested by Franz et al. (1998) in this chapter as well. The vector

maps shown in Figure 4.12 were obtained using the discretized DELV method without

a compass. The arrows indicate the movement direction as determined by the algo-

rithm. The landmark distance quantization levels in Figure4.12 (a) to (c) are 3 to 5,

respectively. The discretization levels slightly influence the homing directions, but still

show good performance. As in the case with continuous landmark distance, the land-

mark arrangement with rotational shift does not guarantee 100% matching between

landmarks from different view. There can be error in landmark arrangement matching,
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Figure 4.12: Vector map with the DELV method with different quantization levels of the

landmark distance: (a) level 3, (b) level 4, and (c) level 5 ( : actual and # : perceived

location of landmarks).
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Figure 4.13: Error curves and success rate: (a) error curve results by applying DELV

with quantized distances of level 1 to 5 of the corresponding vector map results in Figure

4.12 and (b) success rate for each method

thus in homing vector due to the occlusion of landmarks or theperception of horizon

problem.

Figure 4.13 (a) shows the angular errors between the algorithmically determined hom-

ing direction and the desired direction. The error graphs are shown for DELV with

1, 2, and 5 levels of quantization compared to the predictiveimage-matching method.

This error may be unavoidable with the lack of a compass, but as can be seen in Fig-

ure 4.13 (a), the error mostly remains less than 30 degrees. Interestingly, the angular

errors do not change much depending on whether continuous ordiscretized distances
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are applied.

The agent does not know its actual heading direction withouta reference compass. Al-

though we show vector maps in Figure 4.12, the trajectory results can vary depending

on the heading direction of the robot and its egomotion. Therefore, another criterion

is required to compare performances, and the catchment areain Figure 4.12 and the

success rate in Figure 4.13 (b) show the percentage of successful return trips. The

catchment area shown in Figure 4.12 along with the vector mapshows the region of

starting points at which the agent can return home successfully. The point with no

squared boundary is outside the catchment area. For the success rate graph in Figure

4.13 (b), a trial was regarded as a success if the mobile robotreached home and was

counted as failure if it became stuck or continually circleda location that was not the

home point. The success rate indicates the number of successful homing out of 100

trials. The agent starting explore from the nest is removed and placed at a random

location with a random heading direction. The agent then attempts to return home by

applying one of the navigation methods. Here, if a robot returned to its home location

from a random position within 50 movements, it was considered successful. We as-

sumed that 50 movement steps were sufficient to return to the home location and 50

iterations of the landmark vector calculation had been applied for each starting posi-

tion. The main cause of the failure in homing was being stuck in certain location, the

‘trap point’ and continually circling a location due to errors in homing vector decisions.

The suggested algorithm with quantized distance applied has been tested with different

numbers and configurations of landmarks. Figure 4.14 shows the vector map results of

the environment with three to five landmarks in different distribution. Landmarks in

Figure 4.14 (a) surrounded the home location with equally distributed angular position,

on the other hand, in Figure 4.14 (b) the home location is slightly outside the convex

hull of the landmarks. The homing vector results show low angular errors in various

environments, with slightly smaller error if the landmarkssurrounded home location

perfectly as in (a). Therefore, it is important to select landmark features surrounding

the home location in the environment if the mobile agent can select landmarks at the

start of the exploration. By choosing the landmark featuresaround the home location,

the suggested method could yield better performance.
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Figure 4.14: Vector maps and angular error performance for quantized DELV: (a)-(e)

vector maps with the suggested DELV method with quantization level 3 in environments

of various landmark distribution and (f) error graphs for vector maps in (a), (d), and (e).
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(a) (b)

Figure 4.15: Mobile robot and its environment: (a) an experimental environment with

four cylindrical landmarks and the (b) ROOMBA robot with an omnidirectional camera

on top. (Reprinted from Yu and Kim (2010b))

4.4 Robotic experiments

We showed simulation experiments and the performance evaluation of our tested ap-

proach in real robotic experiments. Further, in this section, we show the results of real

robotic experiments along with the description on the experimental environment and

the mobile robot.

4.4.1 Results with artificial landmarks

In this experiment, ROOMBA, the mobile robot is used to test the homing navigation

methods. ROOMBA is a typical mobile robot with two wheels andits movement can

be controlled with simple commands. Figure 4.15 (a) and (b) show the robot and the

environment with four landmark objects, respectively. An omnidirectional camera is

mounted on the ROOMBA robot, and a laptop computer processesthe captured images

from the camera to determine the moving direction. The diameter of the mobile robot

is 32cm, and the omnidirectional camera is placed on top of the robot, which is 25

cm above the floor. The robot can rotate, move forward and backward with simple

commands. Four landmarks are red-colored cylindrical objects, and the experimental

environment has a total area of 1.8 meters by 1.8 meters.

We tested the homing navigation of a mobile robot in a real environment in which
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(a) (b)

Figure 4.16: Omnidirectional camera and the captured image: (a) camera on the robot

and (b) the snapshot taken with the camera at home location (Reprinted from Yu and

Kim (2011c))

(a) (b)

Figure 4.17: Panoramic snapshot image and landmark detection: (a) panoramic im-

age converted from the omnidirectional snapshot image as Figure 4.16 (b) and (b) the

landmark represented as white area (Adapted from Yu and Kim (2010b))

red-colored objects were discriminated from the background image and marked as

landmarks in the omnidirectional ring. Figure 4.16 (b) is anomnidirectional snapshot

image taken from the camera on the mobile robot, and by converting it, we obtain

a panoramic environment snapshot image Figure 4.17 (a). In order to simplify the

landmark detection procedure and focus on the performance evaluation of the image-

based homing navigation methods, we set red cylindrical objects as landmarks. Based

on the predetermined threshold HSV values of each pixel, landmarks could be easily

detected. The result in detection of red color region is shown in Figure 4.17 (b). Based

on the red-color detected panoramic image, we created one-dimensional ring image by

slicing the image of 10 pixels height and averaging vertically. The slicing height is

appropriately predetermined considering the height of theomnidirectional camera on

ROOMBA.

