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Abstract

Due to recent advances in computer science, a variety of technologies have been devel-

oped, such as Internet of Things (IoT), which connects the Internet to various objects,

and ubiquitous computers, which place computers everywhere. Human-computer in-

teraction (HCI) is being studied for communication with such various computers. One

of the most interesting areas of HCI is gesture recognition. Gesture recognition is the

core technology of the future science. It can effectively communicate the user’s inten-

tion to the computer and has various technology application possibility. In this paper,

we study gesture recognition technology and develop algorithms with high recognition

rate with low computational complexity. First of all, we will study the algorithm that

can compensate the shortcomings of FSM. FSM can speed up recognition of simple

path, but it has a disadvantage that recognition rate is not good when one gesture has

various paths. Chapter 3 of this paper describes a multipath FSM that can overcome

these drawbacks. In particular, we experimented with various algorithms of HMM in

order to recognize various PATH, and proceeded with research on FSM enemy based

on probabilities. As a second method for gesture recognition, we conducted a study

on dynamic time warping in chapter4. Dynamic Time Warping is an algorithm that

matches two signals in a time series and outputs the similarity. The output similarity

finds a pattern that minimizes the two signals in the time series and represents the cu-

mulative value of the distance. Most gestures, however, contain noise components and

display different shapes each time they are drawn, so that small spots on both signals

accumulate and can be similar, but the recognition rate can be lowered. In order to

compensate for this, we made Probability Dynamic Time Warping applying probabil-

ity distance to DTW. We added the weight using variance to the difference in the time

series of the two signals, adding fewer errors in the twisted portion, and adding a large

error in the bigger deviation. For a stochastic match, we need to find a representative

gesture represented by each gesture. In this paper, we propose a time mean represen-

tation, a length mean representation, and a repeated warping representation. Finally,
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in chapter 5, we applied and experimented with various methods to solve the problem

of starting point and dimension, which is a persistent problem of gesture recognition.

UTD-MHAD was used for experiments, and all algorithms showed a higher recogni-

tion rate than HMMs proposed by existing data producers. PDTW showed the highest

recognition rate among the proposed algorithms, and the probability based FSM could

overcome the shortcomings of the existing FSM.
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Chapter 1

Introduction

As computer technology has evolved recently, various additional technologies have

been developed. The core technology of future science is the Internet of Things (IOT),

which is ubiquitous IOT is a technology in which each object is connected to an Inter-

net server to grasp user patterns and provides a recommendation or a desired service.

Ubiquitous indicates providing a necessary service from anywhere in the vicinity of

a user. In this technique, judging human behavior and providing service according to

the determined information is called Human-Computer Interaction (HCI). One repre-

sentative HCI is gesture recognition. Human behavior has many meanings. A person

bending the waist to pick up objects indicates that necessary things are on the floor,

and you can read feelings through facial expressions. Gestures can also be used to help

communicate, and can be a means of communication when language is not available.

Therefore, a computer recognizing a gesture means that it can grasp the intent of minor

actions or changes and provide optimal services. For example, it is possible to develop

robots that support human beings and deliver necessary tools during work, recognize a

mood from a facial expression and provide a song accordingly. Sign language recog-

nition allows users to recognize and translate words, even if they cannot perform sign

language. This recognition of gestures is applicable to various ranges and is one of the

efficient methods to control a computer. Therefore, to enhance various advantages of
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gesture recognition and its application range, more accurate and quick gesture recog-

nition methods are being studied.

1.1 Gesture Recognition

The difficulty in recognizing gestures is that gestures are not always shown in the

same form. Suppose, for example, that two people draw a circle. If the first person

draws a big circle and the second person draws a small circle, are these two different

gestures? Both gestures are clearly the same gesture, but their input forms are different.

Now assume that the same person repeats the same action twice. The first and second

actions are similar, but both actions will not be able to follow the exact same path.

Thus, it will result in slightly different circles and various errors will be added. To

solve this problem, there are methods to divide a gesture into states and recognize it

by using the transition between states. Representative methods for this are the Hidden

Markov Model (HMM) and the Finite State Machine (FSM). Hidden Markov models

are algorithms trained on transitions between states and recognize them roughly using

hidden states. Gesture recognition using HMM has been researched for a long time

and it has been used in various gesture recognition studies. An FSM memorizes the

entire movement path between states and recognizes when the input gesture follows

the movement of each state. In this manner, recognition using the state can detect the

change by recognizing it as a rough motion by matching it to the representative state

of the gesture, rather than matching the entire path. As another recognition method,

there is a method that compares the similarity of the input path and trained learned

path, such as Dynamic Time Warping (DTW), and recognizes the similarity at one or

more levels. Furthermore, because of the development of computer science, various

studies on gesture recognition methods using deep learning have been carried out, and

high recognition rates have been obtained. In recent years, research on a method of

recognizing a gesture by fusing a plurality of sensors instead of gesture recognition
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using simpler.

1.2 Motivation

This thesis is inspired by various research studies. A number of studies have been

conducted on various methods of gesture recognition, including the Finite State Ma-

chine (FSM), Hidden Markov Model (HMM), and Dynamic Time Warping (DTW).

Recent research on gesture recognition is aimed at improved awareness through ex-

tensive learning. There is a perception using Neural Network as the most popular

recognition method these days. As computer science develops, it is possible to analyze

signals correctly through simple but repeated trainings. In the past, the computational

speed of a computer could not satisfy the algorithm’s required speed because of the

large computational complexity of network computing. However, recent developments

in high-performance computer computations have allowed for faster calculation and

analysis of large amounts of data. Various methods were developed and used accord-

ingly. Recently, it develops algorithms with high recognition rate by fusing past various

recognition algorithms and neural networks. Therefore, it is necessary to study various

past algorithms for fusion with neural networks.

1.3 Objectives

Therefore, this thesis seeks to reduce the shortcomings of the various gesture recogni-

tion algorithms. FSM and DTW recognize gestures through mathematical modeling,

making them less durable than the trendy CNN. . For FSM, however, the overall state

path pattern is observed, and exhibits a decrease in perception when the form appears to

be multiple types of gestures. DTW, on the other hand, has a high recognition rate, but

applies multiple training models in a simple sequential comparison. A gesture is rec-

ognized by its simple Euclidian distance estimates, so it does not represent the form of
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the gesture itself. Accordingly, this thesis attempts to compensate for these shortcom-

ings. We have studied the various algorithms developed in the past because they have

the possibility of further development and are able to show high recognition rates using

simple calculations. The research for this thesis was carried out with the aim of devel-

oping an algorithm applicable to a machine which does not have a high-level operating

system by allowing a higher recognition rate while maintaining the same amount of

information. We want to develop algorithms that can be used in a simpler manner to

apply to small robots or products that do not have high computation systems, rather

than to systems that can be operated quickly and accurately, such as real-life mobile

phones and computers.

1.4 Organization of the dissertation

The composition of this paper is as follows. In Chapter 2, we conducted a background

investigation of various features and algorithms used for gesture recognition. Chapter

3 introduces the probability-based FSM that was developed based on standard FSM.

Chapter 4 introduces algorithms for stochastic application of DTW and finding the

center path of each signal. Chapter 5 explains various experiments conducted to track

multi-points based on the skeleton in gesture recognition. Finally, Chapter 6 explores

each method, draws conclusions from the results, and discusses future developments.
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Chapter 2

Background

Gesture recognition has been constantly evolving over the years, and is still developing.

The most important aspect in gesture recognition is which data and which algorithm

to use. In this chapter, we will review various data features and algorithms used for

gesture recognition.

2.1 Data for Gesture Recognition

First, we will review various data used for gesture recognition. In this section, we

describe a multimodal method using a combination of skeleton, vision, and various

features to recognize gestures.

2.1.1 Skeleton

The skeleton is the most basic data used for gesture recognition (Zhao et al., 2014).

The skeleton provides a means of analyzing joint movements and body movements by

representing the human body in the form of a line. A gesture represents the movement

of the body, but it requires too much computation to analyze all the corresponding

movements of the body. Therefore, we use the skeleton to extract important points to
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distinguish the desired gesture. One of the most basic features of real gesture recog-

nition is that many types of algorithms use skeletons (Lee et al., 2015; Tamura et al.,

2014). An example of using a skeleton is a dynamic algorithm. In the case of algorithms

that represent body movements rather than instantaneous forms, they utilize consecu-

tive body positions in the time series. In addition, Kinect, developed by Microsoft in

2009, has become popular in the gestures recognition using the skeleton (Stone and

Skubic, 2015; Ying and LIU, 2016; Liu et al., 2016). Kinect consists of a red-green-

blue (RGB) camera and an infrared sensor that can scan the surrounding environment

and extract 47 parts of the body. In fact, Kinect can be used to recognize gestures while

playing games (Soltani et al., 2012; Gerling et al., 2012). Another device for obtaining

skeleton data is Leap Motion (Motion, 2015). Leap Motion is a device that measures

and outputs the position of the joints of the hand. It uses an infrared sensor to extract

the skeleton of the hand. The field where Leap Motion is mainly used is sign recogni-

tion (Potter et al., 2013; Elons et al., 2014; Funasaka et al., 2015). A variety of studies

have been carried out to recognize sign language accurately by locating the hands and

extracting the hand joints using Leap Motion (Chuan et al., 2014; Mohandes et al.,

2014).

2.1.2 RGB Camera

Recognition using RGB cameras is a widely used method for gesture recognition (Kol-

lorz et al., 2008; Wu and Huang, 1999). Vision contains much information, so it can be

used in various ways for gesture recognition. As gestures represent visual motion and

movement, cameras are suitable for recognition purposes. The histogram of oriented

gradients (HOG) is a representative method of camera gesture recognition (Tsai, 2010;

Freeman and Roth, 1995). HOG is a method of dividing an image into a certain range

to obtain a histogram, and recognizing the gesture based on that form. It can be used to

distinguish gestures when the shape of the hand represents the meaning of the gesture,
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and to locate the hand when recognizing the gesture by the movement of the hand.

Gesture recognition using Haar-like features is also frequently used. Gesture recogni-

tion using Haar-like features is also frequently used. The Haar-like feature is a method

of putting black and white masks on images for gesture recognition and analyzing the

meanings according to the mask scores (Chen et al., 2007; Barczak and Dadgostar,

2005). Data using RGB camera can be used as it is, but it can also be used with depth

cameras to extract the skeleton (Schwarz et al., 2012; Zhang and Tian, 2012).

2.1.3 Multimodal analysis

Recently, there have been gesture recognition methods that combine multiple pieces

of information rather than a simple gesture recognition using one piece of informa-

tion (Escalera et al., 2017; Neverova et al., 2016). With the development of computer

technology, the amount of computation has increased significantly, and it is possible to

process information quickly, so multimodal gesture recognition is applied by supple-

menting information that cannot be obtained by one data source with other data. The

most basic multimodal gesture recognition method is to extract the exact skeleton by

fusing depth and RGB camera data. In addition, several Kinects may be used simulta-

neously to complement each other to create overlapped dat of the body. There are five

ways to evaluate each gesture when using multiple gestures at the same time.

1. Select the most probable predominant gesture by multiplying the likelihood value

of the gesture model obtained from each piece of data (Chang, 2014).

2. Multiply the likelihood value of the gesture model obtained by each data by assign-

ing weights in order of significance to each gesture (Pitsikalis et al., 2017).

3. Select n models that have good classification properties for each gesture (Monnier

et al., 2014).

4. Apply special roles to each data for recognition (Ohn-Bar and Trivedi, 2014; Peng
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et al., 2014).

The first method assumes that each model has meaning. Assuming that all models are

meaningful, multiply all likelihood values obtained by assigning them the same relia-

bility. The second method assumes that the recognition rate of each model is different.

When the recognition rate differs from one model to another, there is a difference in

reliability, and gesture recognition is more dependent on data with high reliability. In

the third method, only data with a certain level of reliability are used. Because the

processing of meaningless data is not performed, the operation is faster, and because

all data are meaningful data, the recognition rate increases. In the final method, a spe-

cific role may be assigned to each data. For example, a two-dimensional shape can be

detected with an RGB camera, but three-dimensional information cannot be obtained.

Therefore, a depth camera is also used to obtain three-dimensional information. The

information used to recognize the gesture is varied and richer, and a better recognition

rate by fusing the information.

2.1.4 UTD-MHAD

As multiple gesture recognition has been studied recently, many researchers are mak-

ing a Dataset that acquired the gesture as a different sensor. The University of Texas at

Dallas Multimodal Human Action Dataset (UTD-MHAD) (Chen et al., 2015) contains

a variety of actions taking a daily actions. The dataset includes data obtained from Mi-

crosoft Kinect camera and electronic sensor. The composition of the gestures is shown

in table 2.1.

