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ABSTRACT

Bio-inspired Navigation Based on Egocentric
Visual Perception

Changmin Lee

School of Electrical and Electronic Engineering

The Graduate School

Yonsei University

The word, ‘navigation’, is defined as the study of the control and movement observation

process which enables ships or vehicles to move from a certain point to some other desig-

nated point. The study of navigation has evolved with the introduction of artificial intelli-

gence and its fusion with GPS, cameras, and distance sensors. Navigation has been used

effectively in various industrial fields and in daily life. Recently, visual information has

become an important factor, enabling a wider range of experiments. However, visual infor-

mation also has its own limitations because of the large noise signals captured during data

collecting process. Additionally, visual information and removal of the noise it contains

requires high complexity in processing algorithms.

It is widely known that visual navigation, which is directly connected to survival, is a

common ability of numerous organisms such as ants, bees, and spiders. They follow various

behavior patterns such as hunting, exploring, and defending, which are imperative skills for
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survival. Recently, research involving the complicated visual cortex has revealed that there

are certain organizations within the cortex performing location recognition, such as place

cells. Also, the snapshot model algorithm is similar to insect navigation, including lower

complexities than other engineering algorithms.

In this thesis, various types of bio-inspired (biomimetic) homing methods based on in-

sect behavior are evaluated. First, a new homing navigation method using both holistic

range and vision data is evaluated. It is based on the moment function to combine two mea-

surements into a navigation problem. Second a method focusing only on vision using orga-

nized masks based on photoreceptor cells is evaluated. The goal is to transform input im-

ages into landmark vectors through artificially-generated mask-type photoreceptors. Third

is a method that exploits pixel-wise landmark information, which treats each pixel of an

image as a landmark called a ‘pixel-wise landmark’, to emulate homing navigation. Based

on a holistic approach, it determines the homing direction by pixel intensity comparison.

The performance of each method is measured using various benchmarks and tools, such as

angular error, tables, and visualized vector maps in each section. The proposed methods are

compared with other existing methods to evaluate the robustness of the methods. Overall

experiments are conducted in various environments; custom created environments includ-

ing various objects, and open datasets such as Vardy’s. The overall outputs of the suggested

algorithms are summarized and improvements are proposed for future research. At the end

of the paper, we organize the appendix for additional explanations.

In summary, this paper, in spired by biomimetics, suggests new visual navigation algo-

rithms by emulating insect homing abilities. Furthermore, an implemented model is vali-

dated through simulation processes and robotic experiments.

Key words : bio–inspired homing navigation, snapshot model, holistic visual navi-
gation, visual reception using visual masks, multidimensional moment
model, pixel-wise landmark, mathematical convergence
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국문요약

시각공간인지를이용한

생체모방내비게이션연구

‘내비게이션’은배와같은이동체에대해임의의지점에서관찰정보를사용하여목

표지점으로 제어하여 이동시키는 기술을 의미한다. 고대의 항해술에서부터 현대의 내

비게이션에이르기까지, GPS,시각,거리,이동정보와같은다양한센싱기술의발전이

있었으며 이는 인공지능 기술의 발전과 접목되어 무인 자동차와 무인 탐사선 개발까지

이어졌다. 이러한 기술은 일상 생활에서 산업에 이르기까지 직접적으로 적용되고 있으

며 최근 적극적으로 시각정보를 활용하고 있다. 그러나 시각이 가진 다양한 정보는 필

연적인 민감성을 동반한다. 그러므로 기존의 공학기반 기술들은 시각 정보를 다루는데

추가적인연산을사용하고있으며이에대한복잡도를무시할수없다.

본연구진은이러한시각정보를단순하면서도효과적으로극복하는곤충의시각내

비게이션에 주목하였다. 개미, 벌, 거미 등의 곤충들은 다른 귀소성향을 가진 동물에

비하여 적은 뉴런 개수와 낮은 화소의 시각 구조에도 불구하고, 사냥, 탐험, 방어 등의
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다양한상황에서생존과직결되는귀소성향을성공적으로보임을알수있다. 최근생물

학적으로 Place cell에대한연구를통해 visual cortex의복잡한구조가종단에서는위치

인식에 사용됨을 일부 밝혀낸 바 있으며, 또한 이러한 visual cortex의 복합 구조를 모방

한 CNN과같은신경망연구가연달아발표된바있다. 본연구진은이러한생체모방의

강점에기반하여,곤충의귀소성향에기반한생체모방알고리즘인 ‘snapshot model’의

낮은복잡도에주목하였다.

본 논문을 통해, 우리는 snapshot model의 생체 모방에 다양한 연구를 조사하여 정

리하고 공통적인 문제를 분석하였다. 또한 이에 근거하여 시각 내비게이션의 가능성

을 3가지 방법을 통해 개량하고 평가하였다. 첫 번째로, 해당 생체 모방 기법에서 거리

정보와 색상정보를 효과적으로 융합하는 방법을 연구하였다. 이는 물리에서 사용되는

모멘트 모델의 개념을 차용하여, 질량 대신 시각 관측 정보를 사용하였으며 이를 통해

임의의 위치에서 집으로의 방향 추정과 수렴을 증명하였다. 두 번째로, 곤충의 시각구

조의기본에해당되는 ‘Ommatidia’를모방하여시각전처리가귀소연산에미치는영향

을 연구하였다. 기존의 고화질 이미지를 사용하는 것과는 달리 낮은 수의 화소를 통해

재해석된 시각 정보를 그대로 사용하여 별도의 물체 추출이나 가공없이 높은 정확도의

성능을구현하였다. 세번째로,시각정보입력을곤충의시각과같이각도별입력(pixel-

wise landmark)을 그대로 사용하였을 때, 귀소 방향 선택에 생기는 문제와 이를 공학적

알고리즘과의접목에대하여연구하였다. 우리는생체모방귀소네비게이션에서,전체

시각 정보를 단순비교 하여 귀소 방향으로 결정되는 후보에 대한 수학적 모델을 분석

하고분석된결과에대해공학적매칭방법(Dynamic Time Warping)을적용하여실제로

사용가능한수준의정확도를얻을수있었다. 각연구에서우리는본분야의다양한최신
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기존연구들(MinWarping, COMALV, DID)과개발된결과를비교하였으며,본연구진이

만든환경뿐아닌다양한 open dataset과통계적지표를활용하여결과를분석하여해당

방법의유효성을보였다. 상기연구의결과들을종합요약하여이후연구의진행방향과

목표를설정하였다. 또한상기과정에서발생한다양한수학적모델에대한증명을첨부

하였다. 우리는본논문을통하여생체모방에기반한시각내비게이션연구를발전시켜

기존의연구를대폭개량하고그성과를객관적인실험과비교를통해검증하였다.

핵심되는말 : 생체모방시각내비게이션,스냅샷모델,전체이미지비교,마스크기

반시각인지,모멘트,픽셀랜드마크,수렴성증명
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2.25 Orientation maps as Moiré interference patterns between retinal gan-

glion cell mosaics. The superposition of two hexagonal lattices results

in a periodic interference pattern. (Paik and Ringach, 2011) . . . . . 51

3.1 Moment measure as a potential function where the landmark height is

regarded as a feature value (left: potential function, right: contour line 58

3.2 Figure shows the principles of localization based on distances to con-

vergence points in reference map. R is the convergence point with us-

ing red information. B and G are using blue and green. Dotted lines

show the candidates from each convergence point with distance from

current point to convergence point . . . . . . . . . . . . . . . . . . . 61

3.3 The simulation of unique convergence example on the field. Height

value is used as feature of each landmark. First one shows the surf

output and the second shows contour line. . . . . . . . . . . . . . . . 63

3.4 Experiment about the location of convergence point according to the

changes of order number (n). The environment of experiment is equal

to the ones of figure 11 and 12. Red dots are the minimum points with

text figuring order number. . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Difference between concepts. (a) is using only range with area inte-

gration method. (b) is using both range and color with area integration

method. (c) is using only range with area integration method. (d) is

using both range and color with area integration method. . . . . . . . 67

3.6 Test with two different simulation environments; the first row shows

the moment potential and the second row shows vector maps including

homing vector on the contour plot (triangles: landmark positions, black

dot: home location) . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



3.7 Simulation output for various moment functions. Vector maps includ-

ing blue arrows pointing calculated homing direction at each position

using n = −1,0.2,2,10. Curved line shows the contour line of mo-

ment curve. Black dot shows the home location and triangle shows the

location of landmark. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Experiment about the location of convergence point according to the

changes of order number (n). The environment of experiment is equal

to the ones of figure 11 and 12. Red dots are the minimum points with

text figuring order number. . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 Simulation output for various moment functions having different di-

mension number in pixel-wise assumption. Vector maps including blue

arrows pointing calculated homing direction at each position using

n = 2,3,4,10. Blue square shows the home location and four circles

shows volume and color. . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Performance graph for homing accuracy according to changing dimen-

sion number (n) of generalized moment function. The environment of

experiment is equal to the ones of Figure 3.9. Red dots means the min-

imum point and statistically equal point. . . . . . . . . . . . . . . . . 73

3.11 Simulation outputs for inter–filled moment functions. Vector maps in-

cluding blue arrows pointing calculated homing direction at each po-

sition using n = 2,3. Blue square shows the home location and four

circles shows volume and color. . . . . . . . . . . . . . . . . . . . . 73

3.12 Performance graph for homing accuracy according to changing dimen-

sion number (n) of inter-filled moment function. Red dots means the

minimum point and statistically equal point. . . . . . . . . . . . . . . 74

3.13 Contour plots at two different positions in the indoor environment (a)

contour of moment potential at (460, 460) (b) contour of moment po-

tential at home position (500, 500); black dots indicate the minimum

potential points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.14 Homing performance only with color intensity or only with range data

(reference compass available) (a) only with vision but the unit distance

(ri = 1) (all landmarks have equal distances) (b) with only range data

but the unit feature (Ci = 1) (all landmarks have the same visual feature

or same color intensity) (red box at (500, 500) indicates home and

arrows show the homing direction at each point) . . . . . . . . . . . 76

xii



3.15 Homing performance with both range data and color intensity (ref-

erence compass available); red box indicates home position and the

arrows show the homing direction at each point . . . . . . . . . . . . 76

3.16 Homing performance with various feature values (a) Ci is the blue

color intensity (b) Ci is the red color intensity (c) Ci is the V intensity

in HSV space (d) Ci = 1 or 0 depending on the discetized condition

with HSV (if
√

H2 +S2 +V 2 > 50, Ci = 1, otherwise Ci = 0); red box

at (500, 500) indicates home and arrows show the homing direction at

each point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.17 Homing performance of moment model without reference compass;

both range data and color intensity are used and the coordinate align-

ment process is applied (a) visual compass (b) landmark re-arrangement

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.18 Homing performance with the DID approach (a) with reference com-

pass (b) visual compass without reference compass; red box indicates

home position and arrows show the homing direction at each point. . 79

3.19 Homing performance for Vardy’s image environment with reference

compass (a) moment model only with color intensity (b) moment model

only with estimated distance (c) moment model with estimated dis-

tance and color intensity; distance is estimated using the ground line in

the image without laser sensor (arrow indicates the homing direction) 80

3.20 Homing performance for Vardy’s image environment without refer-

ence compass (a) visual compass and moment model only with color

intensity (b) visual compass and moment model only with estimated

distance (c) visual compass and moment model with both estimated

distance and color intensity (d) landmark rearrangement method and

moment model with both estimated distance and color intensity; dis-

tance is estimated using the ground line in the image without laser

sensor (arrow indicates the homing direction) . . . . . . . . . . . . . 80

3.21 Homing performance for Vardy’s image set without reference com-

pass; the landmark rearrangement method to align the coordinate and

the moment model with estimated distance and color intensity are used

(a) home location (0,0) (b) home location (7,2) (c) home location (5,16)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xiii



3.22 Homing performance with reference compass and without reference

compass; x-axis indicates testing methods described in Table 3.1 (a)

angular errors in the indoor environment (b) angular errors in Vardy’s

image set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.23 Robot experiment output for various moment functions. Vector maps

including arrows pointing homing direction use n = 2,3,4,10. Envi-

ronment is equal to the prior figure. The red box at (500,500) is home

and the arrows show the homing direction at each point. . . . . . . . . 86

3.24 Performance graph for homing accuracy according to changing dimen-

sion number (n) of generalized moment function. Left one is without

color information and right one is with both color and range. Red dots

means the minimum point and statistically equal point. . . . . . . . . 87

3.25 DID result using three visual cues as reference images. Left one is for

aligned condition and right one is using visual compass. The red boxes

at (500,500) are home position of those experiments and the arrows

show the homing direction at each point. The left one is using compass

sensor and the second with visual compass method in alignment. . . . 88

3.26 Robot experiment result with estimated distances. Using perimeter mo-

ment model : (a) shows the case without color, (b) with estimated dis-

tances. Using area integration moment model : (c) without color, (d)

with estimated distances. The red box is home located at (500,500)

and the arrows show the homing direction at each point. . . . . . . . . 89

3.27 Robot experiment result with estimated distances. Using perimeter mo-

ment model : (a) shows the case without color, (b) with estimated dis-

tances. Using area integration moment model : (c) without color, (d)

with estimated distances. The red box is home located at (500,500)

and the arrows show the homing direction at each point. . . . . . . . . 90

3.28 Robot experiment result using both measured distances and color in-

tensities with two alignment algorithms. Aligned by visual compass

: (a) shows the case with perimeter, (b) with area integration model.