The one step movement of robot for egomotion is 20 cm. The image shifts resulting
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Figure 4.18: Vector map obtained in the mobile robot experiments (a) with the DELV

method (adapted from Yu and Kim (2010b)) and the (b) predictive image-matching

method. The dots indicate the direction of decided homing vector.

from the egomotion determined the landmark distances, and then landmark arrange-

ments at the current location were projected onto the reference map. The vector map

and the angular error results of the robotic experiments areshown in Figure 4.18 and

Figure 4.19. Figure 4.18 (a) is the vector map results of DELVin robotic experiments

with snapshot images and (b) is that with the predictive image-matching method. The

points with no arrows but dots in the vector map are those where the agent could not

take the snapshot due to the collision with landmarks. We compared the performance

of the results as angular error graphs in Figure 4.19. The angular errors of DELV in

real environment were greater than those in the simulation environments, most likely

due to the landmark detection error from the snapshot images. However, the method

still showed good performance in terms of returning to the target location because the

angular errors were relatively small to allow for navigation to the nest.

For quantized distance applied DELV method, we also conducted robotic experiments

with artificial landmarks. The experimental environment isas same as those shown

in Figure 4.15. Since the navigation method computes the homing direction at each

location based on the landmark information in images, we usethe set of snapshot

images taken from the environment at uniform grid points. The moving distance for

the one step movement in DELV method is 20cm, and snapshots were taken for every
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Figure 4.19: Error graphs of the DELV and predictive image-matching methods based

on the vector map in Figure 4.18 (Adapted from Yu and Kim (2010b)).
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Figure 4.20: Vector map with the DELV method with different quantization levels of

landmark distances; (a) level 1, (b) level 4, and (c) level 5.

20cm point in the squared environment of size 1.8m by 1.8m.

Vector maps in Figure 4.20 show homing vector results of DELVmethod with distance

quantization of level 1, 4, and 5, respectively. White circles indicate the perceived land-

mark position with the quantized landmark distance while black circles are the actual

landmark position. For example, in Figure 4.20 (a), landmarks are considered to be

in same distance from the agent due to quantization level 1. Distance of landmarks in

Figure 4.20 (b) are quantized into four levels, and one at thebottom-right is perceived

to have larger distance which does not appear in the arena. Landmarks with quantiza-
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Figure 4.21: Error curves results applying DELV with quantized distance of level 1, 2,

and 5 of corresponding vector map results in Figure 4.20

tion level 5 shows close approximation between perceived and actual landmarks as in

Figure 4.20 (c).

Since the robotic experiments have additional cause of errors, the vector maps along

with the angular error graphs (Figure 4.21 show larger errorthan those of the simu-

lation experiments. The results of robotic experiments canbe affected by errors in

landmark position extraction from the image or the odometryerror from the robot

movement. The error level compared to those in Figure 4.19 did not show significant

increase, however, and maintained similar level of errors with respect to the quantiza-

tion level.

Therefore, through the results of robotic experiments, theDELV method with quanti-

zation of landmark distances also showed to be effective when applied to the real-world

robotic system, as well.

4.4.2 Results with natural landmarks

For further verification, we performed robotic experimentsin different environment.

Robotic experiments shown previously were tested in an environment with artificially

set landmarks. To simplify the landmark extraction procedure, we set red-colored
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Figure 4.22: Unstructured environment for robotic experiments with natural landmarks

such as a table, a flower pot and a drawer (Reprinted from Yu and Kim (2011d)).

(a) (b)

(c) (d)

Figure 4.23: Panoramic snapshot images and segmentation of landmarks; (a) and (b)

are panoramic snapshots taken and (c) and (d) show the region of interests by elimi-

nating floor, ceiling and wall. The landmarks are marked as squared regions (Reprinted

from Yu and Kim (2011d)).

cylindrical objects as landmarks (see Figure 4.15 (a)). They help recognize the envi-

ronment and focus on the performance of the suggested navigation method. Now we

test the method in an environment with natural landmarks. Figure 4.22 shows a new

environment for robotic experiment. The environment consists of landmarks including

a table, lecture desk, flower pot, and a drawer. ROOMBA, the same mobile robot intro-

duced in Figure 4.15 (b) with omnidirectional camera, were used to test the navigation

method in the environment.

Previously in the environment with artificial landmarks, the landmarks were detected

based on the HSV level of each pixel, which is based on color information. However,
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Figure 4.24: Vector map and homing path for several points from the experimental

environment shown in Figure 4.22. Landmarks are described as circles and rectangles

in the map showing (a) homing path and (b) homing vector (Reprinted from Yu and Kim

(2011d)).

in the environment with natural landmarks, landmarks cannot be extracted directly

from the snapshot image. In this paper, we applied the mean-shift clustering method

(Comaniciu and Meer, 2002a,b) as a pre-processing of the image, then selected land-

marks based on color information. This procedure is shown inFigure 4.23. The Figure

4.23 (a) and (b) shows a panoramic snapshot image processed from omnidirectional

images obtained. After applying the mean-shift clusteringmethod and eliminating the

backgrounds as floor, ceiling and wall, the remains are now the interesting regions with

possible landmarks. Then landmarks were segmented from thepanoramic image, and

relatively small landmarks were removed with a given threshold. Then the agent can

select landmarks based on color, size, and considering the total number. The selected

landmarks are shown in Figure 4.23 (c) and (d) as squared regions.

The results are shown in Figure 4.24. Circles and rectanglesin the map indicate land-

marks in the testing environment (see Figure 4.22). Home location is marked as small

square at (500,500). The arrows in the vector map indicate the decided direction to

move based on the suggested DELV method. The Figure 4.24 (b) shows four homing

paths, two starting from the upper region, on front he right and one from the lower

point in the map. Due to noise effects and the uncertainty of the type and number of
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extracted features, the vector map and homing path show someerrors, however, the

graph shows that the mobile robot can successfully return home.

In the unstructured environment with natural landmarks, extracted landmarks are not

same in every snapshots. The agent may not perceive exactly the same landmarks

as those in the reference map in the real-world robotic experiments. These affect the

landmark vectors and produce deviation of homing direction. Some points with error

in homing vector in Figure 4.24 are caused by matching different landmarks in two

snapshots. Solving this problem requires further work along with a more sophisticated

landmark extraction technique.

4.5 Summary of Chapter 4

This chapter 4 shows the navigation results of the DELV method along with the com-

parison with the predictive image-matching method. Initially the distance information

in DELV is continuous, then, the quantization of distance isintroduced and applied.

Homing performance were shown in both computer simulation and robotic experi-

ments as vector map, catchment area or success rate. For comparison in various envi-

ronments, several different landmark configurations were tested and the results show

low angular error in homing vector and high success rate in homing. As the landmark

distance is estimated through one step movement of an agent,the moving distanced

can be a controlling factor in the method, and results with different d are compared.

The vector map results showed similar patterns and angular error level and had no

significant influence on the performance with respect to varying d.