The detailed behavior of each gesture was shown in Appendix A. Gestures were per-

formed four times by eight subjects (four men and four women) and consist of 27

classes. The dataset composed of Hand Gesture (Swipe left, Swipe right, Wave, Clap

and so on), Sports motion (Bowling, Boxing, Baseball swing and so on), daily activitiy
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gesture index gesture name gesture index gesture name

1 Swipe left 15 Tennis swing

2 Swipe right 16 Arm curl

3 Wave 17 Tennis serve

4 Clap 18 Push

5 Throw 19 Knock

6 Arm cross 20 Catch

7 Basketball shoot 21 Pickup and throw

8 Draw X 22 Jog

9 Draw circle 23 Walk

(clockwise)

10 Draw circle 24 Sit to stand

(counter clockwise)

11 Draw triangle 25 Stand to sit

12 Bowling 26 Lunge

13 Boxing 27 Squat

14 Baseball swing

Table 2.1: Index and names of gestures.

(Knock on door, sit to stand, stand to sit, and so on), and training exercises (arm curl,

lunge, and squat and so on) Skeleton data include 20 points obtained from the Camera

using the Desert Motion Map.

Inertial data include the three axis gyro sensor, the three axis acceleration sensor, and

the nine axis data obtained from the three axis gerometer sensor.

2.2 Classification Algorithm

2.2.1 Hidden Markov Model

In the field of pattern recognition, a conventional and popular method is the Hidden

Markov Model (HMM) (Lissier, 1995; Rabiner, 1989; Lee and Hon, 1989; Rabiner
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Figure 2.1: The skeleton of UTD-MHAD. The skeleton include totally 20 points.

and Juang, 1986). The HMM is a method of extending the correlation of successive

sequences in the Markov chain (Gilks et al., 1995). This algorithm is used when the

data pattern has stochastic tendency but cannot be calculated accurately. HMM uses

hidden states to be robust against errors. Hidden states are used to prevent inputs from

adding errors that cause undesired state movements. For example, if there is a noisy

burst in a signal when there is no hidden state, there may be a state shift that would

later be learned by the model, and the recognition attempt could fail. However, with a

hidden state, we can re-estimate the state by comparing it with the current input and the

previous state. Thus, the HMM extends the Markov chain by using a forward algorithm

(Federgruen and Tzur, 1991), backward algorithm (Yu and Kobayashi, 2003), Viterbi

algorithm (Forney, 1973), and the Baum-Welch algorithm.

The variables used in the HMM are shown below.

O : Observation. This is the set of observation of each time t. The elementot is obser-
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vation at time t.

si : i-th state. State is calculated by probablity and choosed best path.

qt : The state of time t.

vk : The k-th observation. ot = vk means that the observation of time t is vk

A : State transition matrix. It is N x N matrix and N mean the number of state. The

element ai j mean the probability of transition state Si to S j.

B : It is N x N matrix. The element bi(vk) means the probability that we show vk on

i-th state.

π : The initial probability. πi means the probability that initial state is Si.

λ : HMM probability parameters. This consist of A, B, π.

The first step of HMM is finding P(O|λ) This is the process of determining the proba-

bility of observations occurring in the trained model. Forward algorithm and backward

algorithm are used to obtain this. In the HMM, there is no probability of transition of

Observation in the trained model. However, the probability of the input sequence is ob-

tained through the relationship between the hidden state and observation. The Forward

Algorithm calculates the probability of observations occurring when observations are

input from the time 1 to time T as the product of the probability parameters. If the o1

is observation of time 1, the probability that model is start from hidden state i and o1

is occur from state i. This is shown on eqation 2.1

αi(1) = P(o1,q1 = si|λ) = πi ∗bi(o1) (2.1)

We then obtain the probability of occurrence of o2 in hidden state i at time 1 and state

j at time 2. This can be expressed as follows.
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αi(2) = P(o1,o2,q2 = s j|λ) =
N

∑
i=1

αi(1)∗ai j ∗b j(o2) (2.2)

In the same way we can calculate the probability of state t at time t and Observation

is {o1,o2, ...,ot} by accumulate probability. After that we can calculate P(O|λ) by

summation the αi(T ) with every i. This process is shown on equation 2.3.

αi(t) = P(o1,o2, ...,ot ,qt = si|λ) =
N

∑
j=1

α j(t−1)∗a ji ∗bi(ot)

αi(T ) = P(O,qT = si|λ)

P(O|λ) =
N

∑
i=1

αi(T )

(2.3)

As can be seen from the equation, the forward algorithm computes the P(O|λ) from

time 1 to T, accumulating in time order. On the other hand, the backward algorithm

does not perform the same computation sequentially from time 1 to T, but computes in

reverse order of time from time T to 1. The equation for this is shown in equation 2.4.

βi(T ) = P(qT = si|λ) = 1

βi(T −1) = P(oT ,qt−1 = si|λ) =
N

∑
j=1

β j(T )∗ai j ∗b j(oT )

βi(t) = P(ot+1, ...,oT ,qt+1 = si|λ) =
N

∑
j=1

β j(t +1)∗ai j ∗b j(ot+1)

P(O|λ) =
N

∑
i=1

βi(1)∗bi(i1)

(2.4)

To obtain the probability relation between newly input path and model using pre-

trained λ, HMM use viterbi algorithm which is one of dynamic programming meth-

ods. The Viterbi algorithm is an algorithm that looks at the entered observation column

when a new gesture is entered and finds an optimal path of the hidden state that the

observation column can represent in the model. Forward algorithm showed the cumula-

tive probability of moving in each state in order to obtain the probability of occurrence
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of observations, not the path of hidden state when the entire observation column is

input. The viterbi algorithm selects the state with the smallest accumulated error, not

the sum of the probabilities at the previous time, to find the optimal of each path. The

probability of each state at time 1 is obtained as follows.

P(o1,q1 = s1|λ) = δi(1) = πi ∗bi(o1) (2.5)

Considering the probability at time 1, the probability of state i at time 2 is given by the

probability that a transition occurs from state j to i at time 1 and state j, and observation

o2 at state i The probability is the product of the probability of state j at time 1. There-

fore, the formula for obtaining the maximum probability is a value that maximizes the

product of the probability of transition from state j to i, the probability of observation

o2 in state i, and the probability of state j in time 1 . This process is shown in equation

2.6.

P(o1,o2,q1 = s j,q2 = si|λ) = δ j(1)∗a ji ∗bi(o2)

δi(2) = max(P(o1,o2,q2 = si)|λ)
(2.6)

If we generalize it to the equation at time t, it is equal to equation 2.7.

P(o1,o2, ...,ot ,qt = si|λ) = δi(t) = max(P(o1,o2,q2 = si)) (2.7)

If this process is repeated up to time T, the values stored in time T are stored at the

highest probability value of path ending in each hidden state at time T. Thus, at time

T, the maximum value of δi(T ) is the probability value of the optimal hidden state

sequence. This is summarized by equation 2.8.

P(Q,O|λ) = max(δi(T )) (2.8)
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Finally, we need training on probability model to classify each gesture. HMM use the

Baum-Welch algorithm to train probability models. The Baum-Welch algorithm is a

kind of EM-algorithm. In order to train the probability model, we calculate the proba-

bility of the path and re-estimate the model’s stochastic parameters based on the path.

There are initial probability(πi), state transition probability(ai j) and obervation symbol

probability distribution(b j(k)) in HMM. To re-estimate the probability parameters, we

first define the probability that a transition occurs state i to state j at time t to time t + 1

with given the observation. When the obervation sequence given, the probability that

state at time t is state j is α j(t) which is defined before. Also, the probability that state

j at time t+1 is β j(t +1). Thus, given the observations, the probability of trainsition at

state i to state j at time t to time t + 1 is obtained by multiply the αi(t), β j(t+1), ai j and

ot+1. The equation for this is shown in equation 2.9.

ζt(i, j) = P(qt = si,qt+1 = s j,O|λ)

=
P(qt = si,qt+1 = s j|O,λ)

P(O|λ)

=
αi(t)∗ai j ∗b j(ot+1)∗βi(t +1)

P(O|λ)

=
αi(t)∗ai j ∗b j(ot+1)∗βi(t +1)

∑
N
i ∑

N
i
{

αi(t)∗ai j ∗βi(t +1)∗b j(ot+1)
}

(2.9)

In this equation, ζt(i, j) is the probability of state i at time t and state j at time t + 1

with given observations, so we can calculate the probability of state i at time t when

given an observation through integration with j. This equation is shown on 2.10.

γt(i) = P(O,qt = si|λ) =
N

∑
j=1

ζt(i, j) (2.10)

Using ζt(i, j) and γt(i) which is obtained on equation 2.9 and equation 2.10, HMM

re-estimate ai j and b j(k). ai j means probability that the state transition is occure state

i to state j, so by dividing summation of γt(i) which means the state i at time t when

14



obervation is given with summation of ζt(i, j) which means the state transition occure

state i to state j at time t We use the obtained value, âi j, as re-estimated value of ai j.

This process is shown in equation 2.11.

âi j =
T

∑
t=1

ζt(i, j)
γt(i)

(2.11)

Also, with a given observation, we divide the probability of state i at time t by the

probability of state i at time t and the probability that ot = vk to obtain ˆb j(k) and

update b j(k). This is equivalent to equation 2.12.

b̂ j(k) =
T

∑
t=1

γt(i)|ot=vk

γt(i)
(2.12)

In the HMM, when the data is input, the state is estimated based on the input data, and

the probability model is trained by repeating the process of re-estimating the probabil-

ity parameter based on the state.

Hidden Markov models are used in various fields such as gesture recognition (Schlömer

et al., 2008) and speech recognition (Rabiner, 1989), where the vector Taylor series is

applied to HMM to recognize speech(Acero et al., 2000; Rose and Paul, 1990; Yam-

ato et al., 1992; Chen et al., 2003). A threshold HMM (Lee and Kim, 1999) uses a

threshold model to calculate the likelihood threshold of the input pattern and con-

firms the matching gesture pattern to process the un-staged pattern using the hidden

Markov model based technique (Lee and Kim, 1999). In the HMM method, the thresh-

old method is used to recognize the most similar gesture(s). To prevent recognition of

a gesture having a higher probability value than other models (even though the input

gesture is completely different data), use a method that is not recognized as a gesture.

The authors of this paper used this method to maintain a high recognition rate and to

develop a recognizer that can recognize mistakes even if incorrect gestures are input.

Another method is to parametrize the existing output probability with the parametric
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Hidden Markov Model (Wilson and Bobick, 1999). This method can be used to add

a three-dimensional angle to a moving gesture in two dimensions to provide smooth

motion using parameters (Gales, 1998).

2.2.2 Finite State Machine

A finite state machine (FSM) which is mainly used for gesture recognition or signal

recognition classification is a method of inputting various training data to obtain fea-

ture points, dividing states, and confirming inputs based on state movement. Most of

the signals used for pattern recognition have a similar shape, but they have a shape

that gradually changes. Therefore, FSM algorithm divide the state based on a certain

range and divide the form into several clusters and use the characteristic that the same

gestures pass through the same state in the same order. A FSM is a method frequently

used in the field of logic circuits. When there is a combination of certain states, the

state is changed according to a specific input, and if all features of the state are moved

equally, FSM can recognize the gesture. Because it only computes the motion of the

state, this method has fast operation speed. Because it only computes the motion of the

state, this method is fast.

However, it does not have a process for error handling such as HMM’s, so it is vulner-

able to errors. . A FSM used for gesture recognition uses vector quantization applied

to input gestures to distinguish states and use them for recognition. . Especially, the

model of the finite state machine used for gesture recognition is a Mealy model. When

the sequence for the current position of the gesture is input, the state is moved accord-

ing to the input and the recognition is made when the gesture follows every state. The

millimetric model is mathematically defined by six parameters (S,s0,Σ,Λ,T,G). A de-

scription of each parameter is given below.

S : State Group
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s0 : initial state

Σ : Set {o1,o2, ...oT−1,oT},oi means input at time i

Λ : output

T : Function that output the next state according to the current state and inputs.

G : Output function generating the output according to current state and inputs.

When a state sequence of a gesture is input, it is assumed that the state moves according

to the input and is recognized when passing through all states. Most of the gestures fol-

low similar paths, so when representing the same gesture, a sequence of the same state

is produced. Therefore, it is applied as a method for gesture recognition (Hong et al.,

2000a; Davis and Shah, 1994; Hong et al., 2000b). Another type of gesture recognition

method using a finite state machine is a threshold finite state machine (TFSM) (Bhuyan

et al., 2005). In the TFSM, researchers emphasize the need to remain in a state for more

than a certain period of time to maintain the shape of the gesture. Therefore, they used

a method of matching a simple sequence where a gesture remains in each state for a

minimum threshold of time. Another FSM gesture recognition algorithm, Yim (2013)

used forward algorithm to make FSM rubust to errors.

2.2.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is a method that involves two time-varying input sig-

nals and compares the differences between the two signals (Berndt and Clifford, 1994;

Keogh, 2002; Keogh and Pazzani, 2001). DTW finds the points of greatest similarity

between two signals through dynamic programming to find matching points. In ges-

ture recognition, when there are various patterns of signals, the pattern recognized is

the pattern that has the smallest difference or if the difference is less than the prede-

termined distance value (Salvador and Chan, 2007). Algorithm 1 presents the pseudo

code for DTW.
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Figure 2.2: Two signal and matching point of DTW

Algorithm 1 Optimal Warping Path
Input: : Input signal SIG1 and SIG2 which length is N, M.