Aligned by rearrangement algorithm : (c) shows the case with perime-

ter and (d) with area integration model. The red box is home located at

(500,500) and the arrows show the homing direction at each point. . . 92

xiv



3.29 Blue line shows the output of multidimension cases using derivative

and red one for numerical method. Each circle means statistically min-

imum positions in each distribution. . . . . . . . . . . . . . . . . . . 93

3.30 Performance graph for homing accuracy according to changing dimen-

sion number (n) of generalized moment function. Left one is without

color information and right one is with both color and range. Red dots

means the minimum point and statistically equal point. . . . . . . . . 93

3.31 Robot experiment result with estimated distances. Using perimeter mo-

ment model : (a) shows the case without color, (b) with estimated dis-

tances. Using area integration moment model : (c) without color, (d)

with estimated distances. The red box is home located at (500,500)

and the arrows show the homing direction at each point. . . . . . . . 94

3.32 Robot experiment using Vardy’s image set result using only color in-

tensities with horizontal line. (a) is the output using DID with pre-

aligned images. (b) uses DID aligned by visual compass. (c) uses area

integration model aligned by visual compass and (d) aligned by rear-

rangement. The red box is home located at (5,8) and the arrows show

the homing direction at each point. . . . . . . . . . . . . . . . . . . . 94

3.33 Performance graph between various models and angular errors. First

one is with our dataset and second one with Vardy set. . . . . . . . . 95

3.34 Occlusion test using moment model (n= 2). In the same field of ’ourlab’

environment, we placed four trashcans together making a convex hull

and calculated the homing direction at various locations including in-

side, around, and outside of the convex hull. The red rectangle at (500,500)

represents the home position and the blue arrows show the calculated

homing direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.35 Homing test with dynamic environments. On the left, we see some

objects marked by black circles to far position (similar with the wall

position) and right one moves some parts marked by black x-marks to

near position (similar with other object position). The red box is the

home position and red x-marks are used for measured landmarks. The

blue arrows are used to calculate the homing direction and have an

error smaller than 45◦ and red are not. . . . . . . . . . . . . . . . . . 97

xv



3.36 Performances of homing tests based on the area of the dynamic region.

These are the changes in the size of the manipulation area in each case.

The x-axis shows the size of area (in degree) and the y-axis shows

angular error. Each error bar shows both mean and length of confidence

interval (95 percent with assumption of t-distribution). . . . . . . . . 98

4.1 Bipolar cell model. The first is an ON cell and the second an OFF cell.

They are composed of two regions: the blue region indicates increased

activity, and the red region indicates decreased activity. The shown

combinations operate either an ON or OFF switch. The ON cell fires

when the surrounding pixels are darker than the central pixel, whereas

the OFF cell fires in the opposite case. The bipolar cell is a combination

of both cells, shown at the right of the graph. . . . . . . . . . . . . . . 100

4.2 Bipolar cell activity of the (a) ON cell, (b) OFF cell, and (c) bipolar

cell that combines the activity of both cells. . . . . . . . . . . . . . . 101

4.3 Structural form of the cells used in the proposed method. Basic (a) ON

and (b) OFF cells, and (c) bipolar cell with its activity shown along the

x-axis direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Multiscale mask sets. The background represents an omnidirectional

image that includes a yellow object. Four sets of equidistant masks are

depicted. Level 0 behaves like a cone cell for color acquisition. Levels

1 to 3 contain visual masks for vertical edge detection at various scales.

The mask brightness at each level determines the output. . . . . . . . 103

4.5 Visual mask firing. The masks are placed along the horizontal line.

The background and yellow rectangle represent the image plane and

an object, respectively. Each visual mask fire according to the location

of the object edge, as illustrated in the red curves below each image. It

can be seen that the masks operate as vertical edge detectors, and the

firing rates vary as the object moves. . . . . . . . . . . . . . . . . . . 104

4.6 Matching algorithm operation. Level 0 retrieves color information along

the horizontal line. The yellow and pink rectangles represent objects

with different color information. There are seven mask columns, and

two levels are illustrated (we omitted levels 2 and 3 for simplicity).

Mask brightness represents its activity in the graph. . . . . . . . . . . 105
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4.7 Filtering algorithm operation. Unlike Figure 4.5, high mask activity

is exhibited in two columns at the right of the first active column. To

solve ambiguity, the two connections marked with X are removed. . . 106

4.8 Landmark vector extraction corresponding to Figure 4.5. The vectors

are constructed considering matching weights and angular locations

of the landmarks obtained from mask activity. Then orange and yel-

low arrows represent the mask activity (i.e., edge detection) obtained

from the first and second images, respectively. The thick arrows repre-

sent the sum landmark vectors. The homing direction is determined by

subtracting these representative vectors. . . . . . . . . . . . . . . . . 107

4.9 Landmark vector types. Top view showing the arrangement of land-

marks that are represented as circles (left). The corresponding omnidi-

rectional image is delimited by the concentric circles around the central

black dot. The green arrows represent the original landmark vectors.

Without clustering, the pixel-wise landmark can be either the red (us-

ing the estimated distance based on the ground line) or blue regions

(using only angular position of pixel landmark). . . . . . . . . . . . . 108

4.10 Principle and concept of pixel-wise landmarks. The graph shows a top

view of the landmark cylindrical object (gray circle). Xi is the center of

the cylinder with radius ri. Two observations are considered at points

X and X’. Equal length vectors called ALVs point to the object edges,

as represented by the blue arrows. Their sum at each observation point

results in the red arrows, which are not geometrically equal to the real

landmark vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.11 Examples of Haar-like masks and their matching in the image; six

types of masks with one or more rectangles. Type I has one rectangle,

Type II and III two regions, Type IV and V three regions, and Type VI

four regions; lower picture shows a panoramic image and matching of

those Haar-like masks. . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.12 Matching scores for 5000 Haar-like masks. Six types of masks are

tested and larger sizes of masks indicate higher matching scores; black

dot for type 1, blue x for type 2, red star for type 3, magenta + for type

4, cyan diamond for type 5, green triangle for type 6. . . . . . . . . . 112
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4.13 Overview of the Haar-like feature homing algorithm. Initially random

masks are generated and the matching score of each mask over the

home snapshot image can be calculated. Then a set of landmark vectors

are derived from the mask scores. The same set of masks are applied to

the current snapshot and another landmark vectors are obtained. The

homing vector can be estimated from the two sets of landmark vectors.

Lower figure shows a diagram of landmark vectors at the home loca-

tion (H) and at the current location (C). The matching score for each

mask becomes the length of the mask landmark vector. The average

of landmark vectors are represented as blue arrow and red arrow, re-

spectively. The difference of the two averaged vectors makes homing

direction, displayed with green arrow. . . . . . . . . . . . . . . . . . 115

4.14 Overview of the Haar-like feature homing algorithm. Initially random

masks are generated and the sum of matching scores of each mask

over three reference images (H, Hx and Hy) can be calculated by ap-

plying the same set of masks. Each summation is directly proportional

to geometric distance and the homing vector can be estimated from the

differences of two terms. It shows that changes between pairs with the

width of blue links and overall length as red arrows, respectively. The

ratio between two pairs makes homing direction, displayed with green

arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.15 Simulation of homing navigation for different environments. The red

square and circles represent the home position and landmarks, respec-

tively. We also considered the landmark colors and a white background.

The arrows indicate the homing direction at the corresponding positions.119

4.16 Landmark vector generation. (a) and (b) are taken from near positions.

Only one type of visual masks along the horizontal line were con-

sidered. The lines over the pictures represent the firing rate of visual

masks at the corresponding locations. The landmark vectors from the

(a) and (b) are represented using (c)red and (d)blue lines, respectively. 120
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4.17 Homing directions from experiments using only the visual masks and

combining these results with the matching algorithm. The blue square

and red arrows represent the home position and the calculated homing

directions at the corresponding positions, respectively. The left graph

shows the results using only the visual masks, and the right graph adds

the matching process. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.18 Homing directions obtained from the proposed method considering the

effect of the number of mask levels. The blue square and red arrows

represent the home position and the calculated homing directions at

the corresponding positions, respectively. We considered (a) 1, (b) 6,

(c) and 9 mask levels. . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.19 Homing direction obtained from the proposed method considering the

effect of mask size. The blue square and red arrows represent the home

position and the calculated homing directions at the corresponding po-

sitions, respectively. We considered masks located (a) every 1◦, (b) 2◦

and (c) 4◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.20 Homing direction obtained from the proposed method considering the

effect of the amount of matching masks selected by the filter. The

blue square and red arrows represent the home position and the cal-

culated homing directions at the corresponding positions, respectively.

We considered different amount of matching masks selected after fil-

tering: (a) 6%, (b) 12%, and (c) 40%. . . . . . . . . . . . . . . . . . 123

4.21 Homing directions according to different home positions. The blue

square and red arrows represent the home position and the calculated

homing directions at the corresponding positions, respectively. We con-

sidered three home positions: points (a) (1,1), (b) (5,8), and (a) (7,13).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.22 Performance graphs according to the different parameters(a:number of

floor, b:minimum size of cell, c:pick percent) evaluated in the previous

section. The (d) graph considers distance from home with respect to

point (5,5). The blue lines represent the mean values. . . . . . . . . . 125
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4.23 An example of histogram of matching score differences over a pair of

snapshot images (blue curve indicates a low-pass filtered result over

the histogram) (a) close distance for the two snapshots (b) far distance

for the two snapshots Circular plot for each case. Based on center,

it plots matching score in each direction and plot homing direction.

Blue arrow is optimal direction and black is calculated one. (c) close

distance for the two snapshots (d) far distance for the two snapshots . 126

4.24 Homing performance in ‘ourlab’ environment using Method 1 with

varying number of Haar-like masks (a) 100 masks (b) 500 masks (c)
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4.25 Left : Angular errors with Method 1 depending on varying number

of Haar-like masks for environment ‘ourlab’ (error bars indicate 95%
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from various location. . . . . . . . . . . . . . . . . . . . . . . . . . 128
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4.30 Homing performance with Method 2 in four different environments

with 1000 random masks (a) ‘a1original’ (b) ‘screen’ (c) ‘arboreal’
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5.1 Type of landmark vectors. The first one (top-view) shows the arrange-

ment of landmarks that are denoted as circles and the reflected omni-

directional image represented by a circle with a black dot at the center

in the first figure. The green arrows indicate the original landmark vec-

tors. Without clustering, the pixel-wise landmark may be the one of

either the red (Method using the estimated distance value based on the

ground line) or the blue arrow (Method using only the angular position

of the landmark pixel). . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Principle and concept of the pixel-wise landmark method. The over-

all figure presents a top view. The gray circle indicates the cylindrical

landmark, and Xi, the center with a radius ri. Two observations are

made at X and X’. The equal distance vectors called ALV point to the

parts of object that are marked, as shown by the blue arrows. The sum

of the blue arrows is represented by the red arrow that is not geometri-

cally equal to the real landmark vector. . . . . . . . . . . . . . . . . . 141

5.3 Example of simple landmark extraction a)The original omnidirectional

image from the webcam, b)binary image, and c)binary-panoramic im-

age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4 Principle of distance estimation. The mounted camera (O) has a height

value (Hrobot), and the red dot indicates the camera position. Then, the

green dot of contact between the object (Landmark) and floor is equal

to the one pixel on the ground line. The angle value (θ′) between the

horizontal line and ground line is directly proportional to the distance. 143

5.5 Graph of the relation formula for the distance-fitting equation. . . . . 144

5.6 Example of the distance estimation from the panoramic Image. Dis-

tance fitting coefficient a1 = 5, a2 = 0.143, a3 = 0.0018 ,a4 = 10, red

x is extracted landmark pixels from home cite (500,500), the blue o

from the other cite at (460,500). . . . . . . . . . . . . . . . . . . . . 145

5.7 Simulation output in the vector map containing the homing vectors us-

ing method 1. Circles of various colors are landmark objects, and blue

square indicates the home position. Red arrows indicate the calculated

homing directions at each point. . . . . . . . . . . . . . . . . . . . . 148
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5.8 Example of landmark pixel extraction. (a)Input panorama image (is

equal to the one in Figure 5.9), (b) extracted image using intensity

sorting algorithm, (c)spectrum of the omni image, and (d) spectrum of

the fitting image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.9 The example of image process. (a)input omni-directional image, (b)

unfolded panoramic image (c) after using histogram equalization. . . 150

5.10 Example of automatic pixel-wise landmark extraction. The first one is

the image at home position (50,50), and the third one is at a different

position (54,58). The second and fourth are the PLV extracted versions

of the first and third, respectively. The white region is the non-selected

part. The number of pixels is automatically selected by using both his-

togram equalization and score calculation. . . . . . . . . . . . . . . . 150

5.11 Top view of the environment shown in Figure 1. The various polygons

represent the objects in the reference map, and x shows the landmark

pixel after fitting 270 pixels . . . . . . . . . . . . . . . . . . . . . . . 151

5.12 Concept of route selection in our model without distance information.

∇M is equal to the one using distance information but it fails. ∇M1 and

∇M3 shows successful homing using variation with different patterns.

∇M2 is reverse of ∇M1 and ∇M4 is reverse of ∇M3. . . . . . . . . . . 153

5.13 Simulation for method 2. Blue square refers to home position, and

there are four landmarks with different size, location, and color in-

formation. Left one uses M1 and right one uses M3 . . . . . . . . . . 155

5.14 Simulation of method 2 under a special condition (K1 > 0,K2 = 0).

There are two identical landmarks, but we control the location to obtain

this condition. The left one corresponds to M1 and right one to M3. . . 155

5.15 Simulation of method 2 under a special condition (K1 = 0,K2 6= 0)

with different arrangement. There are two identical landmarks, but they

differ from the one in Figure 5.14. The left one corresponds to M2, and

the right one, to M4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.16 Simulation of method 2 under the most special condition (Mxx = 0 and

D(X0)= 0). There are four identical landmarks and arrangements. Four

vector maps show the different reactions of these four models. . . . . 156
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5.17 Example of homing navigation using a combination of models. The

left one changes the model from M1 to M3 in the normal situation. The

right one changes the model from M4 to M2 in the special situation.