The DELV with both continuous and quantized landmark distances show small an-

gular error in homing vector decision and high success rate in homing. The distance

quantization might lead to the degradation in localizationperformance since the lo-

calization in the DELV method significantly depends on the length and angle of the

landmark vector. The larger number of failures in homing resulted from smaller num-

ber of quantization levels leading to error in localization. However, through the land-

mark arrangement and the heading direction matching with landmark vector rotation,

the method determines the homing direction appropriately.Three-level quantization

of each landmark distance is sufficient to guide the robot home in many cases shown.

That is, even a rough estimation or a low resolution of landmark distances can lead to
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efficient homing performance of the method.

In addition, through simulation experiments in various types of landmark configura-

tions environment, the method shows lower angular error in vector map results with

landmarks surrounding the target location. Therefore, if the selected landmarks in

environment surrounds home, the method would perform better.

Comparison to the predictive image-matching method indicated that the suggested

method has a higher probability of resulting in a successfulreturn to home. The land-

mark extraction step is required in DELV method while it doesnot in the predictive

image-matching method, however, the results of accurate homing vector decision and

the higher success rate compensate the additional process.

The method is tested in the robotic experiments in addition to the analysis on simu-

lation results. The simple mobile robot ROOMBA with an omnidirectional camera is

used for the experiment and the landmark environment is composed in two type, one

with artificial landmarks and another with natural landmarks. In robotic experiments,

the method showed good performance in angular error and homing path results, as

well.





Chapter 5

DELV with reference compass

In the previous chapters, we have proposed the DELV method, anew landmark-based

homing navigation method operating without a reference compass, and investigated

its performance in the perspectives of spatial angular error and catchment area along

with the comparison with an image-based navigation method of the predictive image-

matching method.

In this Chapter, we present some experiments of the DELV method with a given refer-

ence compass. In our proposed navigation method, DELV does not necessarily require

the reference compass information. Indeed the method can find the heading direction

through the landmark rotational matching. To demonstrate its capability, we show both

DELV experimental results with and without the reference compass. The results verify

that the method shows a good performance even without a reference compass.

Along with the performance evaluation of the method in angular error graphs and

catchment area, the results will be compared with other landmark-based navigation

method too. In the previous chapter we compared the results of DELV without a ref-

erence compass to those of the predictive image-matching method. In this chapter, we

will make a comparison with the ALV and another method suggested by Hong et al.

(1992) and Weber et al. (1999), which was introduced in Chapter 2. This method com-

putes a correction vector of each landmark pair. By summing all correction vectors,

the agent can find the homing vector to move along. In additionto the concept of

the correction vector initially suggested by Hong et al. (1992), in the work of Weber

et al. (1999), the correspondence matching of landmarks hasbeen simplified and re-

sults were improved as well. The method is similar to the ALV model in a way that

65
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it involves the creation of a unit landmark vector but different that it uses correction

vectors to compute the homing vector. In this paper, we call this method the average

correction vector (ACV) method, since the method computes the homing vector based

on the correction vector of each landmark. The ACV method using the correction vec-

tor, as well as the ALV model, still requires a reference compass information. Thus

its the precision plays an important role in the performanceof the model. The ACV

method was introduced in previous chapter as a method sharing a similar concept of

the landmark vectors. However, due to the different computational method of homing

vector, it requires a reference compass to operate the ACV method. Therefore, it is

legitimate to compare our DELV results including a reference compass with those of

the ACV model in several perspectives. The bulk of this chapter is reported in Yu and

Kim (2011b,a).

5.1 Performance evaluation

In this chapter, we compare DELV with another landmark-based navigation method,

the ACV approach for performance evaluation. The homing algorithm suggested by

Weber et al. (1999) introduces a concept of correction vector. Instead of directly ex-

ploiting the landmark vectors to obtain the homing vector, the correction vector for

each landmark is computed first. The correction vector for each landmark indicates

a direction to move to match the currently obtained landmarkvector to that of the

home point. The correction vectors are then averaged to obtain the final homing vec-

tor. Unlike the DELV method, the landmark vectors are considered as unit vector,

that is, landmark vectors only contain angular information. The correction vector is

defined based on the difference between corresponding landmark vectors from two

snapshot images, and the length of the correction vector is defined as the difference in

paired angles. The angle of the correction vector is perpendicular to the corresponding

landmark vector, and the direction decided by comparing theangles. If the difference

between the angles of paired landmark vectors is large, the agent obtains correction

vector with longer distance, influencing the homing vector to compensate the differ-

ence more. Following Equation 5.1 and 5.2 describe the concept of landmark vector

and homing vector computation for DELV and ACV, respectively and therefore show

the similarity and difference between methods.

In DELV, as described in Equation 5.1, the agent first stores landmark vectors store
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landmark vectorsLVR
i at home location which operate as a reference map for the sub-

sequent homing task. At an arbitrary location, perceived landmarkLVi is projected on

the reference map,LVR
i and the result yields the projected vectorPVi for each land-

mark. Finally, a homing vectorHV is determined by averaging the projected vectors.

Detailed computation is shown previously in Equation 3.4 through Equation 3.8 in

Chapter 3. In this chapter, we only show the simplified version of mathematical de-

scription of the method in order to compare the concept with the ACV model, and the

detailed procedure was given in Chapter 3.

LVR
i = (Ri ,θi) andLVi = (di ,αi)

PVi = LVj −LVR
i

HV = 1
N ∑N

i=1PVi

(5.1)

In ACV method, the correction vectorCV is introduced. Since the landmark vectors

only consist of angular positions of landmarks, differencebetween paired anglesθi

andαi defines the correction vectorCVi. The first equation in Equation 5.2 shows the

representation of landmark vector of ACV in polar coordinate and the second equation

shows the correction vector computation. Finally, the average in correction vectors

define the homing vectorHV.

LVR
i = (1,θi) andLVi = (1,αi)

|CVi|=
∣

∣θi−α j
∣

∣ , ∠CVi =







αi +90◦ if θi < αi

αi−90◦ if θi ≥ αi

HV = ∑N
i=1CVi

(5.2)

The graphical representations in three-landmark environment are given in Figure 5.1.