Output: : Optimal warping path similarity dk

1: for i in 1..N do
2: for jin1..M do
3: W (i, j) = |s1i− s2 j|
4: end for
5: end for
6:

7: for iin1..N do
8: for jin1..M do
9: D(i, j) = D(i,1), D(i,2) ∼ D(i,j-1), D(i,j) if i = 1

10: D(i, j) = Sum of D(1,j), D(2,j) ∼ D(i-1,j), D(i,j) if j = 1

11: D(i, j) = D(i,j) + argmin{D(i-1,j),D(i-1,j-1),D(i,j-1)}
12: end for
13: end for
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For example, suppose that the two signals in 2.2 are input. Signal 1 and Signal 2 are

similar in overall shape, but vary in time. Each sequence of the two signals is matched

and their similarity is compared. . If recognition is performed in this manner, a path

can be more accurately recognized. The reason is that, unlike the methods described

previously, differences are obtained not by extracting feature points but because the

entire path is considered. When comparing the state and signal, even if a large differ-

ence occurs outside the state, the distance from the expected state is too far away to

analyze it. Dynamic time warping, on the other hand, has the advantage that no blind

spots are created by analyzing distances from all parts without using specific informa-

tion. On the other hand, it has a disadvantage in that it consumes significant calculation

time because it evaluates a very large amount of data. When used for gesture recog-

nition, one reference signal is created for each gesture and a gesture with the smallest

distance value is obtained. To overcome the disadvantages of DTW, lower bounding

is being studied. One lower bounding method is to use the observation that all points

greater than the maximum of other sequences in one sequence should contribute at

least the squared difference of the maximum value of the other sequences to the final

DTW distance (Yi et al., 1998). Another method is to use a window on the signal, store

the minimum value inside a certain interval, and declare U and L to store the maximum

value. The equation of U and L is as follows. In equation 2.13 qi is signal at time i and

r is window size.

Ui = max(qi−r : qi+r)

Li = min(qi−r : qi+r)

P(qt+1 = Si|λ) = argmax(P(qt−1 = Si)(i > 1)

(2.13)

Then reduce the interval beyond Ui and Li.
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2.2.4 Neural Network

Neural networks (NNs) are one of the recognition methods that imitate the brain (De-

muth et al., 2014). A neural network consists of several hidden layers, with nodes

(neurons) inside each layer, weighted lines connecting the nodes between layers, and

an input and an output layer. One of the reasons why neural network algorithms are

popular is their ability to learn different types of relationships among data (LeCun

et al., 1990; Tollenaere, 1990). To adjust weight values, weight values are not directly

modified by the user, but are modified based on error feedback calculated at the output

units after a signal has propagated through the network. For example, if a signal1 is

input and the expected output to signal1 is 001, the responses calculated at the out-

put layer provide feedback to each weight by calculating the error between the current

response and the expected response of 001. When this process is repeated, weights

should eventually converge to constant values so that 001 is output when signal1 is in-

put. If the weights converge correctly, then signal1 can be recognized. If the weight is

converged, then signal1 is input and output becomes 001 and can be recognized. The

feedback of the output to the input requires extensive training data and computation

time. The development of current hardware can compensate for these shortcomings,

and recently NNs have regained popularity owing to their high recognition rates and

selection capabilities. In recent years, various methods for improving the recognition

rate have been studied, and solutions for problems such as local minima, calculation

speed, and overfitting have been proposed. The advantage of NNs is that it is possible

to construct a recognizer with high recognition rate through repeated training and to

construct different types of recognizers by adjusting the learning method and/or the

composition of layers and nodes. As mentioned previously, NNs do require extensive

computation time for training and require a large amount of training data; it is difficult

to use NNs when training data is insufficient.
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2.3 Application

Recently, gesture recognition using various methods has been carried out for various

applications. An older example using HMMs is a gesture-recognition paper by Rung-

Huei Liang and Ming Ouhyoung (Liang and Ouhyoung, 1998). They used HMM to

recognize sign language (Liang and Ouhyoung, 1995; Starner, 1995). For this purpose,

they analyzed statistics according to the four parameters of a gesture (posture, orienta-

tion, and motion) and implemented a prototype with 250 vocabulary in Taiwanese Sign

Language. The system used a Hidden Markov model for 51 basic positions, 6 direc-

tions and 8 movements (Charniak, 1996; Vaananen and Bohm, 1993). More recently,

Palma et al. (2016) combined HMM and DTW as a method to evaluate the accuracy

of motion during rehabilitation treatment. An example using a combination of an NN

and an HMM was recognizing a gesture and recognizing an action taken by a dancer

to determine the gesture’s action path (McCormick et al., 2014). A re-estimate of a

gesture drawn on a touchpad through long short-term memory (LSTM), a type of neu-

ral network, was evaluated by Alsharif et al. (2015). In addition, gesture recognition

has been applied in sign language recognition (as mentioned previously), robot control

(Lim et al., 2017; Chen et al., 2017), and in various other fields.

2.4 Summary of Chapter 2

In this chapter, we reviewed the data and algorithms used for gesture recognition. As

gestures are based on body movements, there are many methods involving vision. Re-

cently, methods of simultaneously processing multiple data instead of single data ow-

ing to increases in hardware operation speed have been studied. Algorithms for gesture

recognition have been developed and evaluated from the 1980s to the present and have

been applied in various ways. The use of gesture recognition is applied to modern sci-

ence such as in robot control, computer control, sign language recognition, and motion
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recognition, and there will be further developments in the future. Therefore, in this

paper, we have studied an algorithm to enhance existing gesture recognition methods.
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Chapter 3

Probability-based Finite State Machine

In this chapter, we propose a multipath FSM to compensate for the fact that there is

only one path, which is a disadvantage of FSM, and that it is vulnerable to errors. For

recognize more then one path, We use state transition matrix which train transition

probabilty between state and assumed that there is a path between state when state

trainsition probability is nonzero. Also to choose one path when more than two paths

are recognized, we compare the probability that multiply every state transition and ma-

halanobis distance between state center and each sample. Remember the probabilities

for the starting and ending points as a way to maintain the overall shape of the gesture.

This section is has published as a paper(Kwon and Kim, d) and additinal experiment

being prepared for submission as a paper in journal ’Sensors and Actuator’(Kwon and

Kim, a).

3.1 State and State Sequence

An FSM is a state transition based recognizer, therefore before using it for gesture

recognition, a state sequence should be generated by classifying the states. In order

to classify the states in the space, a vector quantization is performed, which divides

the whole path into k groups using the K-means algorithm. The K-means algorithm is
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one of the vector quantization methods that classifies samples with N dimensions into

k clusters. For clustering, k random samples are selected and set to the initial center

position. The entire sample is then included in the closest cluster of k centers. The

centers of mass of the obtained k clusters are then found, and set again as the center

values. This method is repeated until the center of each cluster converges. When the

center position of each state is determined, the center of each gesture is found at each

time, and a sequence of states is generated to obtain the gesture path. The formula for

creating the state sequence at this time is as follows.

vt
b = argimin(di) (di is distance between xt and center o f state i) (3.1)

Let us assume that the generated path is a basic path. At this time, the Mahalanobis dis-

tance is used to select the closest state. The Mahalanobis distance is a probability-based

distance that is affected by the differences in simple coordinates, and by covariances.

The gesture does not match all the paths, but most of them have similar shapes, and

therefore, they do not fall more than a certain distance from the average. Using this

feature, we can apply covariance to the Mahalanobis distance estimation. When a co-

variance is applied, it is possible to apply not only the distance from the center of the

state, but also the dense section of the state configuration. The Mahalanobis distance

equation is equivalent to equation 3.2.

µ = E(X)

Σi = E((X−µi)(X−µi)
T )

Distance(xt ,µi) =

√
(xt−µi)

T
Σi
−1(xt−µi)

(3.2)

3.1.0.1 Forward Path

In order to obtain the simplest State Sequence, the Mahalanobis distance is used to

obtain the closest state of the hand at each time, and it is expressed as a sequence.
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STATE 1
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STATE 3

STATE 4

STATE 5

STATE 6

Figure 3.1: A gesture with an impulse error added. An added error in the gesture can

cause unwanted state movement.

However, when the actual gesture is used, an error may be added to the actual user’s

desired path due to either the situation at the time, a user’s mistake, or a recognition

error. The basic state sequence adds the sequence of the unwanted state, by including

the gesture in the nearest state. For example, assuming that a gesture of figure 3.1

has been input, the actual gesture is quite similar to 5; however, an impulse error is

added, resulting in a sequence of undesired states. When such an error occurs, we

make up a basic path that can be fatal to create a forward path that can locate a path

problematically by looking at the previously input sequence. This is similar to the

forward algorithm used in an HMM. We can modify the position of the current state

by comparing it with the previous state through probability. Stochastic modification is

possible using matched training parameters. The HMM forward algorithm is applied

by using the fact that the path can be modified through the hidden state. Using the

HMM forward algorithm, we can obtain the most probable state based on previously

input data. This process is shown in equation 3.3.
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STATE 1
STATE 2

STATE 3

STATE 4

STATE 5

STATE 6

(a) (b)

Figure 3.2: (a) Gesture ”5” and its state. (b) Gesture ”6” and its state. The path in the

blue part is almost the same, but the path in the black part is very different.

α1(i) = πi ∗bi(1)

αt+1( j) =
N

∑
i=1

αt(i)∗ai j ∗b j(k)

vt
f = argimax(αt)

(3.3)

The probability that πi in equation 3.3 starts at state i, bi(k) is the probability of ob-

servation k occurring in hidden state i, and ai j is the state transition probability. Thus,

αt( j) is the probability of state i at time t, assuming that time t is affected by time t-1.

3.1.0.2 Forward + Backward Path

The forward path determines the state at time t using the state of the sequence at time

t - 1, and the position of the gesture at time t when the gesture is input. However,

the gesture is meaningful when one input is completed, and it is meaningful not only

for the state at time t - 1, but also for the state at time t + 1. Take the figure 3.2 as

an example. Figure 3.2 (a) gesture ”5”, figure 3.2 (b) is the gesture of gesture ”6”.

Gesture ”5” and gesture ”6” draw a roughly matched path in the red part, but draw a
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totally different path in the blue part. As can be seen from this, the gesture is important

not only from the information of the previously inputted sequence, but also from the

information of the sequence that was inputted later. Therefore, we used the forward and

backward algorithm for both the previous state and the next state. In order to estimate

the position of the state, the probability of state i at the end of the entire time sequence

will be bi(T ). The probability of state i (at time t) is then multiplied by the probability

of a state transition from state 1 to 6 (at time t + 1), the state transition from state 1 to 6

(at state i), and bi probability. Then, the path (using the information of the entire path)

can be generated by using the information of time 1 t of the forward path, and the

probability of using the information of time t to T. This is equivalent to the expression

3.4.

βT (i) = 1, t = T

βt(i) =
N

∑
j=1

βt+1( j)∗ai j ∗b j(ot+1)

vt = argimaxαt(i)∗βt(i)

(3.4)

In this equation, bi(k) is the probability that the observation is k when hidden state i,

pii is the prior probability and ai j is the state transition probability. Thus, βt( j) is the

probability of state i at time t, assuming that time t is affected by time t + 1. Assuming

that time t is affected by time t - 1, and affects time t + 1, αt(i)∗β is the probability of

state i at time t. We summarize the information used for each path state in figure 3.3.

Figure 3.3 shows that the forward path uses more information than the basic path, and

the forward + backward path uses more information than the forward path. Each path

applies to all FSMs.

27



(a) (b) (c)

Figure 3.3: (a) Information used by the basic path. (b) Information used by the forward

path. (c) Information used by the forward + backward path. The basic path uses only

the position information at the time, but the forward path and the forward + backward

path obtain a probabilistic position through the forward algorithm and the backward

algorithm.

STATE 1
STATE 2

STATE 3

STATE 4

STATE 5

STATE 6

(a)

1 2 3 4 5 6

(b)

Figure 3.4: (a) Gesture ”5” and trained state (b) An FSM generated from gesture ”5”.

Gesture ”5” state change order is represented by the FSM. If the input state sequence

reaches the end without going out of the FSM, it is judged as a gesture.
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3.1.1 MultipathFSM

The FSM recognizes gestures with state sequences created in the previous section. To

make an FSM used for recognition, we train the sequence of the state to make the state

machine the most frequent sequence of the state. Suppose, for example, that gesture

”5” is entered in the trained state as figure 3.4 (a). The input gesture ”5” represents

the state sequence of most sequences 11...1122...2233...3344...4455...5566...66. At this

time, the state sequence of the most input gesture is made into an FSM as figure 3.4

(b). If the input gesture does not follow the FSM, it means that the input gesture, and

the gesture indicated by the FSM, are different gestures. Conversely, when passing

through all FSMs, the input gesture is recognized as a gesture equivalent to the state

indicated by the state. By recognizing the gesture as a single FSM, unlike the HMM it

is possible to reduce the influence of the time that the gesture stays in the same state,

and to distinguish the gesture by concentrating only on the path where the gesture

travels. In the HMM, the probability of staying in one state changes according to both

the moving speed of the gesture and the sampling frequency. Therefore, the transition

matrix is changed, and the recognition may fail when the gesture is input at a different

speed to the trained gesture. However, when an FSM is used, the information about the

state movement is less influenced by the time, and the effect of the speed of the gesture

is reduced. An FSM used for recognition is generated for each gesture. If the input

gesture is recognized through two or more finite state machines, a gesture with greater

similarity is determined by calculating the distance. This process will be described

later.