The starting point is (-5,-5), and the home position is (0,0) . . . . . . 157

5.18 Dynamic Time Warping (DTW) : The blue signal is the original signal

and the orange one is warped in the time domain. Then an Aligned out-

put signal is produced (the second signal) by using squared Euclidean

distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.19 The example of extracted optical flows generated by the movements

around two points (convergence and diffusion point) and marked as

blue arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.20 The idea of matching based on two important points. The gray circle

means surrounding objects. When the agent moves from home position

to current position, then flows are generated by the movements around

two points (convergence and diffusion point) . . . . . . . . . . . . . 161

5.21 The idea of matching based on two important points based on opti-

cal flow. The gray circle means surrounding objects. When the agent

moves from home position to current position, then flows are gener-

ated by the movements around two points (convergence and diffusion

point). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.22 Three examples of route matching. The index of y-axis is called the

base index (the home snapshot image). The index of the x-axis is called

the unknown index (current view). The blue line is the matched out-

put between left wings (Lθ) of the snapshot image (located at (5,8) of

Vardy set)) and an example image from very near to the snapshot (loca-

tion (4,8)). The black line is between the snapshot and a distant image

(5,14). Red line is between the snapshot and another distant image (5,1).164
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5.23 The concept of matching algorithm including score information. The

first figure shows an example environment including two landmarks.

One is bright orange color and the other is dark brown. Home and cur-

rent location are marked by colored triangles. Green (diffusion point)

and red (convergence point) dots are aligned. Final calculated homing

direction by DTW matching is marked as a black arrow. The second

figure shows the output by using the wing matching method. The dif-

fusion point is selected as the start point and the convergence point as

the end point of DTW matching. Upper graph shows the information

of Left wing (L and L0) in counter clockwise direction. Lower graph

shows the information of right wing (R and R0) in clockwise direc-

tion. The third figure shows an example using the unifying matching

method. It uses the diffusion point as both start and end points. It con-

nected both wings with double lengths and was directly applied into

DTW without a convergence point. The circles on the y-axis of the

graphs represent the information of color distribution in bar-code. . . 165

5.24 Example of connected-edge after inhibition. Blue line is for the data

distribution of the current view and red is for the snapshot image. For

figure, height of the blue line is increased to show connection. Each

black line shows connected-edges for every 10 indexes. . . . . . . . . 166

5.25 The robot experiment output in a vector map including the homing

vectors using method 1 a) with aligned images, and b) using visual

compass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.26 Robot experiment output in the homing route using method 1 a) with
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5.27 Vector maps of three different methods and the homing route of the

final one. (a) is the case without PLV selection, (b) using gray infor-

mation with PLV selection, (c) is using RGB information with PLV

selection, and (d) is the homing route plot of (c). . . . . . . . . . . . 170

5.28 Vector map using RGB information and sorting method with changing

home positions. (a) 42,44 (b) 54,54 (c) 42,50 , square means home
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5.29 Different output according to the selected model. The left one uses m3,
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5.30 (a)Angle error performance, and (b)homing rate performance with dif-

ferent method. I is the case using gray information without PLV selec-

tion; II is gray with simple color threshold; III is gray with selection;

and IV is RGB with selection . . . . . . . . . . . . . . . . . . . . . . 172

5.31 The homing rate and angular error performances obtained by changing

the number of pixels. (a) Angular error performances of both gray and
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by the sorting method . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.32 Effect of automatic pixel-wise landmark selection. The left figure shows

the example of calculation of the score of PLV selection between (54,58)

and (50,50). The black line indicates the selected number with the

maximum score (179). The right one is the experiment on the effect

of distance between two images in PLV selection. The mean of the

calculated optimal output is 146 . . . . . . . . . . . . . . . . . . . . 173

5.33 Performance comparison between our models and DELV. FD is full

DELV using large computation; SD corresponds to DELV. M1 is method

1; M2, method 2; and M2c, method 2 using RGB information. VC is

the visual compass, and S is the selection algorithm. The left graph

corresponds to angular errors, and the right graph to operation time. . 174

5.34 Example of the performance of our model compared with the one of

full DTW search. Each colored square shows the full search output.

Y-axis is the index of target angular location of the home snapshot and

X-axis is the index of unknown angular location of the current view.

Colored dots show the output distance of DTW where the darker one

represents a more accurate method than the other. The left figure is for

the case between snapshot (5,8) and (5,9). The second figure is for the

case between snapshot (5,8) and (0,16). The red dot represents the full

search and the blue is for our model based on finding stationary points 175

5.35 Experiment about wing matching model (I). The left figure is the pre-

aligned case and right is aligned by applying the visual compass algo-

rithm. Red circle indicates the home position and each arrow represents

the homing vector with unit length at each location. . . . . . . . . . . 176

5.36 Experiment of changing home position. Home position is changed with
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5.37 Examples using the unifying model (II). The left figure uses pre-aligned

inputs and right one uses non-aligned inputs. . . . . . . . . . . . . . . 178
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uses pre-aligned inputs and right one uses non-aligned inputs. . . . . . 178

5.39 Examples comparing wing matching (I), unifying matching (II), op-

tical flow matching (III) for a distant home location. The left figure

shows the wing matching algorithm with (0,16) as the home position,
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5.40 Experiment of the effect of inhibition to connected-edges. the left fig-

ure is without inhibition and the middle one is reverse inhibition. The

right figure uses both inhibition and reverse inhibition. The left side of
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5.41 Experiment of the effect about searching area size. The left side uses
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5.43 Experiment using different environments. Above is the example panoramic

image of our environment which is used as a snapshot. The lower left
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5.44 Images of the experiment at different times of the day. The first image

was taken at 6:00 AM, the second image was taken at 2:00 PM, the
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12:00 AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
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5.45 Output example of all day experiments. The left image shows the use

of our model based on DTW and the right image shows the use of

MinWarping. The red circle at (50,50) shows the home location and

the black arrows show the calculated homing directions. The lower im-

age shows the changes of the overall homing performances over time.

The blue one is about our method using DTW and the red one about

MinWarping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.46 Loop closing test in the room and in the corridor environment. The im-

age on top is the illustrated top view. It shows the object location in the
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one is the output of dead reckoning, the red one with loop closing and

the black one is the desired output. The right one shows the location

error. Marking numbers (1 8) show the locations of robot in the Fig-

ure 5.46. The “Index” is the frame number and the large drop at around

1700 (marked with ”5”) is the moment of loop closing. . . . . . . . . 188

5.49 Examples of panoramic images. First one is from home, others from

right before loop closing in time-ordered sequence. Fourth one is the
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5.51 Homing sequences of using various our models. The red line shows the

output of our model using DTW, the blue line shows the output for the

moment model using distance estimation and the black line shows the

output for the temporal update of the pixelwise model. The magenta

dot at (0,0) is the home location. . . . . . . . . . . . . . . . . . . . . 190

A.1 Simulation environment and measured data from the sensors. (a) is top
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Chapter 1

Introduction

In daily life, we frequently hear and use the term ‘navigation’ or a variation of it.

Navigation lexically means ”The process or activity of accurately ascertaining one’s

position and planning and following a route”. It involves the process of monitoring

and controlling the movement of an agent from one place to a goal location. Based on

engineering achievements, navigation has been studied from ancient to current times.

Modern navigation systems use various measurements such as GPS, range, and vision.

Different to other measurements having high accuracy such as range, vision contains

abundant information, but also involves variability to the environment and is difficult to

use for navigation purposes, particularly when considering machine navigation. How-

ever, robust vision-based algorithms such as object detection, path following, monitor-

ing situation, and environment observation have been developed and applied to various

navigation problems in different environments (e.g., land, air, and water). However,

these achievements have come at the cost of increased complexity of the algorithms

used to perform navigation.

Different from engineering/machine approaches (Davison, 2003), various animals in-

stinctively have a vision-based homing navigation ability tuned to survival behaviors,

such as foraging for food. Some insects, such as ants, also have their own simple nav-

igation systems based on measurement using small neurons. In spite of ants’ low cal-

culation capacity, their homing ability to their nests is very robust, enough for survival

purposes. Based on ant navigation, many researches have attempted to develop robust

navigation algorithms that apply low level calculations to replace the high complex-

ity algorithms currently in use. In this chapter, we introduce a concept of bio-inspired

1
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navigation with primary focus on the use of vision and discuss the motivation and

objectives of the paper.

1.1 Why Bio-Inspired Models for Navigation?

There have been many cases where common problems have been solved using bio-

inspired mechanisms in human history. For example, mimicking of spider webs is

used in bulletproof vests and the properties of cocklebur have been mimicked to de-

velop the Velcro fiber. Other natural properties, such as the waterproof property of

the lotus leaf, the thrust of a humpback whale, fast (frictionless) skin based on shark’s

skin, the structure of the quick kingfisher for vehicle design, a streamlined car structure

(Mercedes-Benz) based on the trunkfish (boxfish) and architecture applications derived

from termite mounds have been exploited by humans. These solutions, mimicking bio-

mechanisms, are referred to as ’Biomimetic’ solutions, which refers to human-made

processes, substances, devices, or systems that imitate nature. The art and science of

designing and building biomimetic apparatus is called biomimetics, and is of special

interest to researchers in nanotechnology, robotics, artificial intelligence (AI), the med-

ical industry, and the military. Also many biomimetic applications are found in navi-

gation.

There are many examples of animals such as birds that seasonally move over thousands

of kilometers. However insects such as ants, having smaller brain capacity than birds,

also successfully return to their nest after outside exploration. Detecting the home-

bound direction after finishing an outside activity must be an essential ability for the

survival of ants building a nest, and implies robust performance. Overall the perfor-

mance of these homing insects exceeds those of other engineering methods applied

in human industry. Researchers have designed bio-inspired algorithms based on these

efficient homing phenomena for robotic navigation. For example, there is well-known

research regarding ant navigation using pheromones (Willis, 2008) which facilitate

one ant to follow another. Similarly, there has been extensive research into methods

that accomplish homing navigation using senses, such as vision, olfactory, auditory,

odometry, and magnetic (Collett and Collett, 2000; Mather, 1991; Papi, 1990; Rossier

et al., 2000; Luschi et al., 1996; Ugolini et al., 2010; Steck et al., 2010; Lent et al.,

2010; Gould, 2015). Animals can recognize their location and moving direction using

various senses. Among them, many studies have mainly focused on visual cues (Reid



1.1. Why Bio-Inspired Models for Navigation? 3

et al., 2011; Basten and Mallot, 2010; Wystrach et al., 2012), such as skyline detec-

tion, or tracing the sun or moon for navigation. Not limited to ants (Collett and Collett,

2000), there have been many studies of other species such as honeybees (Srinivasan,

2010; Kirchner and Braun, 1994), jellyfish (Garm et al., 2011; Garm and Nilsson,

2014) ,rodents (Etienne and Jeffery, 2004), fiddler crabs (Zeil and Hemmi, 2006), and

gerbils (Etienne et al., 1996; Mittelstaedt and Mittelstaedt, 1980).

Early works focused primarily on mapping the environment through measurements.

Then a geometric representation of the environment (a map) helps the robot to estimate

its current position on the reference map and find its goal direction. However, the large

memory required for mapping is too complex to be applied in small insects’ navigation.

Thus view-based homing navigation has been researched through various bio-inspired

algorithms involving simpler processing. These methods were developed to allow a

machine to return home by using a stored view of the home location. The basic premise

is that insects may use a topological representation of space or may even have no space

information stored in their brain.

Among these view-based researches, a snapshot model to model a bee’s navigation has

been proposed by Cartwright and Collett (Cartwright and Collett, 1983), where a pair

of snapshots, one at the current location and one at the nest are compared to determine

the homing direction. For homing direction, only two images are sufficient, instead of

various images taken along the moving path. In this method, agents move along the

direction which decreases the difference between the current view and view from the

origin or the nest. If there are visible landmarks available at the two locations, they

can help to guide the agent home efficiently. Local visual homing based on this snap-

shot model is an example of bio-inspired research by using visual cues. As mentioned

previously, the method uses only two images (snapshots). One snapshot captures the

home position and the other is a snapshot of the current view. Then there must be some

differences between the two images that provides some information about the relative

location difference. If there is no large distance difference between the home and cur-

rent positions, then both images are similar, and vice versa. The agent tries to use these

differences to find the proper homing direction. As the algorithm exhibits both sim-

plicity and robustness based on bio-inspired bases, other research into methods which

attempt to find the accurate direction have been attempted by using various sensors to

obtain location information such as color, depth, and optical flow.

The main advantage of a bio-inspired system is its ability to quickly respond to an ex-
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ternal stimulus in a simple manner. Animals have specialized sensing mechanisms and

studying their properties can assist in the development of compact intelligent systems

in robotics. In this respect, previous bio-inspired researches are worth studying, since

local visual homing remains a challenging problem. Vision plays a great role in local-

ization, mapping, and navigation. There have been various studies involved with local

visual navigation (Huber and Kortenkamp, 2002; Méndez-Polanco et al., 2009; Möller,

2009; Churchill and Vardy, 2013; Denuelle et al., 2015a,b). More advanced algorithms

have been developed for simultaneous localization and mapping (SLAM) (Thrun and

Montemerlo, 2006; Davison et al., 2004; Dissanayake et al., 2001) or graph models

(Hübner, 2005; Jensen et al., 2009). The navigation in our paper concerns a type of

navigation based on the snapshot in which the agent plans a path and trajectory on

its own to reach the goal point by comparing the current measurement with only one

remembered snapshot without any other records such as a geometrical map of the en-

vironment.

1.2 Motivation and Objectives

Motivated by the vision-based insect’s navigation including both simplicity and robust-

ness, we propose various types of visual navigation systems with various features. The

main purpose of this thesis is to develop a robust homing navigation method which can

emulate an insect’s navigation.

The detailed objectives are as follows:

Various vision-based homing navigation methods. We introduce various navigation

models using different features. Based on a snapshot model, we change the mea-

surement function to evaluate different types of navigation. The first method

uses a fusion of range and vision by applying the moment function. The second

method operates without range data, and is based on the receptors in the retina

structure by using bipolar-like masks to convert input vision to landmark infor-

mation for navigation. The third method uses only an image, and treats each pixel

of the image as a landmark to assist in locating the home position through anal-

ysis of pixel variation. Through those suggested methods, we study the origin

principle of visual navigation.