The dotted arrows indicate the landmark vector perceived atthe home locationLVR
i ,

while the solid arrows indicate new landmark vectorsLVi at the current location to

be compared to the storedLVR
i . While two methods have significantly different types

of landmark vector and procedures to compute homing vector,the resulting homing

vectors in both methods are similar and directed toward home.
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Figure 5.1: Summary of the homing vector (HV) computation in both (a) DELV and

(b) ACV method. Dotted arrows: landmark vectors at home location, solid arrows:

landmark vectors at current location (Reprinted from Yu and Kim (2011b))

Both methods exploit landmark information extracted from asnapshot image, and both

attempt to derive a homing vector in a step-wise fashion via appropriate landmark ar-

rangement matching between a pair of snapshots. The difference between two methods

exist in the procedure for computing the homing vector and the criterion used for the ar-

rangement decision. The DELV and ACV model have different computation methods

in computing homing vector from the landmark information obtained from the snap-

shot, however, since the methods share similar concepts in setting landmark vector set,

we compare the performance of both methods in same experimental conditions. Both

DELV and ACV method requires landmark matching. While in thework of Weber

et al. (1999) suggested various types of landmark matching,only rotational landmark

vector matching is considered in this paper for an appropriate comparison. The ACV

method requires a reference compass for orientation, therefore we compare the DELV

method with reference compass information even though the DELV method is capable

of estimating the current heading direction through landmark vector rotation.

Applying these experimental conditions, we compare the performance of navigation

methods and compare the characteristics in following sections.
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Figure 5.2: Vector map with DELV method applied in three different environments with

reference compass (Reprinted from Yu and Kim (2011b)).
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Figure 5.3: Spatial errors in homing vector. Marker of each point indicates the amount

of angular error (�: less than 45◦, ⋆: between 45◦ and 90◦, and△: grater than 90◦) with

corresponding vector maps in Figure 5.2. (Reprinted from Yu and Kim (2011b)).

5.2 Simulation experiments

The vector maps of DELV method with reference compass is shown in Figure 5.2.

Three different types of environment with different landmark configurations were ap-

plied as in Figure 4.2 for DELV without the reference compass. The spatial error

graphs corresponding to the vector maps in Figure 5.2 are shown in Figure 5.3. We

divided the homing vector result based on three level of angular errors and depicted

the result graphically with dots, stars and triangles in themap.

In Chapter 4, we have shown the results of DELV method withoutthe reference com-

pass in same three environments. Therefore, we compare the results of both DELV

methods with and without the reference compass in angular error graphs. Figure 5.4
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Figure 5.4: Error graphs for DELV results in three different environments 1, 2, and 3

shown in vector maps in Figure 4.2.
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Figure 5.5: Catchment area with vector map for each environment: (a) 92.01%, (b)

97.04%, and (c) 84.91% of the environment. The squared region indicates that the

corresponding point is inside the catchment area (Reprinted from Yu and Kim (2011b)).

depicts the angular error graphs of results shown in Figure 4.2 and Figure 5.2. The

first three graphs with solid lines show angular graphs in three environments for DELV

without reference compass and the last three with dotted lines are the results of those

with the reference compass. Based on the error graphs, the method with the reference

compass shows slightly smaller errors in average, which results from the error in the

heading direction estimation. However, the difference between methods are not as sig-

nificant while other methods show severely degraded performance or are even not able
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Figure 5.6: Vector maps: (a) DELV method (b) ACV method, and (c) ALV model with a

reference compass

to operate when deprived of the reference compass.

The performance of the DELV method can be also shown by catchment area. In Figure

5.5 shows the catchment area with vector map for each environment. The percentage

of the catchment area for each environment is 92.01%, 97.04%, and 84.91% while

those of the results with DELV without reference compass were 98.52%, 95.41%, and

77.66%. In environment 1, shown in Figure 5.5 (a), the DELV method showed even

better performance than without the reference compass using its own rotational match-

ing for heading direction estimation. The level of the catchment area in environment 2

were similar in both cases, but lower in DELV without reference compass for environ-

ment 3. The results imply that for the environment with severe asymmetric landmark

configurations, the heading direction estimation show might lead to more errors than in

other cases. However, The overall level of the methods in both conditions show good

performance.

5.3 Robustness analysis

As we previously compared the DELV method with the predictive image-matching

method suggested by Franz et al. (1998) which also operates without the reference

compass, in this chapter, ACV method is compared for the performance evaluation of

the DELV method with reference compass.

The vector maps for DELV, ACV and ALV methods in same environment are given

in Figure 5.6, and Figure 5.7 (a) shows the angular errors forboth methods. In the
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Figure 5.7: Performance comparison of (a) error curves of angular difference for DELV,

ACV, and ALV method all with reference compass and (b) success rate among 100 trials

with respect to the distance from home with a reference compass
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Figure 5.8: Trajectories of a mobile robot at the same starting points for (a) DELV

method (d = 50), (b) ACV method, and (c) ALV model with starting point indicated

as black stars

vector map results from DELV method, points with error in homing vector, that is,

the deviated homing vector are randomly distributed. In ACVmethod, the vector map

shows some flow in direction of decided homing vector (see Figure 5.6 (b)). Therefore,

the overall homing vector can possess some errors, but the sudden deviation in points

are fewer than that of the results of DELV method. The difference between methods is

also shown in error graphs. As in Figure 5.7, the error level of DELV with reference

compass is smaller than the ACV method in most of the region, but slightly higher in

some. Similarly, comparing the performance with ALV, DELV show smaller angular

error in some regions, but higher in others.
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Success rate in Figure 5.7 (b) indicate the similar level of performance in both methods

as well. The DELV method with reference compass showed little higher success rate

in closer starting points while it decreased for the furtherstarting point cases. Overall,

the navigation method shows similar performance level based on the spatial angular

errors and the success rate in homing task. In addition, to further investigate the char-

acteristics of the homing algorithms, we observe the results of the performance with

respect to the occlusion problem in the following section.

5.3.1 Occlusion problem

Previously in this paper, the homing vector computation were obtained based on the

assumption that the agent can perceive every landmark without any occlusion or the

horizon of perception problem. However, when one or more of landmarks disappear

compared to the view the agent initially perceived at home location, the occlusion

problem occurs since the agent cannot match landmarks in current view with those in

the reference map. When the agent moves sufficiently far fromhome it may encounter

occlusions or the disappearance of landmarks. Some landmarks may be hidden by

other landmarks or background objects, or they could disappear from the view due to

the distance. In addition, relatively small-sized landmarks may be invisible in a noisy

environment. In real-world robotic experiments, occlusions can also exist due to many

other factors, such as passing humans, the lighting condition, or faults in the feature

or landmark extraction procedure. Here, we assume that all of these cases classified as

occlusions.

In following simulation experiments, some landmarks may beintentionally removed

to monitor the effect of occluded landmarks. All three methods were explained under

the assumption that the robot would perceive the same landmarks observed at the home

location and the occlusion problem would affect the performance of navigation.