3.1.1.1 Multiple FSM

In this section, we describe how to extend an FSM so that it recognizes multiple paths

in a single gesture. Because every gesture does not always move to the same position,

an FSM recognizes the gesture based on the state. However, the movement of the state
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STATE 1
STATE 2

STATE 3

STATE 4

STATE 5

STATE 6

(a)

STATE 1
STATE 2

STATE 3

STATE 4

STATE 5

STATE 6

(b)

1 2 3 4 5 6

(c)

1 2 3 4 6 5

(d)

Figure 3.5: (a) path type of gesture ”5” 1. (b) path type of gesture ”5” 2. (c) Type 1 FSM.

(d) Type 2 FSM. Both paths represent a gesture of ”5”, but there is a difference in the

paths: one recognizes one, and the other does not. Therefore, we created an FSM for

both paths, and modified it to recognize it.

may be different according to the range of the actual state, and the order of movement

of the gesture itself may vary. However, the basic FSM recognizes gestures by creating

one machine in one gesture. Therefore, only one path can be memorized, and when the

order of drawing changes, it is recognized as another gesture and processed as a fail.

This is shown in figure 3.5. The actual gesture ”5” has two paths, (a) and (b) of figure

3.5. With a basic FSM, only one path sequence out of two paths can be remembered,

and only one gesture is recognized as ”5”. However, since both paths represent the path

of gesture ”5”, both are required to be memorable. Therefore, we propose a multipath

FSM that memorizes multiple paths. Figure 3.5 verifies that the path is not unique.

Therefore, you can memorize multiple gestures by making all the sequences of paths

that the gesture has using FSM. For example, if you create an FSM for gesture ”5,”

we can recognize two gestures by creating two paths with FSM when there are two
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Symbol Meaning

S(k,l) The l th model state set of gesture ”k”

Q(k,l) lth model input state set of gesture ”k”

q1
(k,l) l th model initial state of gesture ”k”

Λk Output of gesture ”k”

T (k,l) A function that returns the next state based on the output

state and input of gesture ”k”

G(k,l) A function that returns the next output based on the output

state and input of ”k”

Table 3.1: Mathematical definition of a multiple FSM. l represents the index of the state

machine. Each state machine has different functions and state configurations.

paths such as figure 3.5. In this case, the mathematical definition of the multiple FSM

of gesture ”k” is (Sl,S0
(k,l),Σ(k,l),Λ,T (k,l),G(k,l)) and each definition is 3.1.

3.1.1.2 Probability-based-FSM

A multiple FSM is a way to create an FSM for all the paths gestures, and to recognize

gestures drawn in various forms. However, because multiple FSMs need to remember

all paths, they need a lot of storage space. Furthermore, they cannot train all paths

because of a lack of training data, and the time required for recognition may increase,

because all FSM results must be checked and the values must be obtained. In order to

overcome these disadvantages, we have developed an FSM based on probability. The

transition matrix used for gesture recognition stores the probability of moving from

state i to state j. When a probability matrix is generated through an HMM, if there

is at least one transition from state i to state j, it stores a non-zero probability at ai j.

Finally, when the training of the gesture ends, all the movements of the state shown

in the whole training are saved. Therefore, if the probability matrix of the transition

matrix is 0, assuming that there is no path and if the probability is nonzero, assume

that there are paths. This can have an effect similar to an FSM that determines the
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gesture based on the existence of the path. The starting and ending positions are also

important, as the order is crucial for constructing the gesture. If the starting or ending

position is different, it may be recognized as a gesture (without following the whole

form of the gesture), which can generate an error. To prevent this, the gesture is made

to conform to the whole shape by training the probability of the starting and ending

positions of the gesture. Assuming that the two paths shown in figure 3.5 are trained,

the path of figure 3.5 (a) is trained first, so that the path that can be transitioned between

the states as figure 3.6 and states 1 and 6 end the training. Then, when figure 3.5 (b)

is trained, the state transition probability of state 2 to state 1, state 6 to path 2, and the

prior probability of state 2 are trained. Finally, when multiple paths between states are

trained, such as in figure 3.6 (b), recognition fails when the gesture moves out of state,

but all paths are recognized when trained. Therefore, both gestures can be input by the

method proposed in this paper. The expression for this is shown in equation 3.5.

result = true, pi1 ∗σT ∗
T−1

∏
1
(avtvt+1)> 0

result = f alse, pi1 ∗σT ∗
T−1

∏
1
(avtvt+1) = 0

(3.5)

3.1.1.3 Gesture decision

Finally, when two or more of the same gestures are input, the similarity between the

model and the gesture is determined to distinguish the gesture. When the gestures of the

training model move in a similar order, it can be concluded that the gestures input by

two or more models are the same as the gestures represented by the model. At this time,

a gesture closer to the gesture indicated by the input gesture is judged. The cumulative

Gaussian probability is then applied between the model and the gesture, to compare

their similarities. The probability-based method is used to train each gesture to obtain

a probability parameter, and to determine the presence or absence of a path through
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Figure 3.6: (a) The Probability-based FSM which training only type 1. (b) The Probability

matrix based FSM which training both type 1 and type 2.

comparison. In order to compare the similarity using a probability based feature, the

Gaussian probability density between the point and the state is obtained. The Gaussian

probability density formula is as follows.

bt =−0.5∗ log(|Σvt |)−0.5∗ (x−µ)vt
T

Σvk
−1(x−µvk) (3.6)

Depending on the characteristics of the logarithmic Gaussian probability density func-

tion, it is affected by the covariance and has a larger probability density with a smaller

distance from the center, and a smaller probability density with a larger distance.

Therefore, the probability of similarity between the input path and the center of each

state is obtained. The probabilities for the prior, ending, and the state transition are also

added, to obtain the probability for the path. The greater the similarity means the more

similar are the paths. This is equivalent to equation 3.7.

sk = log(π1)+ log(σT )+
T

∑
t=1

(bt)+
T−1

∑
t=1

(avtvt+1)|vt 6=vt+1

gesture = argkmax(sk)

(3.7)
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Figure 3.7: A schematic diagram of the entire gesture.

3.1.2 3-dimesional body gesture recognition

In the previous section, we proposed an FSM that recognizes gestures using a single

point. It recognizes gestures by tracking a single point, but recognizes gestures by

the whole body, not gestures by one hand. We used skeleton of gestures to extend

three-dimensional body gesture recognition. We also selected the points needed for the

entire skeleton, to take advantage of the many motion points for gesture recognition.

The method used to select points and identify body gestures is discussed in Chapter 5.

The methods used in this chapter are summarized in figure 3.7.

3.2 Experiment

3.2.1 Experiment setting

In this paper, we propose FSM, which is more robust against errors and can pro-

duce good results with a small number of training data. The proposed algorithm is
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Figure 3.8: Recognition rate of each method with basic path, forward path and forward

+ backward path.

the probability-based method and it is possible to recognize the gesture with a small

number of data. Experiments were conducted using UTD-MHAD dataset to confirm

the performance of the developed algorithm. UTD-MHAD dataset extracts skeleton us-

ing RGB camera and Depth camera and attaches inertial sensor to obtain inertial data.

The data includes 27 gestures that were repeated 4 times by 8 subjects. We conducted

a five fold cross-validation to divide the training data and the test data by a ratio of 4:

1 to confirm the recognition rate. The experiment confirmed the recognition rate using

the HMM for comparison and the proposed FSM. Also, we confirmed the recognition

rate by changing the number of states applied to gesture recognition from 3 to 15.

3.2.2 Experiment Result of FSM

Each method was used to determine the rate of perception used. The recognition rate

using the various FSMs is shown in figure 3.8.

First, we confirmed the gesture recognition results according to the three state se-

quences method. As a result of checking the recognition rate, it was confirmed that the

recognition rate improved when there was considerable information used in the path.

Unlike the basic path, which uses the state at the closest distance, forward path and for-

ward + backward path are obtained by accumulating the probabilities at various times.
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Thus, if different paths are accumulated, the recognition rate is improved through mod-

ification, even if the paths do not fully match. It was also confirmed that the recognition

results of the probability-based FSM concurred with the existing FSM. The recogni-

tion rates revealed that the existing FSM generally achieved a higher recognition rate

than the probability-based method. The reason for this is the kind of path that is rec-

ognizable. For existing FSM, a gesture is recognized when the entire path in the state

matches. However, actual gestures appear in many different forms, and if a few paths

are missed, the recognition rate decreases. Alternatively, probability-based FSMs only

recognize the path between states, rather than the entire path, based on probability.

Consequently, the probability-based FSM can recognize the path between the states

where the transition occurred, even if it only occurred once; therefore, it is possible to

recognize the paths of various entities. As a result, the overall rate of the perception of

gestures is higher in the probability-based FSM, when compared with other methods.

Next, recognition was accomplished by changing the state counts of the existing FSM,

and the probability-based FSM that was tested earlier. We confirmed the recognition

rate by changing the number of states from 3 to 15 (for recognition). The results are

shown in figure 3.9.

Figure 3.9 (a) shows the recognition rate according to the number of states of multiple

FSMs. Looking at the recognition rates, we can see that the recognition rates of the two

methods are different according to the number of states. The multiple FSM showed the

highest recognition rate when the number of states was 3. In addition, the recognition

rate was significantly reduced, even when the number of states was increased, based

on the number of states. Furthermore, in the probability-based method, the recognition

rate was the highest when the state number was 6, 15, 15, according to the number of

paths. The probability-based method has a smaller decrease in recognition rate than the

multiple FSM, and the interval in which the maximum recognition rate is maintained

is also wider. Furthermore, the recognition rate of each path shows that the recogni-

tion rate is greatly affected by the number of states in the basic path. However, it can
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Figure 3.9: (a) The results of the probability-based FSM according to the number of

states. (b) The results of the multiple FSM according to the number of states. The

probability-based FSM results show that the greater the number of states possible, the

better the results. However, the multiple FSM shows the best result with a small number

of states.

be seen that the number of states is less influenced when modifying the path through

the stochastic parameter, such as forward path and forward + backward path. Theo-

retically, when the number of states is small, the recognition rate is low due to the

lack of information representing the gesture. However, in the case of multiple FSMs,

as the number of states increases, the number of state sequence cases of gestures in-

creases, and the recognition rate decreases. Conversely, in the probability-based FSM,

the recognition rate of the gesture is improved. Therefore, the multiple FSM had the

highest recognition rate when the number of states was 3, but the recognition rate of

the probability-based FSM continuously increased.

We can understand the reason for this result by changing the number of training data.

In order to change the number of training data, the experiment was verified by varying

the ratio of training data to 100%, 80%, 60%, 40% and 20%. The results are shown in

figure 3.10.

The results show that as the number of test data increases, and the number of training

data decreases, the overall recognition rate decreases. At this time, the recognition re-
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Figure 3.10: (a) The results of the probability-based FSM according to the rate of train-

ing data. (b) The results of the multiple FSM according to the rate of training data. The

probability-based FSM shows a relatively good result with a small amount of training

data.

duction rate of the probability-based method was lower than other methods. Moreover,

in the case of a multiple FSM that memorizes sequences for the entire path (rather than

probability-based recognition), the recognition rate is greatly reduced as the number of

training data decreases. Multiple FSMs can recognize when a path is entered, and when

there is a training gesture that matches the path. Therefore, when the number of train-

ing data is small, the number of training gestures is decreased, and the recognition rate

is drastically lowered. The probability-based FSM enabled gesture recognition when

there was at least one instance of information about state movement, making it possi-

ble to recognize even when there was little training data. Although the recognition rate

did not show a large difference when the number of actual training data was large, it

can be confirmed that the recognition rate was reduced by a much smaller amount than

the multiple FSM, when the number of training data was small. The rate was affected

by these results: the recognition rate of the probability-based method increased when

the number of states was increased, although the recognition rate of the existing FSM

also decreased. As a result, compared to the traditional FSM (that compares the over-

all path of the gesture), the probability-based FSM required less likely training data,
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which caused an increase in both the state counts and the complexity of the path.

In this chapter we have studied the different FSM methods and how to create different

state requirements to apply them. The results displayed that the transition matrix-based

FSM had the highest recognition rate. In particular, it had the advantage of being able

to achieve high recognition rates with a small amount of training data. Accordingly,

compared to FSMs that check the entire route, only the movement between each state

was checked to recognize the gesture. As a result of changing the path creation method,

to correct the error in the gesture, gestures with a large amount of information had a

higher recognition rate. Nevertheless, the recognition rate of gestures was not high,

only approaching 80%. The reason why these results are presented is because of the

location of the gesture. Each person does not represent a form that is entirely consis-

tent with either the size of the entire motion, or the starting position of each gesture.

There are a number of possible ways to calibrate this, but there are limitations, in par-

ticular a complete calibration is not possible. As a result, if the position of the gesture

deviates significantly (or differs from the general form), the gesture is not recognized.