Performance check through experiments. We also check the performance of the pro-
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posed methods through both simulation and experiments, and we compare our

methods with several existing navigation methods. These experiments include

checking performance to evaluate the robustness of the methods. Each perfor-

mance is measured using various properties and tools, such as angular error,

tables, visualized vector maps, and specialized plots. Overall experiments are

conducted in various environments that are described in the Appendix. We use

environments we created as well as other open datasets such as Vardy’s.

Mathematical convergence proof In addition to the experiments above, we present

the convergence of the suggested methods by mathematical proof. With simple

assumptions, we evaluate our model convergence and determine any limitations.

1.3 Organization of Dissertation

In Chapter 1, we introduced our research based on the advantages of bio-inspired al-

gorithms including various homing navigation applications. We also specified the mo-

tivation and objectives of our thesis. Based on these aspects, we organize this paper as

follows.

In Chapter 2, we present background on the existing visual navigation algorithms.

Among these, we focus on homing navigation and we categorize the common problems

in this field, thus highlighting the goals of this thesis.

In Chapter 3, we propose the moment-based homing navigation algorithm. The method

combines both range and visual measurement to achieve robustness. It consists of three

major steps: size adjustment for range and vision data, the creation of average landmark

vectors in moment space, and locating the homing vector using alignment. Fusion of

two measurements facilitates multiple approaches to calculate the homing direction,

and we mathematically describe the detailed procedures of the method.

In Chapter 4, based on the receptors in the retina structure, we use visual masks con-

verting input vision to landmark information of navigation without using range data.

We use simple Haar-like masks to mimic bipolar cells and convert each matching score

into a landmark vector. The method consists of three major steps: generating organized

masks according to each rule, image processing with generated masks to build land-

mark vectors, and landmark vector comparison to detect the homing direction. Based
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on organized mask generation, we demonstrate the homing abilities of different meth-

ods using these masks as receptors of vision input and we check to verify that the

collection of multiple images around the home position facilitate accurate detection of

the homing direction.

In Chapter 5, we propose the pixel-wise homing navigation algorithm. The method

treats each pixel of an image as a landmark and calculates differences in the landmark

distribution to detect the homing direction. It consists of three major steps: pixel in-

formation extraction with filtering process, generating pixel-wise landmark vectors,

and landmark vector comparison for detecting the homing direction. We can locate

the homing direction based only on pixel intensities and we check the effect of the

matching process by landmark vector comparison. Additional matching is obtained by

Dynamic Time Warping (DTW), and improves the accuracy of detecting the homing

direction.

Chapter 6, presents our conclusions about the proposed model and discuss future re-

search.



Chapter 2

Background

There are many insects and other animals that use homing navigation based on visual

cues. These creatures always explore the outside world over considerably long dis-

tances from their nest when for foraging food, guarding the home site, or various other

reasons. Thus, being able to return home after finishing a trip is an important require-

ment for survival. In spite of a low number of neurons in a variety of insects, insects

exhibit a variety of navigation skills, including successful homing navigation (Collett,

1996) using various built-in senses. To solve the problems regarding the high complex-

ities of conventional methods to achieve navigation, we focus on various bio-inspired

visual navigation methods. The snapshot model (Cartwright and Collett, 1983) is one

example of homing navigation by bees. Using only two snapshots from the target and

current position, an agent (bee) can easily determine the homing direction by mini-

mizing the differences between two visual cues. The study essentially created a new

research area that has expanded with many research contributions. In this section, we

introduce the overall navigation techniques and discuss the problems of snapshot-based

models as a goal to overcome in our research.

2.1 Conventional Navigation

Artificial intelligence is designed to solve various problems based on various high-

level human abilities such as learning, inference, perception, or language comprehen-

sion using computer algorithms. Along with the development of hardware techniques,

AI algorithms are generally complex and robust. For example, early models applied

7
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Figure 2.1: The essential SLAM problem. A simultaneous estimate of both robot and

landmark locations is required. The true locations are never known or measured directly.

Observations are made between true robot location and landmark locations. A single

realization of robot trajectory in the FastSLAM algorithm (Durrant-Whyte and Bailey,

2006)

to data classification such as the perceptron (Ruck et al., 1990) cannot solve the XOR

and other non-linear classification problems, but later algorithms such as the multi-

layer perceptron are able to perform non-linear classification. The Support Vector Ma-

chine (SVM) (Furey et al., 2000) is a relatively new algorithm that exhibits higher

performance than other traditional algorithms and the recent appearance of the deep

learning algorithm (Collobert and Weston, 2008) based on neural networks exhibits

much higher performance than SVM. These AI algorithms have been applied in vari-

ous fields, for example, feature extraction. Researchers use data from various sensors

as input and the machine used to run the algorithm produces the output. For example,

face recognition uses visual input and the machine runs a search and locates the op-

timal index if the correct algorithm is applied. If successful, a particular face can be

distinguished from other stored faces or from faces not included in learning set. Similar

researches are applied in other object detection applications, such as detecting lanes,

pedestrians, signal signs, automobiles, etc., using vision input (Cireşan et al., 2012;

Baccouche et al., 2011; Ngiam et al., 2011; Ouyang and Wang, 2013; Sun et al., 2014).

Similar discussions can be made regarding voice input (Deng et al., 2013).

Recently, these up-to-date AI techniques have been applied to visual navigation re-

search. A number of methods have been developed for the challenging issue of au-
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tonomous navigation of mobile robots (Goedemé et al., 2005; Chung et al., 2009;

Sasaki et al., 2010; Kang et al., 2012; Chung et al., 2012). The methods vary widely,

from landmark-based navigation (Lambrinos et al., 2000; Weber et al., 1999), which

is inspired by insect homing behavior, to complex algorithms that require intensive

computation and continuous tracking of the information about the environment (Gilg

and Schmidt, 1994a; Davison, 2003; Goedemé et al., 2005; Hwang and Song, 2011).

Simultaneous Localization And Mapping (SLAM) (Davison et al., 2007) is one of

the well-known examples. It is an algorithm that can simultaneously make and up-

date a map (including extension) with localization in each step. Recent SLAM models

based on the Kalman filter have been proposed (Hahnel et al., 2003). Since then, many

modified versions of SLAM have been suggested to solve the initial Gaussian distri-

bution assumption of the Kalman filter. Gaussian filters (Extended Kalman filter and

Unscented Kalman filter) and particle filters (histogram filter, binary Bayes filter and

particle filter) have been developed and localization algorithms such as Monte Carlo

and other mapping algorithms are attached to SLAM algorithms to created new SLAM

versions, such as Fast SLAM (Hahnel et al., 2003; Montemerlo and Thrun, 2007),

Graph SLAM (Thrun and Montemerlo, 2006), SEIF SLAM (Eustice et al., 2005).

They use various measurements including range, vision, magnetic, accelerometer, and

GPS. Especially, range sensors like Velodyne, SICK, and Kinect are the robust range

measurement devices which have small error (under 2cm) and they can also provide

omnidirectional range data in 2D and 3D. As these measurements are robust, the robots

or algorithm using them are also robust.

Various SLAM algorithms are commonly designed to robustly find a landmark and

trace it by using probabilistic parameters to fine-tune localization. Figure 2.1 shows

the basic principles. There are two conditions. One is estimated and the other is true.

Because observed data contains some errors, there is also landmark location informa-

tion that is not correct. As robot movement also has errors, true locations are never

known or measured directly. Observations are made between true robot and landmark

locations, resulting in a current location estimation with some error. But, if we record

the data and trace it from another trial after some journey, we can correct the prior

information. This provides the robustness of the SLAM algorithm.

However, SLAM involves high complexity compared with an insect’s navigation. For

example, ’Velodyne’ is a powerful three-dimensional range sensor that offers vast 3D

point cloud data and enables many prototype smart car applications. It also reduces the
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number of sensors that are attached to an automobile. But an overall price reduction

is not achieved because the price of ’Velodyne’ is extremely high. There are other

SLAM algorithms not using Velodyne, but they also have high complexity that cannot

be easily realized using small computers. Similarly, our research using the laser range

sensor (Yu and Kim, 2010b) also exhibits good performance. But these devices are very

expensive and the algorithms are too complex to apply to the case of insect navigation.

Thus, it is necessary to find other solutions that are simple but robust.

2.2 Navigation of Various Animals

An animal is associated with the term ’activity’. Activity can be one or more actions

depending on the situation and can represent actions for survival. For example tasks

like foraging for something, finding a new nesting place, making a nest, guarding the

nest, running away, etc. In essence, most creatures have activities that focus on the nest.

Therefore returning to the nest is very important to the survival of each creature and

they display robust homing abilities using very small brains. Like a man performing

navigation using maps, , the majority of the animals use features they recognize in their

navigation, such as the story of ’Hansel and Gretel’ who followed bread crumbs.

There have been many algorithms (Anderson, 1977; Wehner and Räber, 1979) that

propose navigation methods applicable to robotics. Many have tried to design new

high performance bio-inspired visual navigation algorithms incorporating robustness

and simplicity. Based on the simplicity of their navigation, there have been many well-

known studies dedicated to biomimetics, for example the ant’s pheromones (Willis,

2008) to lay and follow a trail. Also animals find their homing direction using various

other senses like vision, olfactory, auditory, odometer, and magnetic (Collett and Col-

lett, 2000; Mather, 1991; Luschi et al., 1996; Ugolini et al., 2010; Steck et al., 2010;

Lent et al., 2010). There are also many other studies regarding the homing naviga-

tion of various species using these senses, such as the Desert Ant (Collett and Collett,

2000), honeybees (Kirchner and Braun, 1994; Srinivasan, 2010), jellyfish (Garm et al.,

2011) ,rodents (Etienne and Jeffery, 2004), fiddler crabs (Zeil and Hemmi, 2006), ger-

bils (Etienne et al., 1996; Mittelstaedt and Mittelstaedt, 1980) and so on.

Research into insect behavior continues to date. One example is about alignment of the

dung beetle (El Jundi et al., 2016) by using skylight cues. . Also, there have been vari-
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ous studies on ant navigation based on visual cues (Zeil et al., 2014; Srinivasan, 2017;

Lent et al., 2013; Schwarz et al., 2017). An interesting study if found in (Collett et al.,

2017), which researches the effect of visual cues in backward walking performed by

an ant to move collected food. Similar research has been carried out on flying insects.

(Stürzl et al., 2016) focuses on how a wasp uses learning flights to gather visual cues

around the home position and it takes an arc-shaped returning path when there are vi-

sual disturbances. Such bio-inspired homing navigations have generally been divided

into the three tasks discussed below.

2.2.1 Path Integration

Path Integration (PI) (Darwin, 1873; Kimchi et al., 2004; Giachetti et al., 1998; Vick-

erstaff and Merkle, 2012; Wintergerst and Ronacher, 2012; Etienne and Jeffery, 2004)

is also known as ’dead reckoning’. This method was first postulated by Darwin in 1873

and described by Murphy (1873). It has been researched in various fields. For example,

in the Sahara Desert, the desert ant (Cataglyphis Fortis) performs long-distance jour-

neys for its body size. But this type of ant cannot use the pheromones generally used

by other ants because the temperature of the ground in the Sahara Desert is sufficiently

high to evaporate pheromones. Also the variable characteristics of the desert can cause

visual information to become different in a brief space of time. Then, using Path inte-

gration, a desert ant accumulates its movement path from home and it returns home by

using the accumulated data. In this manner, it has to find the location and the direction

then renew the current location and direction using the previous one in gradual steps

from the start position.

Pn+1 = Pn +δ = (v+,δv,r+,δr)

dir = tan−1(v+,δv,r+,δr)
(2.1)

Figure above shows the principle of Path Integration. As mentioned above, the agent

renews both location and direction using the information above. Then the agent checks

the total amount of accumulation at the final moment and finds the reverse direction.

Other research involving various animals using PI are (Kimchi et al., 2004; Vickerstaff

and Merkle, 2012; Etienne and Jeffery, 2004; Collett and Collett, 2000; Kirchner and

Braun, 1994; Mittelstaedt and Mittelstaedt, 1980; Zeil and Layne, 2002) . Also as this

method focuses only on the Azimuthal changes, when there are vertical changes, some
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(a) (b)

Figure 2.2: The left figure (a) shows the principle of Path Integration (reprinted from

(Wehner et al., 1996a)). The position Pn of the animal in relation to the starting point of

its foraging excursion (nest) is described by the vector (n,r). The right figure (b) shows

the typical foraging trip route of the Saharan ant (Cataglyphis Fortis: reprinted from

(Wehner and Wehner, 1990)). Starting at the nest (open circle), the ant searches for

food on a random course (thin line) until it finds prey (position marked with the large

filled circle). The food is carried back to the nest on an almost straight course (thick

line).

errors are introduced in the estimation of distance and direction. Therefore research

involving 3-Dimension Path Integration (Wintergerst and Ronacher, 2012) propose

methods to overcome the limitation. Others have attempted to prove the fundamen-

tal principles of homing navigation using neural structures (Möller et al., 1999; Frost

and Mouritsen, 2006; Reppert et al., 2010; Trullier et al., 1997; Issa and Zhang, 2012;

Wittmann and Schwegler, 1995; Cheung and Vickerstaff, 2010; Kubie and Fenton,

2009; Kim and Lee, 2011; Haferlach et al., 2007)) and its calculation system (Vicker-

staff and Cheung, 2010)

But Path Integration demands a highly accurate measurement model, because PI can

accumulate errors and the output of path integration points can lead an agent in a

very different direction due to the accumulated errors. Thus, research into mitigating

the error accumulation during PI (Samsonovich and McNaughton, 1997; Conklin and

Eliasmith, 2005; McNaughton et al., 2006) has taken place. the basic goal is to achieve
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Figure 2.3: Figure shows an example of route following (reprinted from (Baddeley et al.,

2011)). Figure (a) shows the workspace as viewed from above. The dark line represents

the training route. (b) The output of route following.

the accuracy of an odometer, and some studies have attempted to reach this goal.