With the presence of several landmarks in the environment, there will be some occlu-

sion regions, and more landmarks tend to produce more occlusions. Independent to the

occlusions that would occur naturally by the other landmark, we simulated occlusions

by artificially removing one of the landmarks when a robot attempted to perform hom-

ing navigation. As a result, the agent may not be able to see the occluded landmark.

Using this situation, we actually create discrepancy between two snapshots and thus

can analyze the performance of each method in the presence ofan occlusion.
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Figure 5.9: Graphs showing error points as the number of occluded landmarks in-

creases from (a) zero, (b) one to (c) two (Reprinted from Yu and Kim (2011b)).
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Figure 5.10: Catchment area with vector map for each environment: (a) 92.01%, (b)

82.04%, and (c) 59.11% of the environment. The number of landmarks is zero for (a)

and one, two for (b) and (c), respectively (Reprinted from Yu and Kim (2011b)).

The landmark occlusion simulation results in environment 1are shown in Figure 5.9

and Figure 5.10. The results are displayed with error pointsplotted according to the

same criterion described in previous sections. The resultswith none of the landmarks

being intentionally occluded is Figure 5.9 (a), while (b) and (c) have one and two

occluded landmarks, respectively. The occluded number of landmarks are one, two

and three in Figure 5.10 (a), (b), and (c) as well.

Figure 5.9 shows that as the number of occluded landmarks increase, the region of

homing vector with errors also increases. More detailed numerical results and com-

parison with the ACV method is in Tables 5.1 and Tables 5.2. For each method DELV,

ACV, and ALV, the error point percentage is shown along with the different numbers

of occluded landmarks in environment 1, 2, and 3 are shown in Table 5.1. The first
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Occluded # none 1 2

Error amount e> 45◦ e> 90◦ e> 45◦ e> 90◦ e> 45◦ e> 90◦

Environment 1

DELV 8.75 3.02 13.99 3.62 20.48 6.49

ACV 9.80 0.15 42.50 10.07 80.63 33.54

ALV 0.00 0.00 8.64 1.92 12.07 3.34

Environment 2

DELV 7.99 4.07 13.61 4.00 20.15 6.33

ACV 7.99 0.15 39.37 8.71 74.33 36.32

ALV 0.00 0.00 10.24 2.60 14.91 4.95

Environment 3

DELV 6.79 3.92 8.33 3.24 14.78 4.68

ACV 33.33 2.71 53.47 12.18 73.88 27.63

ALV 0.00 0.00 4.87 1.40 8.74 2.19

Table 5.1: Error point rate(%) for each environments with different landmark distribution

(Adapted from Yu and Kim (2011b))

row in the table, results of DELV in environment 1 corresponds to the error graphs in

Figure 5.9. DELV method results of the first column with no occlusions corresponds

to the vector map results and the angular error graphs in Figure 5.2 and Figure 5.3.

Comparing the DELV and ACV methods, the DELV method exhibitsa smaller error

rate and better performance. Even though an increase in the error rate is observed

for both methods as the number of occluded landmarks is increased, the ACV method

exhibits much more rapid increase in the error rate comparedto that of the DELV

model (see Table 5.1. It implied that the ACV method is more sensitive to snapshot

discrepancies when determining the one-point homing vector.

In some normal environments, the ALV model shows perfect homing vector results

with no involved perception problem as listed in Table 5.1. However, in some cases,

ALV shows a larger error rate. As we have examined in the previous chapter, the

DELV performs better when selected landmarks surround the target location. The

environments tested in Table. 5.2 include equally distributed landmarks configuration

with different landmark numbers, in which the DELV method could show the best

performance.

The vector maps and catchment area results along with the landmark occlusion in the

environment are shown in Figure 5.10 and numerical results in Table 5.3 and Table

5.4. Comparing the results, the ACV method is found to yield alarger catchment area
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Occ # none 1 2 3

e> 45◦ e> 90◦ e> 45◦ e> 90◦ e> 45◦ e> 90◦ e> 45◦ e> 90◦

L=3

DELV 5.23 2.69 6.43 0.75 36.62 9.12 - -

ACV 23.77 2.09 42.75 12.11 84.3 28.25 - -

ALV 0.00 0.00 13.62 5.94 27.00 7.29 - -

L=4

DELV 8.75 3.02 13.99 3.62 20.48 6.49 - -

ACV 9.80 0.15 42.50 10.07 80.63 33.54 - -

ALV 0.00 0.00 10.24 2.60 14.91 4.95 - -

L=5

DELV 13.29 7.10 12.39 4.08 27.19 9.21 27.19 9.21

ACV 13.14 3.47 37.46 5.29 86.10 39.27 86.10 39.27

ALV 0.00 0.00 5.80 1.75 12.08 3.71 17.07 6.65

L=6

DELV 19.94 9.97 16.31 8.16 18.43 6.04 27.95 7.10

ACV 21.87 8.60 35.60 12.22 51.43 18.25 27.90 7.09

ALV 0.00 0.00 3.84 1.14 7.73 2.09 13.61 5.10

Table 5.2: Error point rate(%) for each environments with different landmark number

(Adapted from Yu and Kim (2011a))

with almost 100% than does the DELV method (92.01%). This is also true in the

environment with one occluded landmark; the catchment areapercentages are 49.11%

for DELV and 52.88% for ACV method. However, the percentage of catchment area

in both methods severely decreases as the number of occludedlandmarks increases

which may be the natural consequences. An analysis of the obtained results reveals that

landmark occlusions affect the performances of the navigation algorithms and increase

the angular error of the overall region. The occlusions alsoshrink the catchment area,

as shown in Table 5.3. The noticeable trend shown in the tableis that the catchment

area generated with the ACV method shrinks more rapidly thanthat of the DELV

method. As a result, the catchment area of the DELV method exceeds the result of the

ACV method when two out of four landmarks are occluded in the environment. This

indicates that the ACV method, despite its large catchment area in the environment

with no occlusions, is one again vulnerable to the occlusionproblem compared to the

DELV method. An examination of the vector map results reveals that the difference

between the vector maps from each method can be based on the existence of the vector

flow. There are flows in resulting vector map when obtained homing vectors for points

nearby have similar directions. This flow was one of the reasons for an increase in the

angular error but the flow may possibly result in successful homing.
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Occluded # none 1 2

Environment 1

DELV 92.01 49.11 40.3

ACV 100.0 52.88 24.14

ALV 100.0 7.84 20.44

Environment 2

DELV 97.04 53.96 51.86

ACV 100.0 54.99 25.47

ALV 100.0 17.09 23.10

Environment 3

DELV 84.91 69.08 62.34

ACV 98.67 45.34 18.46

ALV 100.0 23.15 20.59

Table 5.3: Catchment area rate(%) for each environments with different landmark dis-

tribution (Adapted from Yu and Kim (2011b))

Similar patterns are shown in the results compared with ALV method. The ALV

method, as well as in the error point rates results, shows perfect homing ability with

catchment area rate of 100% when all landmarks are perceived. When one or more

landmarks are occluded, the rate of the catchment area obtained with ALV method

rapidly decreases. As in Table 5.3 and Table 5.4, the catchment area of the ALV method

is much smaller than those of the DELV method when landmarks were occluded.