Moreover, the FSM methods presented may reduce the rate of perception of repeti-

tive gestures. By checking the movement between simple states, if the entire route is

repeated, it is not possible to reflect the repeated forms, resulting in decreased recog-

nition. However, we observed a relatively high rate of recognition of gestures that do

not have repetition.

It is also expected to gain a higher recognition rate by studying how to align the size

and position of the gestures.

3.3 Summary

In this paper, we propose a gesture recognition method that recognizes several types

of gestures in order to overcome the disadvantages of state - based gesture recogni-

tion method FSM. The proposed method is a probability-based FSM that recognizes
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gestures by training multiple FSMs that operate and store two or more FSMs in one

gesture, and a connection between states that are not entirely sequenced, in order to

recognize the diversity of gestures. In order to compare the advantages and disadvan-

tages of the two methods, we confirmed the recognition rate by varying the number

of gesture training dates. In the multiple FSM, it was confirmed that the recognition

rate of the gesture increases as the training of the path increases. On the other hand,

when the ratio of training data is reduced, the recognition rate can not be guaranteed

because it can not guarantee the diversity of recognizable gestures. probability-based

FSM showed the highest recognition rate when the number of training data was large.

On the other hand, when the number of training data decreases, the recognition rate

decreases much less. This result influences the experiment of changing the number of

states, and the probability-based FSM shows that the recognition rate increases contin-

uously when the number of states increases and that the Multiple FSM decreases when

the number of states is more or less than 6.
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Chapter 4

Probability-based Dynamic Time

Warping for Gesture Recognition and

Signal Warping

In this chapter, we propose dynamic time warping based on probability. Conventional

dynamic time warping can not be applied to a relative distribution by comparing simple

distances between two signals. Therefore, in this paper, we have studied a method

that can apply different distances according to distribution by stochastic application.

To obtain a stochastic distribution, we need to find the path that is the center of the

whole signal. Therefore, the path representing each training data was obtained by three

methods. Then, the probability distributions centered on each path were obtained, and

the gesture was recognized. This section is being prepared for submission as a paper

in journal ’Sensors and Actuator’(Kwon and Kim, c).

4.1 Dynamic Time Warping

To propose the proposed Probability-based Dynamic Time Warping (PDTW) in this

paper, it is necessary to develop a DTW which is the basis of the algorithm. Dynamic

Time Warping (DTW) aligns two distorted signals in a time series and outputs the dis-
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Condition Meaning

Bonundary p1 = (1,1) and pL =(N,M), The starting and ending points

of matching are the starting and ending points of the two

signals.

Step size pl+1− pl ∈ {(1,1),(1,0),(0,1)}, A matching point can be

moved by one index at a time.

Monotonicity n1≤ n2...≤ nL−1≤ nL,m1≤m2...≤mL−1≤mL, Matching

points do not reverse in time series.

Table 4.1: Three conditions of Dynamic Time Warping. We fix the starting point and

the end point by three conditions: suggest a step size that moves at once, make the

matching point not to be backward, and to be able to match the whole signal.

tance at that time. To find the target value, you can move the sequence to compare and

find the matching points that represent the smallest error at this time. To match the two

signals, the DTW creates three conditions: a boundary condition, a step size condition,

and a monotonicity condition. The variables to explain this are as follows.

L : Last matching point.

N : Last index of signal 1

M : Last index of signal 2

pl : First l

(n,m) : The matching point that the index of signal 1 is n and signal 2 is m.

s1l : Index of signal 1 in matching point l.

s2l : Index of signal 2 in matching point l.
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Rtk(i) =
D

∑
d=1

origin gestured(i)
D

(4.1)

A boundary condition means that the starting point of warping is (1, 1), and the ending

point is (n, m), when the lengths of signal 1 and signal 2 are n and m, respectively.

This is to limit the starting and ending points of the two signals, so that they match all

parts of the two signals, not just some of the parts. In order to ensure the continuity

of the two signals, the step size condition limits the previous matching points to (a-1,

b), (a,b-1), (a - 1, b - 1). If the step size condition is not guaranteed, it is possible to

jump over a part of the two signals. This would mean that only the starting and ending

points could be matched, resulting in a small error of the actual dissimilar signal. The

last condition (monotonicity), is a condition in which the matching point runs without

reversing the time series. Monotonicity is based on the premise that the two signals are

not inverted, because they are twisted in the time series and are the same signal. If the

monotonicity condition is not guaranteed, the matching points are staggered, and the

repetition frequency of the periodic signal is ignored. The three conditions are shown

in table 4.1.

The DTW obtains the cumulative distance based on these three conditions. Dynamic

programming is utilized to accumulate the distances at which the best conclusions are

drawn, to obtain the optimal path. This is accumulated from the first value of each

signal to the end, to find the optimum value between successive points. The process

of obtaining this is shown in figure 4.1. Ultimately, the route that is found has two

matching points, two signal-signal 1 and 2, stored and can be used as a similarity

between the two signals.
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(a) (b)

(c) (d)

Figure 4.1: The process of DTW.(a) Save the distance of (n, 1), (1, m) (b) To make the

distance of (i, j), use the smallest distance of (I - 1, j), (i, j - 1), (I - 1, j - 1) (c) repeat until

it reaches (N, M) (d) Backtracking for finding the best matching path.

4.2 Representative Path Generation

The probabilistic DTW uses the distribution probabilities based on one path, so one

path generation is required to represent each gesture. For setting gestures to represent

the training data, we propose three methods: time mean, length mean, and repeated
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warping.

4.2.1 Time Mean Representation

The average of the positions at each time of the initially acquired data was obtained by

the method used first. This process is shown in equation 5.3.

Rtk(i) =
D

∑
d=1

origin gestured(i)
D

(4.2)

Rtk of equation 5.3 represents the path representing gesture k, origin gestured repre-

sents the i-th index of the normalized signal, and D represents the length of the entire

data. The gesture obtained in this way has an average position of the gesture at each

time. This is the most basic gesture path training method using averaging, and is a

relatively simple method.

4.2.2 Length Mean Representation

However, a representative gesture that averages data by index might not produce a

gesture at a representative point, where the matching points of the two signals are

different when the speed varies with time. Therefore, the second method uses gestures

with the same interval, according to length. In the case of length normalization with

equal spacing according to length, assuming that each gesture has the same shape, it is

located at a comparable position when the index of the gesture is equal to the normalize

along the length. The equation for finding the path representing each gesture is shown

in equation 4.3.

RLk(i) =
D

∑
d=1

length gestured(i)
D

(4.3)
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Here, RLk represents the path representing the gesture ”k”, and length gestureD(i)0

represents the gesture evenly divided by the length. When the representative path is

obtained by using evenly divided gestures according to the length, the center of the

entire gesture can be found by arranging the index equally (according to the position),

as compared with the time mean representation.

4.2.3 Repeated Warping Representation

As a final method, we used DTW instead of simple averaging, to re-estimate and relo-

cate new locations through path matching. Since DTW represents a 1:1 match of two

signals, training was performed by repeating the process of comparing two gestures

and repositioning them. Figure 4.2 shows this process. Figure 4.2 (a) shows the pro-

cess of finding the matching points of two gestures and repositioning them. When two

signals are input, we obtain the points of signal 2 that match the i-th index of signal 1.

After finding the matching point, i-th index of signal 1, and the average position of sig-

nal 2 which matches with i-th position of signal 1 are found. By repeating this process

with a ratio of g:1 when train g-th training gesture and trained gesture, we can obtain

a final representation path with a warping gesture. This process is shown in figure 4.2

(b).

In this process, if a gesture is represented by a path that is representative of each ges-

ture, training can be performed while warping the training data, by matching with a

similar point through warping, even if the shape of the gesture is slightly different.

4.3 Probability based Dynamic Time Warping

Finally, to construct the probability model, DTW between the representative path and

each training data is processed, and a probability model is obtained. The trained rep-

resentative path passes through the center of each training data. At this time, assuming
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(a)

...

warping

warping

warping

(b)

Figure 4.2: The process of making repeated warping representation path.

that the points matching on the representative path follow the Gaussian model, the

mean and variance of the points that match each index of the representative path (with

DTW) are obtained to make a Gaussian model. The equation of the Gaussian model is

as follows.

f (x) =
1

(2π)D/2|Σ|2
exp
{
−1

2
(x−µ)T

Σ
−1(x−µ)

}
(4.4)

At this time, the Mahalanobis distance was used to simplify the gaussian distribute

function. The equation of the Mahalanobis distance is as follows.

47



D =

√
(x−µ)Σ−1(x−µ)T (4.5)

Unlike the conventional Euclidian distance, the Mahalanobis distance allows you to

distinguish between shapes in terms of covariance. Using these advantages, we can

obtain a model of the point where each point is matched, and apply DTW to the prob-

ability distance to recognize the signal whose distribution changes according to the

shape.

4.3.1 Multipoint gesture recognition

We used a skeleton to recognize 3D gestures. Assuming that each point of the skeleton

is probabilistic independent, we trained each point separately and added Mahalanobis

distance obtained from each point. In addition, when using all the points, we apply

the gesture recognition to the selected points in order of many movements in order to

solve the problems caused by the increase of dimension and fitting. The method for

selecting points will be described in detail in chapter 5. The similarity used in gesture

recpgmotion is expressed in equation 4.6.

Sg =
M

∑
{

Dg
p
}

(4.6)

In this equation, Sg represents the similarity with the gesture g, M is the set of points

selected in gesture g, p is the element of M, and Dg
p is the similarity with the p-th

skeleton of the trained gesture g.

4.4 Expreiment Setting and Dataset

To verify the representation of the proposed representation path, we compared the

distance difference between each training data and the representative path. We then
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Figure 4.3: Recognition rate of the HMM. The vertical index means ”input gesture and”

the horizontal index means ”gesture that input gesture recognized.”
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Figure 4.4: (a) Recognition rate of basic DTW. (b) Recognition rate of the probability

based DTW with time-mean representation path. The vertical index means ”input ges-

ture”, and the horizontal index means ”gesture that input gesture recognized.”

conducted a gesture recognition experiment to compare the results of Probability-based

DTW. We used UTD-MHAD for the experiment as in the previous chapters. The index,

name and description of the dataset are described in Appendix A.
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gesture index 1 2 3 4 5 6 7

Time mean 30.90 36.65 32.07 27.64 28.32 32.91 24.17

Length mean 27.07 30.20 28.66 24.73 25.38 26.80 21.64

Repeated Warping 25.38 29.77 26.85 23.91 25.38 26.51 21.22

gesture index 8 9 10 11 12 13 14

Time mean 27.41 42.41 36.61 23.41 23.78 37.57 41.96

Length mean 21.59 41.81 30.61 17.70 17.59 31.81 38.88

Repeated Warping 20.84 30.56 24.28 17.19 16.87 28.80 36.10

gestur indexe 15 16 17 18 19 20 21

Time mean 42.94 21.44 35.65 25.97 21.96 24.81 25.44

Length mean 38.52 16.41 29.17 22.72 20.74 23.51 22.22

Repeated Warping 36.41 15.94 28.00 22.71 19.21 23.28 21.83

gesture index 22 23 24 25 26 27 Mean

Time mean 51.46 40.62 27.90 25.78 21.28 37.53 31.39

Length mean 54.06 45.37 22.62 19.88 18.87 31.14 27.77

Repeated Warping 42.97 28.66 22.31 19.89 18.52 30.29 25.36

Table 4.2: The distance of each representation path according to gesture. Time-mean

representation path is the path that has the lowest average distance.

4.5 Experiment

First, in order to find out the accuracy of the representation path obtained by the three

methods, the average of the distance between the paths obtained by each method, and

each gesture and representation path, is shown in table 4.2. The results show that the

time mean representation has the greatest distance, and the repeated warping represen-

tation has the smallest distance. Moreover, in the case of the length mean representa-

tion and the repeated warping representation, the position matching portion is added

to have a relatively small distance value. This result shows why the length mean rep-

resentation and the repeated warping representation path are superior, compared to the

other representation paths. To analyze this, the position according to the index of each

gesture was calculated, and compared with the representation path.
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Figure 4.5: a) Recognition rate of the probability based DTW with length mean repre-

sentation path. (b) Recognition rate of the probability based DTW with repeated warping

representation path. The vertical index means ”input gesture”, and the horizontal index

means ”gesture that input gesture recognized.”

First, we checked each representation path. Recognition results displayed the smallest

distance sum of repeated warping representation, and the greatest distance sum of time-

mean representation. The reason for this is shown in figure 4.6. Figure 4.6 represents

the trained representation path. Figure 4.6 (a) shows the time-mean representation. In

the time-mean representation, the time-mean representation path is centered during the

linear motion of the gesture, but is not represented by the movement of each gesture

when the curve is drawn. The reason for this appearance is that it is twisted on the

time axis. Figure 4.6(b) shows the point corresponding to the 60-th index of the three

gestures. The blue gesture has not yet reached the end; the x-axis coordinate is 5.80,

the orange gesture is 7.70, and the red gesture is past the point. When the data is dis-

torted at each time axis, and different data are plotted, some of the training gestures are

still inward because they have not yet reached that point, and some are located inward

because they pass the point. In this case, the number of relatively inward gestures is

larger than the number of outward gestures, and the average position is shifted inward.