The research by (Pan et al., 2011; Dittmar et al., 2010) substitutes visual optical flow

information as the odometer measurement. Because path integration and normal vi-

sual guidance have different advantages and can supplement each other, some research

combines the two methods (Collett, 2012; Merkle and Wehner, 2010) according to the

distances involved.

Research on vision-based path integration has taken place recently. For example, (Wehner,

2016) postulates that the ant uses visual cues in early trajectories to build PI. Similar

research has also been conducted on various species such as bees (Collett and Graham,

2015), wasp (Collett et al., 2016) and dung beetles (Collett et al., 2016).

2.2.2 Route Following

The Route Following (RF) task uses the images captured during the journey to learn

the route. Different to Path Integration, the Route Following method allows the agent

to learn the scenes in the route repeatedly. Then the agent follows the learned route

using visual cues according to learned output.

Figure 2.3 shows an example of route following which indicates a route is followed by

using past learning. Contrary to path integration, this method must invest some time

in the learning phase (Schwarz and Cheng, 2010). Therefore if there is some error or

omission in the learning phase, the agent cannot carry out its task. And if the agent

is in danger and in a location which is not included in learning, then the agent has
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no reliable direction in which to move. But, regarding learning, this method is very

apt for experiments using algorithms that try to produce real models of ants or bees,

(Baddeley et al., 2012; Wehner et al., 1996b; Baddeley et al., 2011; Wystrach et al.,

2011; Graham et al., 2010; Legge et al., 2010) . A recent study (Wystrach et al., 2012;

Reid et al., 2011) applies ’skyline’ information (which is the boundary between sky

and a landmark in images) to the route following method.

PI and RF can be used in long distances, but at a cost for each method. But PI has the

weakness in that the agent must use multiple signals (not only vision) to observe and

accumulate its current condition. In the case of route following, if the agent encounters

a new path that has not been previously learned, the agent will miss the return path.

A common weakness between the two methods is that the agent cannot go to a place

unless the agent has fully learned the route to that position.

Other research on vision-based route following has been conducted. For example, re-

search to apply route following of flying insects to flying robots (Gaffin and Brayfield,

2016) uses snapshots from various heights as references and finds the optimal path for

route following by calculating image distances. (Gaffin and Brayfield, 2016) presents

bio-inspired navigation using the scene familiarity hypothesis (NSFH) in the route fol-

lowing problem.

2.2.3 Local Homing Navigation

The local homing method, as the simplest form in visual navigation, finds the direction

from a current position to the target position using only visual information. Therefore

this method achieves navigation by only using comparison of visual cues. Following

the ant examples, as mentioned above, we have to consider their small brain structure

and size with regard to visual information. We assume that the ant has effective data

processing and an effective homing navigation method. Thus there have been many

attempts to analyze the efficient visual homing navigation of insects. Research can be

divided into two categories. One is the case focusing on finding the biological basis

of each model (Collett, 1996; Zeil, 2012). The other is the case of applying it into

practical navigation applications (Angulo and Godo, 2007).

There are many categories and techniques in this field. The original research of local

visual navigation is the snapshot model (Cartwright and Collett, 1983). The snapshot
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model focuses on the homing navigation of the bee. Using only two visual cues from

the target and current position, it can easily find the homing direction. The cue is called

a snapshot (SS) from ’home (target)’ position and the other one is called the current

view (CV). The bee compares those two images to find the differences between them

for calculating homing direction. There are many features like simple pixel color, esti-

mated range, height differences, and optical flow available in a snapshot, and the dif-

ferences of the object’s location between both images makes measurements different.

The differences can be used to find the homing direction that makes the location of the

objects in the current measurement equal to the home’s objects. This method follows

the premise that the snapshots of both target and current position have common visual

information to match each other so the method can be used within a fixed area. There-

fore if the distance between snapshots is too far from certain limits, theoretically the

agent (bee) cannot find the homing direction. But we can solve the problem by instal-

lation of interchanges called milestones (Vardy, 2006) at every limit point. In short, we

can develop this method to apply to a wide area by adding only target snapshots which

do not require learning or sensor information other than vision. This is then directly

related to the short-cut problem (Kubie and Fenton, 2009) which is to find a short cut

between two places.

But there is severe problem due to missing range information. Different to other ap-

proaches like SLAM, our method is relies only vision without information from other

sensors. Therefore, similar research based on the snapshot model has produced various

algorithms to mimic range information.

2.3 Classification of Visual Navigation Methods

Before fully discussing the snapshot model, we have to check the overall composi-

tion of visual navigation. Figure 2.4 classifies the overall visual navigation techniques

divided by Möller into the nodes of a tree, which was introduced by (Möller et al.,

2010). As mentioned above, there have been many different techniques and these can

be divided into each node of the figure above, which shows a representative flow in

this field.

1. Geometrical maps vs topological maps The first norm is the type of the map. The

geometrical map is based on geometric information which includes real distances. This
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Figure 2.4: Classification of the various techniques of visual navigation into each objec-

tive (reprinted from (Möller et al., 2010))

map is essentially the same as maps that people commonly use. In other words, this

category includes all the techniques that make (Thrun and Montemerlo, 2006; Davison

et al., 2004, 2007; Dissanayake et al., 2001)or refer (Dellaert et al., 1999; Thrun et al.,

2001; Wolf et al., 2005; Fox et al., 1998; Burgard et al., 1998; Fox, 1998) to a real map,

including the all objects in real distance, and an agent finds its location and position

on the map. And the location and position are updated on the map according to the

movement of the agent. But because the agent must perform the actual measurement,

it must use some type of distance sensor, such as a laser sensor or SONAR, and the

amount of calculation is very large due to the complexity of the algorithms required

to establish exact position. For this reason, this category is not suitable to our purpose

(e.g. simplicity). On the other hand, the topological map is based on the topologies of

objects which include relative location between the agent and objects. Then the agent

need only find the relative difference of the locations to find the following direction.

This method is more suitable to our purpose of simple bioinspired local homing nav-

igation (Meyer and Filliat, 2003; Kuipers and Byun, 1988, 1991; Meyer and Filliat,

2003; Hübner, 2005).
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2. Guidance methods vs associative methods Methods based on the associative method

(Deng et al., 2011) use vision with an odometer. The odometer largely used in PI re-

search is internal information such as number of steps or turns. In this method, the

agent finds the homing direction using vision with accumulated movement informa-

tion. Even if the agent loses some visual information, it can still perform homing, but

will fail to locate the returning route because it finds itself in an unlearned position.

Then the robot must re-learn almost all the region to perform successful homing navi-

gation. For this reason, this reason, this method does not suit our purpose (robustness).

In contrast, guidance methods use only visual information, where an. agent counts the

differences of the feature location and finds the homing direction based on the differ-

ences.

3. Local visual homing vs feature tracking Methods based on feature tracking (Gerst-

mayr et al., 2009) use the correspondences of subsequent image sets (Fiala and Basu,

2004) which include changing features according to sequential visual cues. Then they

follow small changes in feature locations. But if the snapshot and current view have

a significant time gap between some distances, these large changes of the features

are too large to allow the agent to find the homing direction. Therefore we focus on

the more generally applicable local visual homing method mentioned in prior section

(the guidance method). It divides the entire navigation region into local areas using

milestones (Argyros et al., 2005), then these milestones operate like waypoints, allow-

ing successful navigation. In short, if the algorithm allows successful navigation in a

small, the cascade combination of local areas allows successful navigation in larger

areas. Therefore the snapshot model only uses two visual images and is simple.

4.Using only intensity information vs using depth information A range sensor taking

depth information provides powerful information in homing problems. Different to vi-

sion, range measurement is very stable with low noise. Therefore using a range sensor

makes navigation robust. However, animals cannot visually determine very accurate

distance like sensors do and biomimetic research does not generally use range informa-

tion. One of our models uses the ensemble effect, applying visual cues to accomplish

range-based navigation. The other methods use only visual intensity information.

5. Holistic methods vs correspondence methods The correspondence method tries to

match the extracted features from images and requires complex algorithms for both

extracting and matching them. The holistic method uses entire image matching without

extraction or classification of landmark features, and the complexity of the holistic
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method is much lower than the correspondence method. We think this holistic approach

is the best one for our objective of having both simplicity and robustness.

6 Descent in image Distance (DID) methods vs Parameter methods vs Warping meth-

ods The holistic approach can be categorized as a Descent in Distance method, param-

eter method, or warping method. The differences between them are representatively

the choice of landmark and the norm of difference between the landmarks (Collet and

Land, 1975). We present the detail of each method in the next section.

2.4 Snapshot Model

Snapshot model (Cartwright and Collett, 1983, 1987; Collett, 1996; Möller, 2000;

Wehner et al., 1996b) is one of the biomimetic navigation algorithms applicable to

honeybee navigation. As the snapshot method is the progenitor of visual navigation, a

number of similar robot visual homing algorithms have been developed based on the

snapshot method. The key point of the snapshot model is that the agent remembers

only the first and last scenes to accomplish homing navigation. By comparing the cur-

rent feature information with the first snapshot (home), the agent can determine which

direction to move in to reach the target position. This snapshot, which has a panoramic

image form, includes the current position in the azimuth direction (Nelson and Aloi-

monos, 1988). And some researchers (Zeil, 2012; Kohler and Wehner, 2005; Narendra,

2007; Collett, 2010; Reid et al., 2011) insist that the real creatures use panoramic in-

formation to navigate.

Then if the distance between home and current is not big and there commonalities

between the two snapshots, a simple comparison yields a home vector that points the

direction of home. But the length of the home vector is not equal to the real distance

between the current position and home, because the simple snapshots have only color

pixels without depth information of any landmark. The important part of this method

is that if the variation between the snapshots is not severely large, then the agent does

not need to remember any scenes between the first and the last to perform successful

homing navigation.

The snapshot model has weaknesses regarding the transition of environments. The first

is due to changes of the environment caused by an external factor. In this case, there can

be severe errors in the cases which have no common features between the snapshots.
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Figure 2.5: Example of the snapshot model (Cartwright and Collett, 1987). Upper left

shows that Bee takes a snapshot at the goal. Landmarks are shown by black dots, bee

marked as circles with tail at the center position. Outer circle represents retina and inner

circle is the captured snapshot. Upper right is the case at another location of Bee that

is distant from goal and there are differences in projected image on retina. Lower figure

shows enlargement of upper situation at bee’s location. Landmarks are represented by

thickened black arcs on both outer and inner circles. The differences paired respec-

tively with the closest landmark. Each pairing generates two unit-vectors that point to

landmarks without distance information. Radial vectors result from differences in an-

gular sizes of paired landmarks or gaps. At the large central arrow, calculated homing

direction is given by the sum of the unit vectors.

It is necessary to assume that there are no large changes in the environment to use the

basic snapshot method. The second is relates to changes of the environment caused by

movement. If the movement of an agent is small, then there are no big changes between

snapshots. But if the agent travels a long distance from home, or the environment has

a special arrangement of landmarks that cannot be seen from all positions, then there

may be no common features between snapshots. Therefore there must be limits on
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distances from the home site to use the basic snapshot model. A solution is that the

agent must restrict movement to interchanges which have tolerable changes in visual

information between them (Vardy, 2006).

But if there are no obstacles or major changes in the environment, the agent can find

the common factors between two snapshots and perform successful homing navigation

by using the snapshot model. Also, the snapshot model requires low memory which

is similar to creatures in nature. In short, the snapshot model represents a simple and

clear standard, which has led to a large quantity of related research. Figure 2.5 shows

the principle of the snapshot model used in (Cartwright and Collett, 1983). The outer

circle shows the panoramic image of the retina and the inner circle shows the saved

snapshot image. Figure (a) is the environment at the food site and the black circles

show the landmarks. Figure (b) is the retinal image at the food source where the agent

saves the snapshot to find this site as the target. The black part shows a portion of the

landmark in the image of the retina and the retina image is initially identical to the

snapshot. Then, after some movements, the agent wants to find the way to the food

source and (c) shows this situation. There are no changes in the landmarks and the

agent can check for differences in Figure (d), in the retina image which includes the

landmark information between (a) and (c). The agent may then go in the direction

which reduces the difference between snapshot and retina images in Figure (d).

These snapshots include information of the surroundings in the azimuth direction (Nel-

son and Aloimonos, 1988) and the difference in angular distribution can be used as a

clue for homing navigation. This simplicity is applied into modified research (Zeil,

2012; Kohler and Wehner, 2005; Narendra, 2007; Collett, 2010; Reid et al., 2011).

Convergence is mathematically and experimentally proven and it can also be extended

using the milestone method (Goldhoorn et al., 2007; Ramisa et al., 2011). Recently,

the snapshot-matching optic flow-based method (OF-SM) (Denuelle et al., 2015a) has

been applied to various types of s applications involving aircraft finding their current

location compared with a snapshot. We think this snapshot algorithm can be applied

to our method. In next the section, we discuss various examples based on local visual

homing.
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(a) (b) (c)

Figure 2.6: Figure shows the principles of each parameter method (reprinted from [Yu

and Kim 2012]). Graphical representations of the homing vector (HV) computation; (a)

ALV method, (b) the ACV method, (c) the DELV method . (dotted arrows: landmark

vectors at the home location; solid arrows: landmark vectors at the current location, red

circles: landmarks).

2.5 Local Visual Homing method - Holistic Method

In holistic methods, there are three categories.

2.5.1 Parameter Methods

The parameter method is based on the snapshot model and the landmark. This method

extracts the azimuthal position of the landmark in the snapshots and compares it with

current ones. It requires a small amount of memory and uses simple principles to ac-

complish visual homing. Therefore, basically, the landmark extraction from the image

has priority and affects the performance of the algorithm.