In this section, the characteristics and advantages of the landmark-based methods in

certain environments and situations were investigated, with primary focus on the hom-

ing vector and the rate of successful homing. When comparingthe DELV with ACV

and ALV methods, the DELV method shows similar error rate in the vector map results.

With small occlusions, the ACV and ALV approach exhibits better homing ability,

however, the DELV method tolerates the occlusion problem with better performance,

even if the method shows increased error rates as the number of occlusions increases.

5.3.2 Navigation method with visual reference compass

Many robotic navigation methods, such as ACV and ALV models,require reference

compass information. However, in indoor environments, difficulties in the use of a

magnetic compass or other reference compasses may be encountered. Thus, a navi-

gation method that is independent of the reference compass is advantageous. Several
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Occluded # none 1 2 3

L=3

DELV 94.82 100 17.46 -

ACV 99.56 8.28 5.62 -

ALV 100.0 9.82 10.36 -

L=4

DELV 92.01 49.11 40.3 -

ACV 100.0 52.88 24.14 -

ALV 100.0 17.09 23.10 -

L=5

DELV 87.43 87.13 83.58 2.96

ACV 91.12 85.06 54.14 1.78

ALV 100.0 12.46 18.73 8.98

L=6

DELV 85.65 84.32 70.71 2.96

ACV 87.28 77.96 66.57 3.4

ALV 100.0 13.74 34.05 11.74

Table 5.4: Catchment area rate(%) for each environments with different landmark num-

ber (Adapted from Yu and Kim (2011a)).

visual homing methods determine the homing direction without compass information

through the use of a snapshot image, and the DELV method suggested in this paper

also estimates the heading direction by landmark arrangement matching.

In addition, the method named as “visual compass” (Zeil et al., 2003; Labrosse, 2006)

was suggested which determines the heading direction via computing the rotational

matching of two snapshots. The visual compass method has been suggested by Labrosse

(2006) to estimate a heading direction based on snapshot images. The method com-

putes the discrepancy between a pair of omnidirectional images by rotating the image.

It then determines the current heading direction based on a reference image. Setting

the heading direction of the snapshot at the goal location asthe reference, the visual

compass method offers the current head direction based on the comparison of another

snapshot, the reference. The method has it basis concept of estimating the physical dis-

tance between the locations with the image distance by pixeldifferences between two

snapshot images (Zeil et al., 2003). When the method is applied in real-world robotic

experiments, the images obtained by the omnidirectional camera are compared. How-

ever, in this work, we applied the method in a simulation environment. Therefore,

organizing the environmental conditions could affect the performance of the method.

In order to effectively apply the visual compass method, appropriate background set-
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Figure 5.11: Vector maps and catchment area obtained with (a) DELV, (b) ACV and

(c) ALV algorithms along with the heading direction estimation obtained with the visual

compass method. Catchment areas for each case are 74.85%, 47.04%, and 40.68%,

respectively (Reprinted from Yu and Kim (2011b)).

tings of the simulation environment are required.

In this section, we compare the navigation results of DELV, ACV, and ALV applying

visual compass method instead of the given reference compass information. Substitut-

ing the reference compass with the visual compass obtained from the image enables

the navigation method to become independent of the externalinformation but to fo-

cus on the exploiting the snapshot image information. In addition, applying the visual

compass method, which may not be perfect in estimating the heading direction, the

results show the dependency on the accuracy of the referencecompass of the method.

Figure 5.11 show the result of applying three navigation method with visual compass

method as the compass information. Since the heading estimation according to the

visual compass method does not guarantee 100% of accuracy, the results show larger

error in the direction of the homing vector compared to the results obtained when a

reference compass is given (see Figure 5.2 and Figure 5.6). Homing path analysis is

important since increasing the homing accuracy is the ultimate goal of the navigation

algorithms. The catchment area includes points that could successfully lead to the

home location using the decided homing vector. The size of the catchment areas in the

maps for DELV, ACV, and ALV methods are 74.85%, 47.04%, 40.68%, respectively.

The reason for the low catchment areas with the ACV and ALV methods seems to be

related to an increase in the trap points in the environment.

The error graphs are shown in Figure 5.12. The DELV method hassmaller errors than
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Figure 5.12: Error graphs obtained from the DELV, ACV, and ALV methods with the

visual compass method. The corresponding vector maps are shown in Figure 5.11

(Reprinted from Yu and Kim (2011b)).

other models. In the results obtained with the reference compass information, the error

rate of the ALV model is found to be extremely low, while thoseof the DELV and

ACV methods are quite similar in some environments. However, upon application of

the visual compass method, the error of the DELV method is smaller than that of the

ALV model, whose error rate is the most increased. The results indicates that the ALV

and ACV models are dependent on the compass information, andthus, the performance

of the navigation is vulnerable to the accuracy of the reference compass. Therefore, we

can assume that the DELV method is more robust when there is noreference compass

information.

The results show that the DELV method exhibits robust navigation performance not

only with respect to the spatial error rate, but also with regard to the homing path

analysis.

5.4 Summary of Chapter 5

This chapter investigated several perspectives of the DELVmethod with reference

compass. While the previous performance evaluation was shown in comparison with
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the predictive image-matching method, the holistic method, the DELV method with

reference compass is compared to the landmark-based navigation method with similar

concept of landmark vector requiring the compass information.

First, the performance of the DELV with and without the reference compass is com-

pared. Experimental results in the same environments showed that the DELV method

shows similar level of performance even without the reference compass while many

navigation methods are significantly dependent to the existence and the accuracy of the

compass information. The results are also shown by applyingvisual compass method

to substitute the reference compass. The visual compass wasapplied for the heading

direction estimation to each DELV, ACV and ALV method. The results showed that

DELV method is less affected by the accuracy of the heading direction estimation than

other two methods.