If this happens in the area where the curve is drawn, all the data will be inwardly bi-

ased.
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Figure 4.6: The gesture ”3” and representation path of (a) Time-mean representation,

(c) Length mean representation, (e) Repeated warping representation. Each path has

a similar shape for each gesture.
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Next, the length mean representation is shown in Figure 4.6 (c). In the length mean

representation, it can be seen that the shape that is biased inwards is relatively small

compared to the time-mean representation. Figure 4.6 (d) shows a similar approxima-

tion of the approximate location as in the figure 4.6 (b). In the case of the length mean

representation, each gesture is normalized according to the length, and the position of

the gestures are resampled by the length of gesture. When the gestures are sampled by

length, we can see that each gesture point is split in a similar place, and the result is

closer to the center of the whole gesture than in figure 4.6 (b). Finally, the result of

repeated warping is shown in figure 4.6 (e). Repeated warping is similar to the length

mean representation. When training gestures through repeated warping, warping of

the position is possible, and gesture distortion such as time mean-representation can

be reduced. Next, we applied this to real gesture recognition, to check the recogni-

tion rate of the proposed algorithm. For comparison purposes, the HMM and DTW

were used, and the probability based DTW was performed using each representation

path. Each recognition result is shown in figure A.5, 4.5. In the recognition results, the

HMM had a recognition rate of 69.71 %, DTW had a recognition rate of 76.45 %, the

use of length mean representation had a recognition rate of 91.25 %, the time-mean

representation had a recognition rate of 86.89 %, and the repeated warping method

had a recognition rate of 90.87 %. The HMM compares the entire path and identifies

the representative state without recognizing it. Particularly when the shape (or orien-

tation) of the overall gestures were similar, for example the gesture to ”Draw circle”

or ”Draw triangle”, gesture recognition failed. However, the recognition rate of DTW

methods are relatively high. The basic DTW, which had the lowest recognition rate of

the DTW methods, still achieved an approximately 8% higher recognition rate than the

HMM. However, the recognition rate of the gesture is also lower than the probability

based methods. In particular, ”draw circle” and ”draw triangle” displayed a significant

decrease in recognition rate when the fitting gesture had a large variance.

In the case of length mean representation and repeated warping, 91.25% and 90.87%
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were recognized, respectively. In the case of length mean representation with the high-

est recognition rate, each path represents a path representing a gesture. Repeated warp-

ing representation also showed a similar recognition rate to the length mean representa-

tion. Time-mean representation achieved a lower recognition rate than both the length

mean representation and repeated warping representation, in gestures that have many

direction changes, for example ”draw triangle”.

As a result, the recognition rate of the probability-based DTW is higher than both the

DTW and HMM methods. The HMM compared some paths, and trained state prob-

ability models, rather than comparing whole paths. Also, the HMM did not train the

path of the whole data, but divided some states and recognizing was based on the state.

When the gesture was recognized by the state based method, the state could not repre-

sent the whole gesture path, so when an error occured near the state edge, it displayed

a weakness. This reduced the gesture recognition rate.

However, with dynamic time warping, it was advantageous to perform a 1:1 compar-

ison between the entire data and the data. The algorithm finds the optimal matching

point from the beginning to the end, then finds the error at that point. In this way, the

recognition rate can be improved by taking advantage of the overall shape character-

istics, as compared with the HMM using the partial part. However, the existing DTW

also achieved a lower recognition rate than the probability-based DTW. For the ges-

tures ”draw circle” and ”bowling” in particular, the larger the variance of the gesture,

the greater was the difference in recognition rate. In such cases, the gesture itself spread

over a wide range, but was always calculated at the same distance, and the recognition

rate was lowered when the axis was deflected. However, with the probability-based

DTW, it was possible to apply it to variance, and recognition was possible even if the

axis deviated from a certain range. In each path of Proabability DTW, the recognition

rate of Time mean Representation was the lowest, and Length mean Representation

and Repeated Warping Representation showed similar recognition rates. The overall

recognition rates are summarized in Table 4.3.
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Method Recognition Rate Standard Deviation

HMM 69.54 0.91

DTW 87.25 0.45

PDTW (Time mean) 76.57 0.21

PDTW (Length mean) 90.74 0.47

PDTW (Repeated warping) 90.79 0.58

Table 4.3: Summary of gesture recognition results.

4.6 Summary

In this paper, DTW which is a method to recognize gesture is developed and applied

based on probability. Utilizing probability to apply variance to the gesture makes it

possible to create a difference when the axis is slightly deflected, and when the gesture

path is greatly deflected. We acquired the central path to obtain the variance. We used

time-mean representation as the first method to obtain the path representing the ges-

ture. Time-mean representation samples each gesture, with fixed numbers over time,

and finds the average position of each gesture at each index. The data obtained in this

way are mostly in the center of the gesture, but they are distorted inward when the

direction of the gesture is changed. This is because when the same gesture is drawn,

the speed at which the gesture is drawn varies depending on the subject, and when the

index is constant, the gesture position is changed, so the area is distorted inward.

The second method was to use the length mean representation. For the length mean

representation path, the sampled gestures over time were relocated along the distance,

to make the data evenly spread. The evenly spread data could solve the information

imbalance problem in the data concentrated in a part. Also, since the data itself is nor-

malized according to the position, it can be confirmed that the path indicated by each

data is somewhat consistent even though the whole warping does not proceed sepa-

rately. According to position, the matched data averages the center path of each data

and does not deviate from the center of the data.
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Finally, we used the repeated warping representation path. In the repeated warping rep-

resentation path, a new path is created by the 1:1 matching of two signals, to use all

the information of each path, and the newly generated path is updated by warping with

the next path. As the update progressed, we changed the weight, based on the number

of gestures already trained. The advantage of creating paths through repeated warping

is that all points are obtained in the optimal matching state. Each point is trained in

an optimal matching state, and the effect of finding the average position (between the

samples at the nearest position) is obtained. Therefore, the path that is finally generated

can represent each gesture. The repeated warping representation was stronger than the

other representation paths in the curved part of the data, and a path representing the

entire data was generated.

In addition, there was a problem that the same error accumulated due to the simple dis-

tance calculation, even where the data was dense when a similar type was displayed,

due to the recognition using the simple distance (caused by the problem of dynamic

time warping). We used a probability-based approach to improve this problem. With

dynamic time warping using probabilities, although it may be similar, it is possible to

apply a recognition that considers the dispersion from the center point of the entire

path. When applying variance, fewer errors were added where the gesture training data

was spread widely, and a large error was added even if the distance was the same in

a narrow position. With the actual probability-based DTW, the recognition rate was

greatly improved compared to the conventional DTW.
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Chapter 5

Multi-point Gesture Recognition

In this chapter, we extend the gesture recognition that tracks the previously described

two-dimensional position in one point to a three-dimensional one using a multipoint

tracking method. . We applied and experimented with the problem of normalization and

the need to select data in various ways. For the normalization, we carried out various

experiments, such as fitting each person’s key or applying an affine transformation,

and then proceeded with the distance and dispersion to select points. This section is

being prepared for submission as a paper in journal ’Sensors and Actuator’(Kwon and

Kim, b).

5.1 Data set and Method

We used the University of Texas at Dallas Multimodal Human Action Dataset (UTD-

MHAD) for the experiment. The University of Texas at Dallas Multimodal Human

Action Dataset Twenty-seven gestures were performed by eight subjects four times. To

check the recognition rate of each normalization method, we checked the recognition

rate and analyzed it with the transition matrix-based FSM proposed in chapter 3. Each

gesture and label are shown in Table 5.1.
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gesture index gesture name gesture index gesture name

1 Swipe left 15 Tennis swing

2 Swipe right 16 Arm curl

3 Wave 17 Tennis serve

4 Clap 18 Push

5 Throw 19 Knock

6 Arm cross 20 Catch

7 Basketball shoot 21 Pickup and throw

8 Draw X 22 Jog

9 Draw circle 23 Walk

(clockwise)

10 Draw circle 24 Sit to stand

(counter clockwise)

11 Draw triangle 25 Stand to sit

12 Bowling 26 Lunge

13 Boxing 27 Squat

14 Baseball swing

Table 5.1: Index and names of gestures.

5.2 Problems of Three-Dimensional Multipoint Data

The biggest problem when applying three-dimensional multipoint data is how to match

the initial positions and points of each point. Figure 5.1 shows subject 1 and subject

2 without any gesture execution. Figure 5.1 is part of the RGB camera that captured

subject 1 and subject 2; the blue skeleton at the right represents subject 1, whereas

the red skeleton represents subject 2. In this case, the two skeletons show two major

problems. The first problem is that the distance between the points of the skeletons is

different.

The size and ratios of each subject are different on the whole screen in Figure 5.1 (left

image). When the two skeletons are extracted from the RGB image, it is necessary to

match the distances between the points because the height of each person is different
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Figure 5.1: The skeleton of two subjects. There are unmatch at each skeleton and joint

length. This is because every subject has different stature.

and the length of the joint is also different. The second problem is that the starting point

of each skeleton gestures are different. If we look at the location of each point, we can

see that all the positions of the points are slightly different. This is one of the problems

derived from the first problem, in which the length of the whole joint is different and

there is a difference in the distance between each skeleton point, and, thus, the initial

position is different. These two problems may not make much difference to people’s

visual perception, but they can be a major factor in the failure in gesture recognition

based on the actual location.

We show another problem in Figure 5.2.
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Figure 5.2: The 2 dimensional histogram of gesture ’Baseball Swing’. Each Image

means accumulated image of each skeleton point.

Figure 5.2 shows a two-dimensional histogram of each skeleton of the gesture “baseball

swing”. There are 20 points for gesture recognition, although we actually need only the

points that have a large amount of information for each gesture. Thus, the amount of

information that each point has is uneven. The main piece shows that the actual mov-

ing points are spread over a wide range by the starting position, size, etc. Some points

are also stationary, with little movement. Consequently, it is necessary to match the

selection process and location to the point. To solve the above problem, we will study

various gesture fitting methods and use data selection in this chapter.
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5.3 Gesture Point Selection

As shown in the previous section, there is an imbalance in the information between

the part where the gesture actually operates and the part that does not work. There are

gestures that use the whole body, and there are gestures that use only the upper and

lower body or the left hand or right hand. Therefore, in this section, we select a gesture

point with many movements and apply it to actual gestures.

5.3.1 Variance selection

For the first method for choosing a gesture, we used the variance of each point. We will

assume that the larger the gesture movement is, the more information it has, and that

the more the gesture moves, the wider the range is and the greater the variance is. Let

us look at Figure 5.2. The gesture “Baseball swing” is a movement that involves the

left and right hands from left to right. Thus, the data in the left hand will be in a wide

range (top 3, left 2), as shown in Figure 5.2, and will have a large variance. On the

other hand, the gesture only involves the movement of the left hand, and, therefore, the

movement of the head is relatively small and the variance is also small. In this way, the

larger the movement, the larger the variance that is used to select more moving points.

To check the results, we show the result of the selected three point and the increase in

the number of selected points from 3 to 7 in the figure.

Figure 5.3 (a) shows that the recognition result was shaky. To analyze the reason for

this result, we show the results of the gestures “Swipe left” and “sit to stand” in Figure

5.3 (b). The results show that the recognition rate decreased as the number of points

increased in the gesture “Swipe left” and that the recognition rate decreased as the

number of points used in the gesture “Sit to stand” decreased. The gesture “swipe left”

is a gesture that moves the left hand from left to right. The actual number of points to

be moved is two, and as the number of points increases, the recognition rate decreases.
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Figure 5.3: The result of Variance based point choose. (a) The result of gesture recog-

nition. (b) The result of gesture ’Swipe left’ and ’Sit to stand’ with change number of

selected point. When the number of selected points increases, gesture ’Swipe left’ de-

creases recognition rate but gesture ’Sit to stand’ increases.

In contrast, the gesture “sit to stand” involves transitioning from a sitting to a standing

position. The actual sitting position is the movement of the whole body, and there are

many parts to move. Therefore, the greater the number of points used, the better the

recognition rate is.

To compensate for these shortcomings, we decided to focus not on the number of points

selected but on the size of the variance. The variance threshold was set and recognized

using points having more than a certain threshold. The recognition results are shown

in Figure 5.4 (a).

It can be seen that the recognition result had a higher recognition rate compared to the

previous result. The number of points selected for each gesture is shown in Table 5.2.

If we look at Table 5.2, we can see that the number of points selected for each gesture

was different. However, in the gesture “Walk,” it can be seen that it has fewer selected

points compared to the ‘Jog” gesture, even though the former gesture moves only the

left hand. This is due to the small movement of the overall gesture compared to the

threshold of the selection criteria. If we lower the threshold to correct this, we need to
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Figure 5.4: The result of Variance based point choose with threshold. Result show better

than fixed point choose.

gesture index 1 2 3 4 5 6 7 8 9

Chosen number 3 3 3 4 3 5 6 3 3

gesture index 10 11 12 13 14 15 16 17 18

Chosen number 3 3 3 20 6 6 3 6 6

gesture index 19 20 21 22 23 24 25 26 27

Chosen number 3 3 13 4 1 14 14 20 6

Table 5.2: The selected number of point in each gesture.

apply the points that do not need other gestures to the recognition, and the result is that

the recognition rate also decreases.