2.5.1.1 Average Landmark Vector method (ALV)

The first algorithm is the Average Landmark Vector method (ALV). The ALV method

(Lambrinos et al., 2000) is the best-known one based on parameter modeling of local

visual navigation methods. There are three steps. The first one is alignment. It basi-

cally assumes the compass-like visual compass (Zeil et al., 2003). It needs to build an

absolute norm of direction. Insects are known for using both magnetic and polarized

light to achieve alignment. The second is landmark extraction. As the vision of an in-

sect has low resolution, it has a rough clustering mechanism that we can easily imitate.
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Some algorithms use one pixel as a landmark. After extraction, the final vector is the

one matching the landmark vector. The basic premise is to produce unit vectors that

point to each landmark with equal length because we cannot know the distance to each

landmark without other information (e.g., the eye structure of most insects is not apt to

build stereo vision.) Then the sum of the unit vectors is an ALV, and homing direction

can be calculated by the subtraction between two ALVs.
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The above formula summarizes the ALV algorithm. Landmark vectors are defined as

vectors pointing towards landmarks on the retinal image, each of which has a unit dis-

tance under the assumption of equal distance. That is, the distance information is ig-

nored but only the angular positions of landmarks are considered. Summing landmark

vectors forms the averaged landmark vector called the ALV (Averaged Landmark Vec-

tor). Subtracting the ALV at the nest from that at the current position can determine the

homing direction. More advanced models have been tested with robotic experiments

(Smith et al., 2007; Goldhoorn et al., 2007). Also, the ALV can be combined with in-

variant visual feature detection (Ramisa et al., 2011). The simplicity of ALV has made

it the best-known algorithm for local visual navigation.

But we have to prepare the compass to use this method and the equal distance hypothe-

sis can make the homing navigation worse depending on the location of the landmarks.

There has been research conducted using ALV which tries to break the limitations of

ALV (Ramisa et al., 2011).

COMALV (Hafner, 2001) is another variant of ALV model. Similar to ALV, it calcu-

lates the sum of landmark vectors using the mean of sub-sampled image as length at

each position. Different to ALV, it does not require object extraction but it stores the

vector projecting to the ’center of mass’ in each image. It includes one low pass filter

in alignment and make input image into 90 ommatidia outputs and changes them into

90 landmark vectors pointing each angular location. Then final home vector can be

calculated through subtraction.
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2.5.1.2 Average Correctional Vector method (ACV)

The second algorithm is the Average Correctional Vector method (ACV) based on the

ALV. The ACV method (Smith et al., 2007; Weber et al., 1999) is a modified version

of ALV. This method also uses the landmarks and finds the differences between them.

But it does not use the unit vector and landmark vector set at home. Instead, it uses the

angle difference to create the correctional vector at the current position. The direction

of the correctional vector is the angle that decreases the angular difference. And the

length of the correctional vector is equal to the size of the angle difference. The size of

the CV has a function of weight and the corrected angle has a function of revision. This

modified method is essentially similar to the snapshot model, and is defined below.

∣∣∣−→CV i

∣∣∣ =
∣∣θi−α j

∣∣
∠
−→
CV i =

αi +90◦ if θi < αi

αi−90◦ if θi ≥ αi

(2.3)

−→
HV =

N

∑
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−→
CV i

where θi is the angle of the i-th landmark in the reference map and α j is the angle of

the j-th landmark in the current position.

2.5.1.3 Distance Estimated Landmark Vector (DELV) method

The Distance-Estimated Landmark Vector (DELV) model is another landmark-based

parametric homing navigation algorithm (Yu and Kim, 2010a, 2011b,a, 2012). Dif-

ferent to the other two methods, it does not directly use the angle difference between

landmarks. The DELV method focuses on the distance estimation process. But it can-

not perform the estimation using only one image. Thus it makes along additional move-

ment along the traveling direction to observe the azimuthal changes using two images

at essentially one position. Then it can calculate the estimated distances to each land-

mark using a trigonometrical function, because the two pictures are aligned by the ad-

ditional movement, which involves only movement along a straight line. This feature

enables it to determine landmark vectors which have angular positions along with esti-

mated distances. The next step is a demonstration of the landmark navigation method
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without a reference compass but with the distance estimation of landmarks. Replacing

the compass information with the landmark arrangement order, our navigation method

exhibits successful homing performance. The DELV method was suggested in our pre-

vious research (Yu and Kim, 2010b, 2011a) and the effect and results of the quantized

distance applied to DELV were described as well (Yu and Kim, 2011b). The DELV

method is specified below.

−−→
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DELV can use the estimated distance of landmarks, which makes the direction more

accurate. And it is well-fitted to the landmark arrangement from the calculation view,

which helps the operation. But the additional movement and two feature extractions at

every position cause the algorithm to be slow. Also, there can be double measurement

error at each measurement (see (Yu and Kim, 2011b) for a research study that uses

quantized information to reduce the error in measurement). Currently, research to im-

prove DELV without using feature extraction and additional movement by using color

information.

The DELV model was initially tested using vision sensors, so an additional distance

estimation process is required for selected landmarks (Yu and Kim, 2011b,a). Based

on the visual information, variations in the landmark positions between snapshots ob-

tained over a sequence of robot positions facilitates the computation of the landmark

distance. By exploiting the information from a depth sensor, the distance information

to each landmark can be given along with the landmark direction, which provides a

robust navigation method.

2.5.1.4 Recent research trends

The ALV based methods basically need object extraction to find the angular location

of a landmark. However, finding objects from a simple image is not an easy problem.

Therefore early research used designated markers and used various feature point algo-

rithms. This type of method can easily define extracted feature points as objects and
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also reduce occlusion effects based on feature matching. Improvements have been pro-

posed recently, for example, research (Liu et al., 2013; Gupta et al., 2017a) using ALV

with SIFT. Based on the snapshot assumption, it extracts SIFT features from two im-

ages and filter the outliers out. Then remaining features are connected to each other and

the homing direction is easily determined from the parameter method. Similarly, (Stry-

dom et al., 2016) uses optical flows based on the pattern of motion of feature points

in a visual cue originating from the relative motion of an observer. Also, though not

representing simple calculation, another approaches using repetition to produce strong

matching such as (Ma et al., 2017), which uses locality preserving matching (LPM)

with repetition matching. So, parameter-based methods have been widely researched

in robotics.

2.5.2 Warping Methods

Another local homing navigation model is the warping method (Franz et al., 1998;

Franz, 1999; Möller et al., 2010; Zhu et al., 2015). Different from the other approaches,

the warping method estimates all possible changes in image pixels depending on every

possible movement of a mobile agent, and also calculates the effect of each movement

to each pixel. Therefore it distorts the current snapshot image in order to best match

the target snapshot image. The agent predicts a new image for every possible direc-

tion that it could move in from the current location by warping the snapshot image.

Each warped image is compared to the target image by searching for the one with the

smallest discrepancy. The warped image with the smallest difference indicates the di-

rection in which to move in order to reach the target location. The performance of the

predictive warping method is largely affected by the characteristics of the environment

and the existence of a reference compass; however, the method is simple and does not

require any pre-processing of feature extraction in the snapshot image. This Warping

method is also based on the snapshot model but finds the optimal pixel movement

among the possible pixel matching. Then there are four algorithms which use differ-

ent pixel matching, discussed in the following sections. In short, they calculate all the

cases with variation of the compass, pixel distance, and angular difference of pixels.

This method shows robustness in accuracy but requires high computation.
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(a) (b)

Figure 2.7: Derivation of the warping equations (left: top view, right: side view). (a)

A robot moves from a snapshot location S to a current location C, and indicates the

difference of the azimuthal plane for 1-D warping. (b) shows the elevation changes for

the two locations. It is used in vertical scaling for 2-D warping (reprinted from (Möller

et al., 2010; Möller, 2009)).

2.5.2.1 1D-Warping

The first is 1D-Warping (Franz et al., 1998; Franz, 1999; Hong et al., 1992). This

method is the basic form of the warping method. In this part, assume that the pres-

ence of the compass is to align the images and the agent focuses on the single pixels

in horizontal rings. The equal distance hypothesis for pixels in the images is then ap-

plicable. Then the homing direction can be determined by using both angle difference

and relative distance with the warping function as a trigonometric problem. The angle

difference is the turning angle between home and current positions and the relative

distance is the ratio between distance to a landmark and current position.

But this method considers only horizontal pixels. There are losses of matching pixels

by any change in the vertical direction. So the performance of this method is lower

than others.

2.5.2.2 2D-Warping, min-Warping

The second is 2D-Warping and the third is min-Warping (Möller et al., 2010; Labrosse,

2007; Stürzl and Möller, 2007). Different to the 1D case, this method uses 2-Dimensional

information. In other words, it refers to both azimuthal and vertical changes. For the
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Figure 2.8: Scale plane example (reprinted from (Möller et al., 2010)).

azimuthal changes, it uses a warping function which is equivalent to the 1D-warping’s

one. And, for the vertical direction, the panorama image with magnification is scaled

using the vertical scale factor in Figure 2.8. (b). Then the scale planes for all possible

cases are derived and summed to produce the optimal warp curve. Finally the homing

direction and angle difference are determined from the optimal point of the warp curve.

Different to 1D-warping, this method determines the optimal direction from all possi-

ble positions, so it does not need a compass. The use of vertical components improves

robustness. but the increase of dimensions also increases the calculation requirements.

Calculation time is also needed to determine the compass value, further adding to the

required computation time. In short, 2-D warping is fairly slow.

The third method (min-warping), based on a holistic local visual homing method, com-

pares image columns pixel-wise to consider distortions caused by translations. In first

phase, it computes all pairwise distances between image columns and tries to esti-

mate the relative orientation between images, similar to the visual compass. By using

various scale planes making vertical distortions, it finds the effect of distance to an

object changes. Also it calculates all the matched errors including both scale variation

and horizontally shifted combinations in scale plane stack. Then, it collect minimum

cases from entire plane stack and optimal path is selected to finding homing direc-

tion. However, above technique requires a lot of 2D-warping variables and it includes

some acceleration processes with partially lifting equal-distance assumption. The Min-

Warping uses the computation decreases like compass estimation, pre-calculated warp
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and plane template, early termination in searching within scale-plane. In this part, the

agent finds the angle difference between home and current positions and extracts the

30 percent section that includes the expected angle of the visual compass. This 30

percent is a safety factor to allow for the error of the visual compass. 2D-warping

is then performed only in that 30 percent expected angle section, and reduces calcu-

lation requirements by 70 percent. In this part, three warping methods (1D, 2D,and

min-warping) that use equal distance hypothesis are presented. A fourth method not

discussed attempts to solve the equal distance hypothesis problem, and is called Free

2D-warping (dp-warping).

2.5.2.3 Recent research trends

As the warping model is based on pixel matching in various pose changes, it has been

widely researched in robotic applications. Typically, min-warping research dominates

the field (Möller, 2012, 2016b,a). For example, some studies (Fleer and Möller, 2017;

Zhu et al., 2015) use various features such as SURF and SIFT applied to robotic experi-

ments based on warping. Others (Vardy and Möller, 2005) attempt to combine warping

with optical flow or particle filters with min-warping to localize a cleaning bot on the

topological map the bot builds. These warping-based approaches have greater robust-

ness to illumination problems (Möller, 2016a; Möller et al., 2014) compared with other

models and apply warping models into various robotic navigation applications.

2.5.3 Descent in Image Distance (DID) Methods

The Descent in Image Distance (DID) method extends the concept of the warping

method. The DID method was introduced by Zeil et al. and was investigated from var-

ious perspectives (Zeil et al., 2003; Möller and Vardy, 2006). It finds homing direction

by comparing multiple reference images gathered from neighboring positions around

the home position with a current visual cue. As the original one manually chooses the

most similar image with the home one, in this paper, we use revised version by only

using three fixed reference images (HX , HY and H0) around the home location (x,y)

The images HX and HY are collected at (x+δx,y) and (x,y+δy), respectively. Then it

calculates image differences between current one and references and finds ratio them

to find homing direction.
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Figure 2.9: Flow template output based on warping modeling. (a) the y-axis moving

case, (b) the x-axis moving case. The two colored vertical lines represent two stationary

positions.

While the one-dimensional warping method only searches for the minimum difference

from the home image among the candidate images, the DID method monitors vari-

ations of the image differences between a pair of locations. The difference between

snapshots decreases as the current location approaches the home point. By applying a

gradient descent method, the navigation algorithm successfully finds the direction to
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the goal location (Stürzl and Zeil, 2007; Labrosse, 2007). In short, the DID method is

the snapshot-based method using pixel differences. DID requires the compass to align

images. Then we assume that the agent has a compass sensor and all of the images

are aligned. The agent then compares the snapshot image pixel value at home with the

current image pixel value. In other words, DID counts the difference of the entire pixel

values between two panoramas and finds the optimum direction based the on lowest

difference.

The basic DID method involves taking the new snapshot which is some distance from

the current location (this idea is based on the visual compass (Zeil et al., 2003)). So,

first the agent takes a snapshot at home and saves it. At some different location, the

agent moves a fixed distance along the measurement angle takes another snapshot and

measures the pixel differences between the position and home. The pixel difference is

calculated by the subtraction between all pixels in both images. After returning to the

current location, the agent repeats the process using different locations along different

angles. The optimal direction is the direction in which the difference is lower than the

current position and the reduction amount is largest. The calculation time is very large,

so there have been studies attempting to reduce this problem.

2.5.3.1 Gradient-based Descent in image Distance method

This method (Möller and Vardy, 2006) is the basic application of DID history. As

mentioned above, we have to check the direction by visiting in the vicinity of the home

position, which produces a great deal of wasted computations in order to find the home

direction. The key idea of the gradient-based method is to reduce the number of move-

ments. In short, it tries to find the homing direction using only the home snapshot and

three images (the original method used a number of movements equal to 360/N. N is

the angle resolution). The first image is on the head direction (North), and the other

is perpendicular to the head direction (East), the last one is at the current position.