Then, the comparison with results of ACV and ALV method is given in vector maps,

angular error graphs, success rate and trajectory. The results from both methods do

not show significant difference in these perspectives, however, the advantage in the

DELV lies in that the method does not necessarily require thereference compass while

the ACV model does. Additionally, the robustness of methodswere examined through

the investigation on the occlusion problem. In the series oftests, the DELV method

showed higher robustness compared to the other methods.
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Conclusion

In this thesis, we investigate a new landmark-based homing navigation algorithm with-

out any reference compass information. Our distance-estimated landmark vector (DELV)

model extracts landmark information from the snapshot image and incorporates it into

vectors to be used for the determination of the homing vector. The model utilizes the

quantized distance information, which is demonstrated to give a good performance

level in homing navigation. Chapters 3 and 5 describe the detailed methods of the

proposed homing navigation. Chapters 4 and 5 provide the corresponding results of

experiments. The experiments were conducted in both computer simulations and in

robotic experiments. Although the proposed DELV method does not require a refer-

ence compass, the reference-compass-enabled method is also introduced in Chapter 5

for comparison.

The basic concept of the DELV model is to create a set of landmark vectors with the

estimated distances to landmarks and the angular positionsas obtained from the omni-

directional snapshot image. The landmark distance is estimated from the angular shift

of the landmark after one step movement. Using the geometricrelations, the distance

to the landmark can be determined from the previous angular position, the current an-

gular position of the landmark, the rotated angle in the procedure, and the moving

distance of the mobile robot. The reference map is defined as aset of landmark vec-

tors with their bearings and distances at the target location. The same information of

landmark vectors at another location is now projected into the reference map so as

to obtain a homing direction. Landmark projection requiresthe landmark correspon-

dence matching in advance. In our navigation method, the correspondence problem

83
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along with the heading-direction estimation is resolved bythe landmark arrangement

matching with rotated vectors. The endpoints of the projected landmark vectors on the

reference map converge best when applied with an appropriate landmark order and the

heading direction. Therefore, by searching the two-dimensional configuration space of

possible landmark orderings and monitoring the variance ofthe endpoints, the agent

can determine the landmark matching between a pair of snapshot images.

The landmark vector projection can be regarded as a kind of image comparison in the

snapshot model. A search for the minimum variance of the endpoints of projected

landmark vectors corresponds to the minimization of the discrepancy between snap-

shot images in the image-based navigation method. Therefore, although our homing

navigation method is classified as one of the landmark-basedmethods, the basic con-

cept and methodology of our method share some aspect of the image-based holistic

method.

In experiments, we set up the experimental environments with cylindrical landmarks.

The mobile agent can perceive an omni-directional view of surroundings. The agent

is assumed to have started the exploration from the target location, and replaced at

an arbitrary location. At each location, the agent determines the homing direction

according to the methods provided, and the results are illustrated as vector maps. Based

on the vector maps, we obtain the angular error graphs. The difference between the

obtained angle in the vector map and the ideal direction, which is a direction of a

straight line from the current location to the target point,is considered as an error

in the homing vector. The errors for the points in certain distances from home are

averaged and plotted in terms of angular error graphs. The success rate of homing and

the catchment area capture slightly different perspectives on the performance of the

method. While the vector map and the angular error graphs show the performance in

a static point of view, the success rate is rather a continuous and sequential result of

performance.

6.1 Estimation and quantization of the landmark dis-

tance

The distance estimation is one of the essential parts of the proposed method. The

localization and correspondence matching are made by the projection of appropriate
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landmark vectors to the accurate reference map. The distance to landmark is esti-

mated by the angular shift of the landmark in an omni-directional snapshot between

the movement. If the agent observes a moving object, motion parallax would give in-

formation on their distance. Conversely, if the agent movesin a static environment, it

will be able to estimate the position of each landmark in the environment. Although

the distance-estimation procedure used in this method can be affected by the odometry

error and the accuracy of the landmark extraction results, the results in the previous

chapters demonstrate that, the homing performance of our method is quite good.

The distance-quantization is one way to reduce the effect ofnoise in the estimation

of landmark distance. Since the quantization of landmark distance employs discrete

levels to assign each landmark at the pre-determined distance, the accuracy of the es-

timated distance becomes less important. Indeed, distancequantization may affect the

accuracy of the localization results. In order to estimate the current location accurately,

one should obtain the distance to each landmark along with appropriate projecting or-

der and heading direction. However, our method is proved to be effective even with the

quantized distance. Even though the distance in the landmark vector does not reflect

the actual distance to the landmark, we can obtain the direction of the homing vector

by deploying appropriate landmark order and heading direction. In addition, the quan-

tization of the landmark distance has an advantage of reducing the amount of memory

required to store the landmark vectors.

6.2 Comparison with other methods

The performance results of our DELV method are mainly compared to two different

types of navigation methods. In the comparison, the DELV method without the ref-

erence compass is matched against the predictive image-matching method, while the

results of DELV method with the compass information enabledare compared with

the ACV model. In the overall analysis, our DELV method demonstrates a successful

performance on the homing navigation.

While it requires an additional process of the landmark extraction compared to the pre-

dictive image-matching method, the DELV method poses a significantly smaller error

in the homing vector results and in the homing success rate aswell. There is no big

difference in the angular error or catchment area results between the DELV and ACV
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method. Furthermore, the DELV method shows more robust performance when the

perceived result of environment is damaged. For example, when the perceived envi-

ronment is damaged deliberately by hiding certain landmarks, the DELV performed

better than other navigation methods. In addition, to examine the effect on the ac-

curacy of the reference compass, we have applied the visual compass method to the

navigation methods. Both results indicated that the DELV method is insensitive to the

accuracy of the environmental perception and the compass sensor information.

6.3 Future work

6.3.1 Landmark extraction

One of the important issues in the landmark-based navigation method is an effective

extraction of landmark information from the image background. In this study, we em-

ployed color information to detect landmarks. In simulation experiments, we used

red-colored cylindrical objects as artificial landmarks because they could be easily

detected by the threshold of pixel values. In a natural environment, we can select

landmarks based on the mean-shift clustering results, which are also based on color

information. Even though the comparison of the DELV method with the image-based

navigation method in Chapter 4 shows a better navigation performance of our method,

the additional process required to extract the landmarks can be disadvantageous to our

method. Many researchers prefer to use the descent in the image distance or image

warping methods including the predictive image-matching method, which do not re-

quire an extraction of landmark features. These visual navigation methods may be

simpler as demonstrated in this thesis, but the landmark-based navigation yields bet-

ter homing performance in the environment where landmarks can be distinguished.

Therefore, once an efficient and robust feature-extractionscheme is implemented, the

landmark-based navigation methods can be more effective.