Therefore, we have to select points with a certain rate of motion based on the point with

the largest variance. In general, for small gestures, it is possible to lower the standard

of the point used and to raise the standard when there is a certain level of movement,

thus enabling a flexible selection. The result of applying it to the gesture recognition is

shown in Figure 5.4 (b).

It can be seen that the recognition rate improved as the selection of actual gestures

became relatively accurate. In particular, the recognition rates of the gestures “Walk”

and “Jog,” which perform small movements across the body, increased dramatically.
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By increasing the possibility of choosing a gesture that has little absolute movement,

the method was able to improve its recognition rate. As a result, the number of dots

chosen to hold a large amount of information is reduced, and a large number of points

are used to select the actual gesture; however, the information may be insufficient.

Many points can be selected on the basis of the maximum movement instead of the

absolute standard. Gestures with small movements are less likely to have more than an

absolute standard.

5.3.2 Speed summation

For the method of selecting a gesture, we used variance to select the gesture movement

in the previous subsection and applied it to the gesture recognition. However, the use

of variance does not distinguish between gestures that move continuously over a small

range. Let us assume a gesture that has a repetitive motion in a narrow range. When we

use variance to judge a gesture movement, we get a small variance by taking repetitive

movements in a narrow range. Therefore, the gestures that have repeated movement

in a small range are not chosen as a gesture that has a large amount of information.

However, there are many repeated movements with only a small range. When we have

repetitive motion in a narrow space, we have a lower variance compared to a single mo-

tion in a wide range. To compensate for these drawbacks, we measured the amount of

information by accumulating the speed of the gesture and finally moving the distance.

In this way, it is possible to pick out the important points of the gesture of a repetitive

motion in a small range. We applied it to actual gesture recognition and confirmed the

result. As in the previous subsection, we selected points that move more than a certain

amount based on the movement distance of the movement point. The gesture recog-

nition result is shown in Figure 5.5. The recognition rate was higher than that using

the previous variance. Moreover, the number of points selected by the method using

variance and speed for each gesture is shown in Table 5.3.
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Figure 5.5: The recognition rate of speed based gesture selecting.

gesture index 1 2 3 4 5 6 7 8 9

Variance 2 2 2 4 2 3 4 2 2

Speed 2 2 2 4 3 4 5 2 2

gesture index 10 11 12 13 14 15 16 17 18

Variance 2 2 10 4 4 2 4 4 4

Speed 2 2 3 6 5 3 4 5 6

gesture index 19 20 21 22 23 24 25 26 27

Variance 2 2 2 4 4 11 14 3 4

Speed 2 3 3 4 4 14 15 20 6

Table 5.3: The distance of each representation path. Time mean representation path is

path that has the lowest average distance.

From the results of each extraction, it can be seen that a speed-based gesture extracts

the operating point better. For instance, in the case of the gesture “Lunge,” it is a full-

bodied gesture. Therefore, gestures should be able to extract the entire body. Regard-

less of the total distance traveled, however, it is necessary to determine the distance

away from the center of gravity. Therefore, it does not represent the whole movement.

On the other hand, when the speed method is used, the moving distance from the start
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PC2

PC1

Figure 5.6: Gaussian random data. Arrow of this figure is good to represent the data.

When we use the axis with arrow, we can reduce the dimension and we call this arrow

as a ’Principal Compornant’

point to the ending point is obtained to represent the information amount of the signal.

For the method that uses speed, the exact number of points to be extracted is 20; for

the variance, however, only 4 points are extracted. As a result, it can be confirmed that

the highest recognition rate was obtained when speed was used.

5.3.3 Principal component analysis

PCA is a method of extracting and applying information about important dimensions

to N-dimensional data. For example, suppose we have the data from Figure 5.6.

The given data are two-dimensional data. However, the distribution of the actual data

is almost linear. In this case, if the data are transformed in the direction of the widest

spreading, the distribution of the data can be described as one dimensional. For ex-

ample, let us look at the two lines shown in Figure 5.6. These two lines are the best

representation of two-dimensional data, which are estimated through the distribution
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of the data. We can describe the data in two dimensions, and we can get the best di-

mension when we represent each data as one dimension with the widest spreading

dimension. These two dimensions are called a principal component (PC) and are de-

noted by PC1, PC2 to describe the data well. The PCA is a method of replacing given

data with meaningful dimensions in a given dimension in this way. PCA is used to find

the PC that best represents the given data to reduce the dimension. PCA is a method

of replacing given data with meaningful dimensions in a given dimension in this way.

Therefore, finding the right PC is very important. In this case, for the method of obtain-

ing the PC, an eigenvector of the covariance matrix and a corresponding eigenvalue are

obtained. The covariance matrix shows the distribution characteristics of a given data.

Through each correlation, the correlations between the dimensions can be known and

the form of the data can be abstractly known. The formula of the covariance matrix is

as follows:

Σi j = E[(xi− x̄i)(x j− x̄ j)] (5.1)

Therefore, the PC can be obtained by analyzing the covariance matrix. If we obtain the

eigenvector of the covariance matrix, each eigenvector is a PC that can represent the

data, and the corresponding eigenvalue is the amount of information that represents the

data. For example, in Figure 5.6, the direction of each line segment is an eigenvector

and its size is an eigenvalue. In this case, each eigenvalue can be used to determine the

degree to which each PC represents information. This can reduce the dimensionality

of the data. The gesture used in this paper has 20 three-dimensional data and has 60-

dimensional data in total, although fewer data were actually used. Therefore, the PC

of the data was obtained and the eigenvalue corresponding to the PC was analyzed to

reduce the number of data. Table 5.4 shows the computed eigenvalue corresponding

to the PC of the gesture “swipe left”. The sum of the eigenvalues obtained here was

2.79. For each eigenvalue value, it can be seen that most of the eigenvalues, except
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PC PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

value 1.39 0.68 0.24 0.18 0.11 0.06 0.03 0.03 0.02 0

PC PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20

value 0 0 0 0 0 0 0 0 0 0

PC PC21 PC22 PC23 PC24 PC25 PC26 PC27 PC28 PC29 PC30

value 0 0 0 0 0 0 0 0 0 0

PC PC31 PC32 PC33 PC34 PC35 PC36 PC37 PC38 PC39 PC40

value 0 0 0 0 0 0 0 0 0 0

PC PC41 PC42 PC43 PC44 PC45 PC46 PC47 PC48 PC49 PC50

value 0 0 0 0 0 0 0 0 0 0

PC PC51 PC52 PC53 PC54 PC55 PC56 PC57 PC58 PC59 PC60

value 0 0 0 0 0 0 0 0 0 0

Table 5.4: The PCs of gesture ’Swipe left’ and each eigenvalue. Most of eigenvalues

are vary small. The data was rounded to the third decimal place.

for nine points, were not even 1%. A PC with a small eigenvalue cannot represent

data. Therefore, the eigenvalues are summed until the sum of the eigenvalues of each

PC is 99% of the total sum and only the eigenvectors corresponding to the eigenval-

ues are removed. After recovering the covariance matrix with the selected PC and its

corresponding eigenvalue again, we can see that most of the values were restored by

calculating the error ratio and the covariance matrix. When PCA was used to reduce

the dimension, the recognition rate is shown in Figure 5.7.

If we check the recognition rate, we can see that the result is not higher than the actual

idea. The reason for this result is that the actual gesture is related to the x, y, and z axes,

respectively. Conventional methods include information about the three axes, such that

a negative decision is possible when the selected point should not move on one axis.

However, in the case of PCA, it is removed and the recognition rate is decreased.
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Figure 5.7: Result of PCA based dimension reduction.

5.3.4 Variance selection and principal component analysis

In this subsection, we try to summarize the relationship between PCA and the point

extraction method using variance. In addition, we obtained the prototype value of each

PC and the corresponding PC to identify an important dimension in real data through

each PC. To obtain the corresponding value of each term, we used the following equa-

tion

Di =
N

∑
n=1

eigenvaluen|PCn(i)| (5.2)

where PCn(i) is the value corresponding to the i th axis in PCn and N is the number of

all selected PCs. The reason for using the absolute value here is that the eigenvector is

directional and has negative and positive numbers; however, the absolute value has the

same direction as the eigenvector. It can be seen from the obtained values that some

terms had a large value, whereas others had a small value depending on the gesture. If
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we extract only large values here, they will have the same shape as the important points

extracted using the variance. Actual PCA looks at the covariance of the entire data and

gives a high value to the important axis in each PC. Therefore, the same result can be

obtained by using the covariance.

5.4 Gesture Normalization and Fitting

5.4.1 Zero starting

Next, a study was made to match the starting point of each gesture with the distance

between each gesture joint. The simplest way to fit a gesture is to ignore the relation-

ship between each joint and to set the starting point of all the points to zero. By setting

the starting point of each gesture to zero, we eliminate the influence of the starting

point disparity. The recognition rate of the gesture that matched the starting point is

shown in Figure 5.8 (a).

Figure 5.8 (a) shows the recognition rate of each gesture. The result was 44.7%, which

is actually a very low recognition rate. The reason for the lower recognition rate can be

seen in Figure 5.9 (b). The figure shows that each gesture has a similar shape overall.

However, the difference in the arms’ length and in the size of the movement was dif-

ferent for each person, and, therefore, the operation range of the gesture was changed

and actually deviated greatly. In this case, even though the whole form looks similar,

it failed to be recognized because it does not show the same gesture.

5.4.2 Zero to ten fitting

In the previous subsection, we changed the starting point to 0 for the fitting of the

gesture; however, the size of the gesture to be taken for each person was different,

which caused the recognition to fail. Therefore, to normalize the size, we obtained the
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Figure 5.8: Gesture recognition result of each fitting method. (a) Zero starting. (b) Zero

to ten fitting. (c) Rate fitting.

x, y, and z axis minimum and maximum values of the entire gesture and fitted them

from 0 to 10. A fitting gesture can fit the entire gesture, reducing the effect of length

variation or gesture size. The recognized result is shown in Figure 5.8 (b). Gestures

fitted from 0 to 10 showed low recognition rate. This reduced the effect of distance

by fitting the entire gesture; however, it also distorted the shape of each gesture. For

example, Figure 5.9 (a) shows the gesture before fitting, whereas Figure (c) shows the

fitting gesture. The data show different shapes before the fitting; however, the fitting

shapes the whole shape from 0 to 10, such that the other gestures were drawn in the

same shape. Therefore, confusion occurred between two gestures, and the recognition

rate decreased.
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Figure 5.9: Each fitting Methods. (a) Original signal. (b) Zero starting signal. (c) Zero to

ten fitting. (d) Rate fitting

5.4.3 Rate fitting

A gesture can be sized from 0 to 10 fittings; however, other shapes can come in a

similar shape. Therefore, to maintain the overall shape, we set the largest axis among

the three axes, x, y, and z, from 0 to 1, and we fitted the gesture according to the ratio.

Then, we obtain the following equation:

mg = maxd(sigg
d)

¯sig =
sig
mg

(5.3)
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where sigd is the dth-dimensional data of gesture “g”. The gesture thus obtained can

maintain the shape and improve the recognition rate of the gesture. The result of the

recognition is shown in Figure 5.8 (c) whereas the fitting gesture is shown Figure 5.9

(d). As a result, it can be confirmed that the overall recognition rate was 75.6%, which

was higher than that obtained by other fitting methods. The rate coding raised the

recognition rate by eliminating the length problems caused by other methods and the

distortion of the overall rate. However, it still has a 75% ∼ 80% recognition rate. The

reason for this is the removal of the stationary point. Non-motivated points can conduct

a negative decision to different gestures. However, the movement of the dots that are

not moving as a result of the fitting-up process is enlarged, and, accordingly, the dots

that have small movements should have unnecessary information. Thus, if a gesture

is included in another gesture, the recognition rate will be reduced. For example, the

gestures “Sit to stand”, “Stand to sit”, and “Lunge” include the action of bending the

knees as in the gesture “Jog”. As a result, the rate of perception decreases, as it is

recognized as a matrix, known to better follow the form of the entire gesture, thus

reducing the recognition rate.

5.4.4 Differential

Next, differentials were used to determine the recognition rate of the relative motion

of each skeleton point. If the gesture is recognized through the differentials, it can be

recognized through the direction of movement without needing to initialize the position

of the gesture. After differentiating each gesture, fitting was performed to normalize

the size. The differential gesture is shown in figure 5.10 (a) and the recognition result

is shown in (b).

The overall recognition rate was 72.96%. If we show the recognized results, we can

see that the result is similar to the previous fitting method. The reason for this result is

that the shape of the whole gesture is matched, but as in the previous methods, there is
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Figure 5.10: Diifferential data and its result. (a) Differential gesture. (b) Result.

a limitation in the fitting to the size, and the recognition fails.

5.5 Recognition Using a Neural Network

The previous selection showed problems with gesture recognition using a skeleton.

The skeleton changes every time depending on the position of the person, the length

of the joint, and the size of the operation. In particular, if the size of the gestures and

the starting points are not matched, the recognition rate significantly decreases. We

can also see that different gestures behave differently, reducing the recognition rate.