The amount of movement is greatly reduced and the four images including the home

snapshot are aligned by the compass. The next step is calculation of pixel differences

between home and the other images. The pixel difference between the home snapshot

and an image can represent the transition of each direction. In short, the output of the

heading direction image shows the difference in heading direction and the perpendicu-

lar image captures the perpendicular changes. The homing direction is then determined
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by calculating the ratio between them. In some cases, two images on the heading di-

rection and two on the perpendicular direction captured by back and forth movement

are used (total of four images excluding the current one)

θH,DID = tan−1
∑
i, j
|HY (i, j)−C(i, j)|−∑

i, j
|H(i, j)−C(i, j)|

∑
i, j
|HX(i, j)−C(i, j)|−∑

i, j
|H(i, j)−C(i, j)|

(2.5)

2.5.3.2 Newton Descent in image Distance method

Using the gradient-based method reduces the amount of calculation, but there must

be loss of information and some error as trade-offs. Thus, it is necessary to reinforce

this method. The Newton method is applied to this algorithm. In short, we add some

references in diagonal differences. The amount of computation is slightly increased,

but the accuracy is improved. Some versions use two images on head directions, two

on perpendicular directions, and four on diagonal positions taken in a back and forth

manner (total of 8 images excluding the current location). This is called the Newton-

based DID method.

The Gradient-based DID and Newton-based DID methods innovatively reduce the

amount of calculation. But there is still some waste of time in moving (to take the

additional images) in comparison with other local homing navigation methods.

2.5.3.3 Matched Filter

To solve the additional moving problem, a Matched Filter (MF) is added to these algo-

rithms. If the objects in the environment have enough distance within a certain range

from each other, we can approximately predict the pixel movement in additional im-

ages without moving. This is the key idea of the MF.

Figure above shows the principle of MF. The flow template is the output of the matched

filter, which represents the expected pixel flow in that direction. The moving distance

and the distribution of the objects are not known in the experiment’s field. But if we

decide on a moving distance and perform some pre-experiments to obtain a suitable

flow template which is very similar to the real image, then the predicted image is also

reliable. Therefore we repeat the experiment to obtain a credible matched filter. Then

the DID method using predicted Image by MF is applied without additional movement.
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Figure 2.10: Figure shows the principle of MF. Two estimated images are made by

applying two translational flow templates for perpendicular movement directions to the

current image, (reprinted from (Möller et al., 2007) )

These flow templates from the MF include some error caused by the arrangement of

the objects but if that error is small, MF is a viable addition to DID and reduces the

computation time.

2.5.3.4 Gradient-based Matched Filter DID and Newton-based Matched Filter DID

The predicted image for an arbitrary direction can be obtained by pre-experiment fit-

ting using MF. Then we take into account the additional movement and predict the

image at that point to easily replace the additional movements required by the basic

DID method. Then Gradient-based Matched Filter DID which includes two (or four)

predicted images or Newton-based Matched Filter DID, which includes 4 (or 8) pre-

dicted images can be applied without the agent having to move.

Because the expectation processes of MF yield an approximation, errors can occur.

Therefore we have to use these methods when the experiment environment is suffi-

ciently large and the MF has a high confidence level for the prediction.

The DID model has been studied in various roles over the years. Homing in scale space

(Churchill and Vardy, 2008) involves research using correspondences between SIFT

features to analyze the resulting flow field to determine the direction of movement. It

is mathematically justified by other research (Churchill and Vardy, 2013).
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2.5.3.5 Recent research trends

The DID based methods have suggested linear proportionality between physical dis-

tance and image distance. Therefore it has been widely researched regarding visual

navigation problems using scene familiarity for route detection. Similar to the warping-

based method, there has been much additional research into DID-based applications.

Below are a few examples. (Horst and Möller, 2017) tried to solve the illumination

problem by using image similarities. (Denuelle et al., 2015b) uses Image Coordinates

Extrapolation (ICE) in UAV applications. (Hamaoui, 2017) uses polarized light as in-

put and finds homing direction by applying a gradient DID model (Wystrach et al.,

2016) divides input measurements into two parts from tussock and trees and finds the

proper direction based on similarity itself. (Stürzl et al., 2015) uses multiple images to

render an imaginary 3D environment to expand the experiment area. Also, in the route

following problem, (Berenguer et al., 2015) makes reference to images on the grid of a

local map and finds the proper location by image familiarity using Radon transforms.

Based on scene familiarity, DID can be compared with the recent discovery of place

cells (O’Keefe and Burgess, 1996) and grid cells (Moser et al., 2008; Derdikman and

Knierim, 2014), which are place-modulated neurons in an animal’s brain. The dis-

covery of their existence supports the idea that homing navigation in animals is sup-

ported at the neuron level regarding localization of topological and geometrical fea-

tures. These neurons appear to support a complex firing system that can define loca-

tions within a series of learning images. The cell structure is thought to produce a grid

shape covering the entire surface of a learned two-dimensional environment. Thus it

appears that DID-based methods and grid cell-based navigation have similarities and

relevant research has been conducted in robotic navigation problems using route learn-

ing (Fan et al., 2017; Thrun and Bücken, 1996).

2.6 Problems of Snapshot Model

The holistic matching algorithms discussed above share some common issues. First

is the localization problem caused by the absence of distance information. Second

is the occlusion problem that may result from using only two images. Third is the

selection of the view used for visual cue input. Fourth is alignment between the home

snapshot and the current view. Fifth is how to select proper landmark features. These
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five problems must be considered in local visual navigation. The following sections

discuss the details of these problems and potential solutions to them.

2.6.1 Problem 1: Localization

The localization issue is a challenging issue, even in modern Simultaneous Localiza-

tion and Mapping (SLAM) technology. Information about the environment can also

be obtained from several types of sensors. The global localization map can be ob-

tained with a global positioning system (GPS) and a laser-ranging sensor. The laser

range sensor can also be applied to human-robot interactions (Chung et al., 2012)

or industrial applications (Kim et al., 2013). In addition to the distance information

about the environment, the Monte Carlo approach with an elevation map of objects or

three-dimensional features commonly observed from the air and ground can be used to

provide better localization information (Kwon et al., 2010; Kwon and Song, 2011a).

Without a range sensor, visual information has been most widely applied to naviga-

tion algorithms, since it can provide much information about the position, brightness,

color, and shape of objects. Many navigation algorithms have been developed that ap-

ply feature extraction using vision (Zhu et al., 2014; Aranda et al., 2013, 2017), often

with a complex filtering process (Chen, 2012). Even simple landmark-based naviga-

tion methods, including the ALV model, have been applied to a mobile robot with

vision sensors, and a feature extraction process to identify landmarks is also required

(Zhu et al., 2014). In contrast, the DID method is a holistic approach for comparing

a pair of snapshot images pixel by pixel to calculate the image distance (Zeil et al.,

2003; Möller and Vardy, 2006; Labrosse, 2007). It requires no feature extraction pro-

cess; however, computing the gradient of the image distance is needed to determine

the homing direction. These methods exhibit successful homing navigation but lose

some accuracy and cannot always determine the optimal path over long distances, so

more advanced models have been developed to overcome the distance factor. Differ-

ent to intensity models, using a range sensor with vision can easily provide location

information. other research adds range information to intensity model. (Yu and Kim,

2012; Lee et al., 2017) applies a method that uses a range sensor to easily achieve high

performance in both alignment and accuracy of homing navigation.

Then there are methods adding high complexity such as additional image processes,

collecting additional images or, introducing additional calculation. For example, seg-
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mentation, feature extraction, or full search based matching algorithms are the typical

ones that have been discussed previously. These methods involve extensive calcula-

tions and normally unsuitable for real-world applications. Thus view-based homing

navigation has been researched through various bio-inspired algorithms involving sim-

pler processing, such as the focus of our paper, which is the snapshot model.

2.6.2 Problem 2: Occlusion Problem

Landmark occlusion refers to missing or an obstructed view of one or more landmarks

in a location image. Basically, the total number of landmarks expected is not present in

an image, and the agent cannot perform adequate matching. If there are four landmarks

and the agent can find only three of them due to occlusion in the image, then the agent

lost 25 percent of the available visual information. Therefore landmark occlusion can

cause severe navigation errors.

In the Möller’s classification, other techniques that do not apply not local homing nav-

igation apply compensating tools, such as estimation, other sensors, or sequence track-

ing, and other methods such as DID and Warping do not extract the landmarks. The

occlusion problem is thus specific to parameter methods based on the snapshot model.

Figure below shows occlusion effects on different algorithms.

When there is no occlusion, the ALV shows the highest accuracy. Then we can say

that the alternative distances of DELV and ACV are not perfect. But if there are oc-

clusions, the ALV exhibits a drastic decrease in performance. Different to ALV, the

DELV method is robust to occlusion. Therefore the effect of occlusion can be differ-

ent depending on the algorithm and the environment. Also, there have been researches

trying to filter the occlusion effect by using image reconstruction (Lee and Kim, 2015).

2.6.3 Problem 3: Field of View Problem

At first, we assume that we use the snapshot model in a new algorithm. The panorama

image as the input visual cue has all information about the surroundings, such as floor,

sky, landmarks, walls, part of the robot, etc. The question then becomes whether all

parts of the panorama picture are really necessary, such as the floor, the omni-camera

platform, or ceiling. This is called the field of view (FOV) problem.
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Figure 2.11: Graphs showing error points as the number of occluded landmarks in-

creases from (a),(d), (g) zero to (b), (e), (h) one and (c), (f), (i) two using the (a-c) DELV

method, (d-f) ACV method, (g-i) the ALV method. (dot: less than 45, star: between 45

and 90, and triangle: greater than 90, reprinted from [Yu and Kim 2012] )

Figure above shows the effect of field of view. Though this figure is an example, there

are some differences introduced to the visual information for differences in vertical

position. The variance can affect the amount of information needed for navigation.

Therefore we have to consider what FOVs to use in navigation for the snapshot model

and what FOVs do other techniques use.

2.6.3.1 Skyline

The first method uses the skyline. The skyline is the boundary between sky and other

features, including the ground or landmarks. The boundary is located based on color

difference between the sky and other objects. Then the amount of data is reduced to
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Figure 2.12: a: Local variance of intensity values (range 0–1.0) in panoramic images

of a virtual environment. All images are oriented in the fixed viewing direction. b: Two

(enlarged) examples of input images with vertical FOVs of 0 degrees to 10 degrees and

0 degrees to 10 degrees providing an impression of the image areas with the highest

variance (reprinted from (Basten and Mallot, 2010))

the number of angle resolutions. The skyline includes any exceptional landmarks such

as giant trees or mountains and can facilitate robust performance over long distances

(Wystrach et al., 2012; Reid et al., 2011). But prominent landmarks do not yield no-

ticeable differences in short range travel while closer objects produce large differences.

So this method has weakness related to short distances. Therefore we have to use this

model to appropriate environment.

In spite of this weakness, there has been much research regarding insects using the

skyline for navigation (Graham and Philippides, 2017).

2.6.3.2 Holistic view

The holistic view is a verbatim method which uses the all pixels in the panorama

image. This method is used for pixel matching. All pixels between images are matched

to obtain reliable data because the method does not use any designated pixel from

feature extraction. Nevertheless there are still some unessential areas in the image. So,

generally, the method cuts out some area, such as the floor or sky from each image.

But the amount of cutting can influence the accuracy of the output.



38 Chapter 2. Background

Figure 2.13: Histograms of code correlation; The heavy red line indicates the overall

mean correlation. (a) Intensity code. The different panels show correlations obtained

with various vertical FOVs (reprinted from (Basten and Mallot, 2010))

Also, another study (Buehlmann et al., 2016) regarding visual navigation of an ant

argues that the ant uses not only the skyline, but also shapes. The basic premise is to

designate the proper portion of reference in an image. The larger the portion, the more

computation is needed. If the portion is too small, then significant information is lost.

So a suitable size of the vertical section of the panorama images must be selected.

2.6.3.3 Horizontal Ring

The horizontal ring is the line in the panorama image which includes all informa-

tion about a landmark location on the ground viewed from the horizon. Thus, in this

method, the agent picks up a line of pixels in the horizontal ring. And techniques which

are used in almost all of the parameter and warping methods use this horizontal ring

for feature extraction. But when we use only one line of pixels along the horizon, there

can be some problems missing landmarks for some reason, such as distortion caused

by light. Thus it is best to use a set of pixel lines around the horizontal line rather than

a single line.
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2.6.4 Problem 4: Alignment Problem

The presence of the compass in navigation is an important issue. In this process, Com-

pass directions can be interpreted as an absolute standard. A snapshot is taken, which

is represented by visual information, and the locations of landmarks are determined.

If the compass sensor provides an absolute norm of direction and there are no major

changes in the environment, the order of the landmarks in the snapshot is almost the

same for different snapshot taken at different locations and we can easily observe the

variation of landmark locations.

But if we do not have a compass, we must try to match the sequence of landmarks or

correct the skewed angle between them first as uncertainty variables in our calculations.

Thus the many applications have used an external magnetic sensor as the compass, but

there have been other various approaches that try to omit the compass and find the

direction using a compass sensor. We discuss some examples below.

2.6.4.1 Using Compass sensor

The first method just uses a compass. This is the most common way to fit the rotation

of the current image to home. The existence of the compass provides the absolute

direction and allows us to fit all images to this direction. Some research has focused on

animals (Kimchi et al., 2004; Wajnberg et al., 2010; Lohmann et al., 2004) that have a

built-in magnetic compass sensor and refer it for navigation.

In the experiment of Figure 2.14, the experimenter changes two parameters. The first

is the direction of the magnetic field and the second is the distance to home. The al-

tered magnetic field does not cause a navigation problem in the short trip case and the

majority of medium trips, but causes severe problems in the long trip case. the results

indicate that the mole uses the self-magnetic information proportionally to the distance

of the trip. So, an aligned compass is a useful tool. However, if vision is the only tool

available, we have to find the alternatives which only use visual information.