6.3.2 Localization

In the DELV method proposed in this thesis, when landmark distances are continuous,

the agent can localize itself with landmark vector projection. Though the performance

of localization has not been shown in this thesis, in additional experiments, we observe
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that the agent could localize itself accurately inside the area surrounded by landmarks.

On the other hand, however, when the agent is located outsidethe area surrounded by

landmarks, the localization results have errors in many cases. The errors arise from

the wrong landmark order matching or heading direction estimation. The localization

problem is not crucial in homing task as we have shown throughthe experiments in the

previous chapters. In most cases, the agent could return home successfully without the

errors in localization. Moreover, in the DELV method, the accuracy in the estimation

of the current position becomes higher as the agent moves toward home. Therefore, no

additional work was needed for the localization.

In the homing navigation, we only focused on the performanceof homing vector and

homing path, but in the mapping or exploration of the unknownenvironment, the lo-

calization is an important task. To improve the localization performance, we can apply

the continuous and probabilistic update in localization. Since most of the error in the

location estimation is caused in the process of searching for landmark arrangement or

heading direction with landmark vector rotation, additional information on the right

order may improve the result. The information on the previous location provides ad-

ditional information to determine the appropriate order inthe rotational projection of

landmark vectors. The previous location information can beupdated in time or also

operate in a probabilistic manner leading to a gradual increase in probability of the

estimated location.

In this way, the performance of localization can be improvedand the method can also

be applied in mapping or exploration tasks.

6.3.3 Occlusion problem

Another issue in the image-based homing navigation is in therobustness problem. The

robustness of the navigation methods are analyzed in two perspectives: the occlusion

problem and the accuracy on a reference compass. The occlusion problem is a crucial

issue in the real-world robot navigation as well as in the simulation experiments. As it

has been shown from the results, the points outside the area surrounded by landmarks

pose larger errors than those in the insider. The main cause of this result is attributed to

the occlusion problem. In the real-world robotic experiments, the landmark detection

and even the shape of objects can affect the image process. A moving person can

affect the view of the agent, and the false detection of landmarks can also lead to error
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in landmark matching. In the image-based navigation method, the occlusion problem

has not been investigated much yet due to the complexity of the problem. A solution on

the occlusion problem might significantly improve the performance of the image-based

navigation methods.

Using the distance-estimated landmark vector method alone, it is difficult to overcome

the occlusion problem. One solution is to combine it with other methods, especially

the image-based navigation methods. While the performanceof the landmark-based

methods shows a difference between inside and outside of thearea surrounded by

landmarks, the image-based matching methods such as warping maintain a similar

level of performance, in spite of the larger errors in homingon average. Therefore,

the agent may apply image-based navigation method when it can not determine an

appropriate homing direction including the landmark occlusions, but use the landmark

vector method otherwise. Combining two methods in a complementary manner, the

performance can be improved. The remaining problem, however, is to determine when

and how to incorporate the image-based method. There may be several strategies for

merging different methods. The agent can use one of them as the main method, and

be assisted by another method. When the agent detects when the main method does

not operate well at a certain point, another method can be picked up, depending on the

current environment, and override the main method. In orderto choose the method

appropriately, the characteristics of the methods, the advantages and weakness should

be investigated in advance. Based on their characteristics, the agent could apply the

selected results at each location. Investigation on these points could lead to navigation

method with better performance.

6.3.4 Interaction with odometry information

In the point of view of combinations, the most commonly knownmethod is to combine

vision-based navigation with path integration. The path integration is a long-range nav-

igation method which is affected by the accumulated error throughout the exploration.

Using the path integration, the agent can return to the vicinity of a target location, but

pinpointing the target location accurately is difficult dueto the accumulated errors.

Therefore, we may consider the method to combine the odometry information with the

vision-based navigation method as suggested in this thesis. The agent can return to

the area near home with the long-range navigation and then switch to the vision-based
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navigation method to accurately find the target location. Since the odometry informa-

tion includes errors from the long distance of exploration and the visual information

is more effective when the agent is near home area, the combinational approach can

compensate for the weakness of each method.

The interaction between the odometry information and visual information has been

also observed in experiments on animals’ behaviors (Etienne and Jeffery, 2004; Collett

and Collett, 2000; Vladusich et al., 2005).

There are several different ways to combine information from odometry and visual

input. The simplest way is to use path integration for a long distance exploration

and to switch to a vision-based navigation method when it hasno more odometry

information. More sophisticated method is to use an interaction between two types of

information case-by-case. For example, in the experimentson honeybees (Vladusich

et al., 2005), bees showed behaviors indicating that they use interactions of visual

odometry and landmark guidance during food search. As otherinsects, honeybees use

odometry information to find the target location while its fidelity is influenced by the

landmark information. In addition, when two cues conflict, honeybees relied on the

familiar landmark cues than the odometry information. Based on their behavior, one

method does not always override the other, and they interactwith each other to decide

the direction and distance to move.

Inspired by the behavior of insects and other animals shown in previous works, we can

develop a navigation system with effective interaction between two different naviga-

tion cues. This type of combination method may show good performance in robotic

experiments.

6.3.5 Combination with place cell

Another method to be investigated is to introduce a place cell concept. Mammals

including rodents and gerbils exploit the place cells of hippocampus for navigation.

Each place cell is associated with certain location in the environment, and when the

animal explores in a specific region, the place cell is activated. Several robotic systems

applying the concept of place cell have been suggested (Goedemé et al., 2005). If

the agent obtains the snapshot image at visited points, the mobile robot could return

home or navigate in the environment with localizing itself by comparing the current
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snapshot image to the stored images. The images can be compared by computing

distance measure or matching several features in the images. However, in order to

apply the method in mobile robot navigation with good performance, a large number

of images should be stored. Since the distance-estimated landmark vector method has

been shown to be efficient in large area, it can assist the place cell navigation method.

A snapshot image may form a place cell and it can cover similarlandmark features.

Therefore, combining the place cell concept with the vision-based navigation method,

the agent may move in the environment more efficiently.

6.3.6 Biological modeling

One of the purpose of the bio-inspired researches are to suggest an effective, robust yet

simple method with good performance inspired by the behavior and mechanisms of

insects and other animals. Insects and other animals use simple sensory-motor system.

Therefore, another future work would be to suggest a navigation method that can be

modelled biologically as well. In order to model the method biologically, the method

should include simple sensory input as well as computation with low complexity.

Along with the analysis on the characteristics and the performance level of our homing

navigation method, a simpler and more robust navigation method can be introduced.

The future work may focus on enhancing the performance of thealgorithm in real-

world experiments with a simple and robust method.
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