As a way to complement this, we chose to have a large amount of information in

this thesis and matched the starting point with the moving size. However, this method

ignores the information about stationary points. For instance, the gesture “wave” is

used to maximize the information in the left hand by moving it over a continuous

left arm. Therefore, only the dots on the actual left hand are selected and the rest are

ignored. However, it can serve as a piece of information that indicates that there is

no movement in a gesture. For instance, in the case of the gesture “Walk”, there is

movement of the legs, but there is no “Wave”. Therefore, if there is movement of the

legs, it is not possible to determine the formation of the “Wave”. A negative decision
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Image Type Dependency Number of Layer

Network 1 Binary X 1

Network 2 Binary X 2

Network 3 Binary O 1

Network 4 Probability Gray X 1

Table 5.5: The layer of the CNN.

can be done through a stationary point. However, if the fitting used in this paper is

adjusted, the points that are stationary may also grow. Consequently, it is difficult to

apply. We applied a multilayer perceptron (MLP) and a convolutional neural network

(CNN) to modify it. Each method is influenced slightly by the location or size of the

image. For this purpose, the gestures of each dot were changed to a 20×20 binary

image. The network went through two ways of combining the results after recognizing

each joint and adding dependencies between the points. In another experiment, when

constructing an image, we created gray image of the probability that a point exists at

each position, and then conducted training and testing. The equation for constructing

the image is as follows.

image′(i, j) = sp
(i, j) ∗ image(i, j) sp

(i, j) is the probability that point exist at pixel (i, j) in joint p.

(5.4)

The configuration of the Network is shown in Table 5.5.

Recognition proceeded by constructing four networks.

5.5.1 Convolutional neural network

First, we made this perception using a CNN. The recognition results are presented in

Figure 5.11 (a).

If we check the recognition rate, we can see that there is a higher recognition rate when
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Figure 5.11: Gesture recognition rate using CNN (a) Recognition result. (b)Recognition

result according to image resolution.

there is one layer. In addition, recognition rate decreases when adding dependency to

Networks, and recognition rate increases when using probability gray image. Next, the

perception was checked when the image was reduced from 20×20 to 10×10, 8×8, and

5×5. Only layers were applied to confirm the results. The recognition rate is indicated

in Figure 5.11 (b). When we check our perception, we can see that our perception

decreased as the resolution of the image decreased.

5.5.2 Multilayer perceptron

Similarly, we developed our perception using MLP. At this point, when the image size

used as input was n×n, it was changed to an image size of (n×n) for application as an

input to the perceptron. The recognition rate is shown in Figure 5.12.

If we check the recognition rate, like in the CNN, we see higher recognition rates when

only layers are applied and lower recognition rates when the resolution is reduced.
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Figure 5.12: Gesture recognition rate using perceptron (a) Recognition result.

(b)Recognition result according to image resolution. As image resolution decrease

recognition rate be lower.

5.5.3 Neural Network Result

We can see two things by checking the recognition using MLP and CNN. First, we

found that, as the number of layers increased, the recognition rate decreased. This is an

overfitting, a problem with neural networks, where a simple image of 20×20 is applied

to two layers, making it less common to model a transport set. Therefore, if the number

of layers is small, the recognition rate is higher. Also, the recognition rate decreased

when the image dependency was added. The reason for this result is that the com-

plexity increases when the whole images are combined into one, and the dimension of

the network increases. As a result, the distribution of data becomes complicated and

the probability of falling to the local minimum increases, failing to reach the global

minimum. Therefore, recognition rate is greatly shaken and many gestures are not

recognized. Next, the results of the probability gray image are shown. When the prob-

ability gray image is applied, the recognition rate is increased. By applying this result

to the probabilistic gray image, it is possible to fix the gesture ’s operation area to small

region, and to improve the recognition rate by removing the motion in the area where

no motion occurs. We can also see that the perception decreased as the resolution of
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the image decreased. It gives a precise description of the form of the gesture, leading

to a higher recognition rate. The one-layer CNN had the highest recognition rate of

the overall result, and most of the neural network methods had a higher recognition

rate than that of the PFSM. From this, we can verify that perception using the neu-

ral network is possible without being affected by the location or size. This is a higher

recognition rate compared to that of the PDTW or PFSM as it does not require the siz-

ing of actual gestures. On the other hand, this method takes longer to train compared

to the two methods.

5.6 Conclusion

In this chapter, we studied how to select or fit gesture points to improve the recognition

rate of gestures. The three-dimensional skeleton gesture has a large number of points,

and the number of points having a large amount of information per gesture is different.

Moreover, the same gesture can be perceived differently depending on the person per-

forming it. In this paper, we applied variance, speed, and PCA to select the point where

the gesture moves considerably. To adjust the size of the gesture, we moved the posi-

tion or changed the ratio of the moving distance. The best result was achieved when

the gesture was recognized according to the original ratio, showing a recognition rate

of approximately 75.6%. Moreover, the greater the points that can be selected flexibly,

the better the recognition rate is. Each gesture has a different degree of movement, and

the number of moving points is different. We also conducted recognition using vari-

ous Neural Networks. Recognition using the Neural Network showed high recognition

rates without being affected by problems with gesture recognition.
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Problem Method Recognition Rate

Choosing Variance 73.17

Speed 75.58

PCA 67.73

Fitting Zero Starting 44.73

Zero to Ten Fitting 37.22

Rate Fitting 75.58

Both Differential 72.96

CNN(1 Layer) 94.16

CNN(2 Layer) 91.20

MLP(1 Layer) 90.99

MLP(2 Layer) 85.60

CNN(Binary image) 97.82

MLP(Binary image) 94.16

Table 5.6: The recognition rate of each method. We fix the starting point and the end

point by three conditions, suggest a step size that moves at once, and make the match-

ing point not to be backward, and to be able to match the whole signal.

5.7 Summary

We conducted a study on two problems with gesture recognition. Gestures have found

that the starting position and the range of motion vary significantly depending on the

person’s height, shooting environment, and size of motion. For the gesture recogni-

tion, we chose to have a large amount of fittings and information. We confirmed that

the recognition rate varies greatly depending on the various fitting methods and on the

methods of selecting points. For the selection of a gesture that has a large amount of

information, it was evaluated with cumulative speed and distribution. It also enabled

flexible choices based on point choices and gestures based on fixed travel distances.

Several experiments were performed in practice, and we found that the better the se-

lection criteria, the better the perception will be. We also conducted a study on the

fitting method of gestures. EEach gesture had a different beginning and a different end
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point. To recognize the gesture, we conducted a fitting in various ways. We found that

the rate of perception varied significantly with the position and size settings of the re-

sulting gesture. Lastly, we conducted gesture recognition using a neural network. We

conducted a perception using CNN and MLP and obtained a high recognition rate.

Both methods can automatically modify the position of the gesture, making it more

likely to be recognized compared to the methods proposed in this thesis. The solutions

applied in this chapter and the corresponding recognition rate are shown in Table 5.6.

Thus, the importance of selection of fitting and information for gesture recognition was

determined.
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Chapter 6

Conclusions

Gesture recognition has been studied and applied to HCI and HRI. People can commu-

nicate their intentions by a gesture and can judge status or situations through uncon-

scious behaviors. In recent years, research based on deep learning has become popular

and machine learning recognition rates have improved, and deep learning is expected

to be applied to various fields involving future science. We studied algorithms to de-

velop FSM and DTW to recognize gestures, and recognized a gesture using various

fittings and dimension reductions. The existing FSM-based method considers the fact

that only one PATH, which is a disadvantage of the existing method, is remembered.

. We also apply probability to DTW to obtain the variance from the center of the ges-

ture and to adjust the distance according to a distribution. By studying gesture fitting

and dimension reduction, we improved the recognition rate by controlling unnecessary

information and solved the problem according to size.

6.1 State Transition Probability-Based Finite State Ma-

chine

In Chapter 3, we proceeded with research on how to develop FSM. To develop the

FSM, we applied forward and backward algorithms, which are used to modify gestures
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in HMM. In addition, we recognize the gesture as a path classification using a transi-

tion matrix to supplement the FSM which can recognize a gesture easily but cannot

recognize a gesture with various paths. When recognizing a gesture based on prob-

abilities, various combinations were possible by distinguishing paths from gestures’

states, and it was possible to show a high recognition rate even with sparse training

data. Furthermore, as the proposed PFSM can recognize a gesture when training data

is sparse, it is confirmed that the recognition rate can be improved by more sophis-

ticated recognition when the number of states increases. While there are advantages

over existing methods, there is a disadvantage in that it is impossible to distinguish

between repeated gestures. Standard FSM memorizes the entire path, and it is possible

to classify the number of repeated gestures in a certain interval, but this is not possible

with the proposed method. The recognition rate of a gesture was up to 85% according

to the number of STATEs, which was much higher than the recognition rate of HMM

provided by the data set (e.g.,68%). Furthermore, PFSM exhibits faster computation

than other methods.

6.2 Probability-Based Dynamic Time Warping for Ges-

ture Recognition and Signal Warping

In Chapter 4, we developed a recognizer that can consider the distribution of gestures

by combining DTW with a probability distribution. To generate the probability distri-

bution, a representative path was determined in various ways. The representative path

is a time mean representation that finds the center point by matching the number of

samples according to the execution time of the gesture, a length mean representation

that divides the interval of the gesture according to the length, or a repeated warping

representation obtained by repeating DTW. Recognition rate is considered in the time

axis, the center of the length mean representation, and repeated warping representation

achieves high recognition rates. Recognition rates were 76%, 91% and 91%, respec-
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tively. However, the operation speed is slower than standard HMM or DTW.

6.3 Multi-Point Gesture Recognition

Finally, we conducted research to solve fitting and dimensional problems in gesture

recognition. A non-refined gesture is not well recognized because it differs greatly in

various points, such as starting point and size. Thus, fitting was conducted in vari-

ous ways and features were changed and tested. We also studied how to reduce the

dimensions involved in multipoint gesture recognition. Actual skeleton gestures rep-

resent whole body gestures, but not all gestures use all of the body. When there is a

non-moving point, a rank problem may occur in the probability, and the information

unevenness problem arises. Therefore, dimensions were reduced and recognition was

evaluated. PCA was used to reduce the dimensions, and the amount of information

was determined by the distribution of gesture points or the accumulated speed. Among

the various experiments, the highest recognition rate was obtained when the maxi-

mum distance was recognized as 1 to maintain the shape, and the gesture was selected

based on the accumulation of the speed. However, most methods did not obtain good

recognition rates and even the highest recognition rate showed loss of information.

The recognition rate of the methods proposed in this paper and the results of previous

gesture recognition using UTD-MHAD are shown in Table 6.1.

6.4 Future Work

6.4.1 Algorithm and feature improvement

As a method in future research, we will further study the angle and differential data of

the skeleton. Angle-based recognition can focus on the relationships between joints,

so that more information can be applied than in the method of recognizing each point
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Paper Method Recognition Rate

Chen et al. (2015) DMM, HMM 66.1

Chen et al. (2016) DMM, CRC 74.7

Zhou et al. (2014) ELC-KSVD 76.19

Zhang et al. (2017) 3DHoTs, MBC 84.4

Hou et al. (2016) CNN 86.97

Ours HMM(Left-Right) 65.19

Ours HMM(Ergodic) 67.41

Ours PFSM 75.58

Ours PDTW (Length mean) 90.74

Ours PDTW (Repeated warping) 90.79

Ours CNN 94.16

Ours MLP 90.99

Ours CNN (with Dependency) 80.00

Ours MLP (with Dependency) 90.05

Ours CNN (Probability image) 94.16

Ours MLP (Probability image) 97.82

Table 6.1: The compare of recognition rate with other algorithms.

separately. It is also expected that using derivatives will reduce the effect of the starting

point. To improve the algorithm, we will focus on supplementing the shortcomings of

the current algorithm. Although PDTW has a high recognition rate, it requires exten-

sive computations and long processing time, and PFSM has a gesture with a partic-

ularly low recognition rate. If these shortcomings are complemented, the algorithms

should be applicable to a wider range of problems.

6.4.2 Extend to HCI applications

We will also study the application of the proposed algorithm. We present the current al-

gorithm, but we intend to develop auxiliary equipment that can analyze a user’s gesture

first, and develop a robot to analyze necessary operations and provide corresponding
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services. A gesture contains information about the motion involved. If the robot recog-

nizes the gesture first and grasps the intention of a gesture, it is expected that the robot

can train itself without direct manipulation by the user. Moreover, it is expected that a

similar technique can be applied to the development of auxiliary equipment that helps

a user to perform manual labor using less power through prediction of the operation to

be carried out by recognizing user gestures.
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Appendix A

UTD-MHAD
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Figure A.1: Gesture of UTD-MHAD which index 1 to 6. The higher up in the figure, the

lower the index is.
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Figure A.2: Gesture of UTD-MHAD which index 7 to 12. The higher up in the figure, the

lower the index is.
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Figure A.3: Gesture of UTD-MHAD which index 13 to 18. The higher up in the figure,

the lower the index is.
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Figure A.4: Gesture of UTD-MHAD which index 19 to 24. The higher up in the figure,

the lower the index is.
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Figure A.5: Gesture of UTD-MHAD which index 25 to 27. The higher up in the figure,

the lower the index is.
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