2.6.4.2 Visual Compass

As we do not use idiothetic (internal) information, we need an additional alignment

algorithm. In local visual navigation, we can use the visual compass algorithm (Zeil
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Figure 2.14: Figure shows evidence of the bio compass used by subterranean mam-

mals (reprinted from (Kimchi et al., 2004)). The arrow in the top box shows the direction

of the magnetic field (first row: natural, second row: altered). The arrow in the circle

shows the movement direction (home at North) of moles in each environment. And the

bars around the circle show the number of arrivals as output

et al., 2003) which is based on only two images. The algorithm is very simple. First

we obtain one image (home) to use as the norm in direction. Then other images have

to be aligned with the first one. Other images are shifted until the minimum errors

derived from subtraction between the norm and shifted image are determined. Then

the shifted image with minimum error is equal to the aligned output. As we cannot

know the magnetic north of the image, we do not need it, because we aligned all of the

input images based on the home image. The error is calculated as below.

θ = argmin
θ

360◦

∑
w=0

H

∑
h=1
|SS(w,h)−CVθ(w,h)| (2.6)
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Figure 2.15: The experiment of visual compass. The left figure shows an example of a

visual compass (reprinted from (Möller et al., 2007)). Visual compass: For a snapshot

(SS) from grid position (10,5) and three different current views (CV), the Euclidean

distance under rotations of the snapshot image is shown. All images have image size

583 × 81. Image pixels are in the range [ 0,1 ] . Cutoff frequency is 0.05. The right

side of the figure shows the example of the visual compass that we test. It counts the

errors according to the shifted angle of input images. Blue line shows the case using

original image and the minimum case appears in the exact center. Red line uses another

image and the aligned angle is almost equal to the blue one. The vertical line shows the

minimum error cases, and the intersected point on the x-axis indicates the alignment
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Figure 2.16: Performance of alignment based on the visual compass. First is comparing

the output according to the distance between two locations. Second is the effect of

absolute image difference.

Figure 2.16 is an example of the visual compass. For the same location (SS), the dif-

ference between rotated image and snapshot is zero. If the image is from the current

position [CV], there must be difference in information by location and angle, which

has the smallest error and is equal to the compass value. An improvement to alignment
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has been proposed using three-dimensional robot pose changes (Jouir et al., 2015).

In short, as the image from the vicinity of home site has similar arrangement of land-

marks in the image, then we can easily find the compass value so long as we check the

difference at all possible angles. But this checking process demands extensive compu-

tation time by n times (n is the angle resolution of the visual compass). There are many

challenges in to substitute the magnetic compass with a visual compass, and research

to solve these challenges using probability models such as the particle filter (Montiel

and Davison, 2006), neural network models (el Jundi and Homberg, 2010), etc. Also

with the use of a deep auto-encoder to filter out occlusion from dynamic situations has

been proposed (Walker et al., 2017).

2.6.4.3 landmark rearrangement

For the method using differences in landmark locations, if the robot has a built-in com-

pass, it finds home by matching between landmarks and estimates the current location

to each landmark. Therefore, similar to the visual compass, it finds the estimated lo-

cations to each landmark by matching all possible angles. Then we can check the

distribution of estimated locations to fixed angle difference and also we can find the

case which has the lowest variation of distribution when both sequence and angle dif-

ferences are fitted. The angle difference in this case will be the compass value. Similar

to the visual compass, if both snapshots have enough common factors, then it can find

the accurate direction. But the difference is that this method does not use all pixels, but

uses extracted landmarks instead.

Figure above shows three cases of different matching. In these cases the current loca-

tion is estimated by reverse injection using landmark vector matching. Then the agent

determines the angle and homing direction when both the sequence and angle are fitted

(a). Similar to this method, there are algorithms which find the direction by compar-

ing all possible cases. Therefore landmark matching is used as modification in diverse

studies.

We evaluate the problems associated with the compass and possible solutions. First,

decide which type of compass to use. If a compass is used, reduce the calculation or

if not, use other algorithms (visual compass, landmark arrangement, etc.) to emulate a

compass. Use the tool most suited to the purpose and robot.
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(a) (b) (c)

Figure 2.17: Figure shows the principle of landmark arrangement matching. The circles

indicate the landmarks. Gray dot is home and black dot is estimated current location.

Broken arrow shows the ideal direction when the direction is fitted and Solid arrow

shows the direction including error.

2.6.4.4 various alignment algorithms

We test various alignment models to compare them to the visual compass. As this

part directly affects the overall performance of our model, it is very important to find

an optimal alignment algorithm before starting our model. First is the visual compass

which is from the research described in (Labrosse, 2006). Based on the linear search,

the current view is rotated, one column at a time, and the absolute difference against the

reference image is calculated. Then after locating the one having smallest difference,

the corresponding angle is selected as the norm of alignment.

Other methods used for testing performance included three items. One (Horst and

Möller, 2017) using the computation of the scale-plane stack to treat various sizes

of images. In this part, we use the normalized sum of absolute differences (NSAD) and

multi-scale. Another (Kuglin and Hines, 1975; Stürzl and Mallot, 2006) uses phase

correlation with the row sum method. Since the rotation component causes a horizon-

tal image shift, the phase correlation method which is used for finding time shifts in the

time domain can be used. The third method is a modified version using a combination

of both phase correlation and scale-plane stack methods.

Figure 2.18 shows the results of the test. The left figure shows the output of each test

having various locations and the right figure shows mean values. It is apparent that the

visual compass has the best output in the overall region. However, as mentioned previ-

ously, we also know that there must be some errors introduced when distant locations



44 Chapter 2. Background

0 2 4 6 8 10

distance from home

0

20

40

60

80

100

120

140

160

180

a
lig

n
m

e
n
t 
e
rr

o
r 

(d
e
g
)

visual compass

NSAD

phase correlation

phase correlation multi-scale

0 2 4 6 8 10

distance from home

0

20

40

60

80

100

120

140

160

180

m
e
a
n
 o

f 
e
rr

o
r 

(d
e
g
)

visual compass

NSAD

phase correlation

phase correlation multi-scale

Figure 2.18: Accuracy of four alignment algorithms. The visual compass is marked by

red x. NSAD with multi-scale comparison is marked by blue squares. Phase correlation

is marked by magenta triangles. The modified version combining both phase correlation

with multi-scale is marked by black circles. The left figure shows the alignment error of

various locations. Each point has different shape and color for the absolute value of the

alignment error between snapshot and current view. The right figure shows the mean

of errors. The size of each bin is 2.

are considered.

2.6.5 Problem 5: Landmark Feature Selection

The next problem is the feature selection problem. Features represent visually spe-

cial information such as landmarks. There are various navigation techniques applied to

wheeled vehicles (Widyotriatmo and Hong, 2011) to a wide range of underwater vehi-

cles (Zhang et al., 2016), unmanned aerial vehicles (Zhu et al., 2017a), and spacecraft

(Huang and Yan, 2016) along with development of various applicable sensors (Ly-

shevski, 2017; Delgado et al., 2012). Additional research using various sensors such as

vision (Gilg and Schmidt, 1994b), inertia (Wang and Xie, 2015), and RFID (Park and

Hashimoto, 2009) has been presented. Therefore selection of features according to the

type of sensor is very important.

Based on bio-inspired navigation, we continue to focus on vision. However various

visual navigation methods are needed to locate optimal features from vision data. And

if the environment is very complex, then we use feature extraction. Then feature ex-

traction can be summarized into ’how and what pixels do we select as features to use

in navigation’. Feature extraction as a pre-process of navigation directly affects perfor-
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mance.

2.6.5.1 Object detection

Early versions of visual navigation used some designated object having a special color

as a marker (like the example of ALV). Much research has focused on finding the

marker or object in an image for visual navigation purposes using object detection

(Ess et al., 2010; Lee et al., 2012). However, a challenge is to determine which object

to choose and track from an input image. Some solutions use manual selection of a

tracking object (CamShift) (Nouar et al., 2006; Wang et al., 2009; Exner et al., 2010).

These solutions have been improved with the advent of deep learning to find objects

from images based on the Bag-of-Words concept with various structures of neural

networks (Chen et al., 2016; Lin et al., 2016; Szegedy et al., 2016; Redmon et al.,

2016; Ren et al., 2017) and is directly applied into navigation researches based on

SLAM (Zhu et al., 2017b; Gupta et al., 2017b; Dong et al., 2016). However, we think

that small insects cannot accurately recognize what objects are included in visual input

cues having poor resolution.

2.6.5.2 feature point extraction

Next is the method which is the commonly-used mechanism in feature tracking, SIFT

(Lowe, 2004). Methods based on SWIFT try to find a suitable feature instead of an

object in the images using changes in intensity. Based on corner characteristics, the

point which is selected by feature tracking is always conspicuous regardless of its

position. Then we can easily find the same point at different positions, in which is

useful for navigation purposes. For example, using a scale invariant feature (SIFT)

algorithm which allows the agent to set good landmarks (features) to track (Pons et al.,

2007; Ramisa et al., 2011; Luke et al., 2005), improves the quality of feature matching.

Saez-Pones et al. suggested an orientation model with the SIFT algorithm applied into

a local visual navigation model (Pons et al., 2007). Since it can choose features with

robust corners that do not change under various conditions, the selected features are

robust to noise and distortions of the image regarded. Figure 2.19 shows an example of

finding feature points from an image. The SIFT algorithm not only finds robust feature

points, but also connects equal features from two images. However, due to variations
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Figure 2.19: Using SIFT algorithm and finding features on an image (Reprinted from

(Pons et al., 2007))

in the conservation of features, it cannot guarantee good performance when compared

with other methods.

Based on robustness of SIFT, there has been much feature point research, such as

HOG (Karmaker et al., 2016), SURF (Bay et al., 2008), BRIEF (Calonder et al., 2012),

BRISK (Leutenegger et al., 2011), ORB (Rublee et al., 2011), and variations of SIFT

such as PCA-SIFT (Ke and Sukthankar, 2004) and ASIFT (Morel and Yu, 2009). To

apply real application, most of them focus on real-time operation fast features (Yang

and Cheng, 2012; Rosten and Drummond, 2006) and there are also bio-inspired ones

such as the retina mimicking feature called FREAK (Alahi et al., 2012). These are also

generally applied into visual navigation (Wu et al., 2016; Murillo et al., 2007; Arroyo

et al., 2014) but are not included in holistic methods and not suitable to navigation of

animals due to their complexity. Thus, we did not use feature points in this paper.

2.6.5.3 pixel landmark

There are some special cases (Basten and Mallot, 2010) where algorithms need feature

extraction but do not use it. In this case, especially, they use all of the pixels along

the horizontal line. They consider each pixel as a landmark. In other words, where the
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Figure 2.20: Example of the none case (reprinted from (Basten and Mallot, 2010)). The

agent creates the landmark vector to all pixels which have the intensity marked by color

in the divided ring

Figure 2.21: Example of finding a landmark using the color value. (a) is the original

omnidirectional image and (b) is the output using color value of the landmark’s crimson

red value. (reprinted from my sector paper)

pixels are from is not important, but the color value in a pixel determines whether it is

a landmark.

Color information of pixels can be used in the case where the landmarks have conspic-

uous characteristics. In other words, if homing navigation of some algorithms needs the

location of each landmark, then we create an artificial landmark which has conspicu-

ous color and find it easily in an image by using an RGB value marker. Researchers

use this method to prove the possibility of the algorithm because it is simple. However

this simplicity limits the range of applications of this method. If the color of a feature

is flat or is changed by a luminous source, then the feature cannot be detected. But if

we control it properly, it can be used as a minimum unit for visual navigation.
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Figure 2.22: Feature extraction using a laser sensor (reprinted from (Yu and Kim,

2010b)). First graph shows the output of the sensor and the second graph shows the

first derivation of the output. These outputs are used to find the proper location of a

landmark, which is marked in the red box of (b).

2.6.5.4 using distance sensor

One method to determine distance is the using a laser sensor. In this case, the agent

uses laser sensor data to determine the landmark location by the difference in distance

values. It has low error and directly facilitates finding homing information. However it

represents an additional sensor or complex process such as stereo vision. But we think

that vision can make range-based navigation robust.
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Figure 2.23: Example of Butterworth filtering (reprinted from (Möller et al., 2007)). Effect

of varying cut-off frequency of the Butterworth filter

2.6.5.5 filtering

The filtering method is generally used for reducing the complexity of an image. If

the environment is very complex, then needless small objects which are significantly

changed by every movement interfere with locating useful objects for navigation. There-

fore we have to eliminate or reduce these obstacles. Typical examples of tools to ac-

complish this are filters such as the Gaussian and Butterworth filter (Baddeley et al.,

2011; Möller et al., 2007). The repeated application of Gaussian filtering produces a

dim image. Then the needless objects are melted into surrounding pixels because they

are small and bland. But the useful objects survive and can be used by the agent suc-

cessfully. Another approach is to use an out of focus camera, because this has a similar

effect to the Gaussian filter.

Different to the filters above, there is some research (Nummiaro et al., 2003) into filters

which extract the target object and follow it. They use color distribution information

and update both estimation and target model to continuously track the object. Small

windows including the filter are spread across an image region to locate the target.

A typical example involves Haar-like features introduced for object recognition in vi-

sion or face recognition (Viola and Jones, 2001), (Viola and Jones, 2004; Mita et al.,
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2005; Lienhart and Maydt, 2002). A Haar-like feature is composed of neighboring rect-

angular regions at a specific location, where the pixel intensities are integrated in each

region and the difference between these region sums is calculated. There are several

mask patterns depending on the number of rectangular regions or on the distribution of

a set of adjacent rectangles. If a part of the target image has a similar pattern to some

mask, then the matching score is high. Haar-like features have very simple patterns

consisting of a positive or negative sum of pixel intensities. Recent studies show that

a collection of those weak mask classifiers can lead to a strong classifier for pattern

recognition.

Also, it was reported that the route-following task for a mobile robot can be achieved

using Haar-like features (Baddeley et al., 2011; Stürzl and Mallot, 2006). The Haar-

like features can visually guide the robot in the right direction to the goal position

without a waypoint setup. Similarly, we think the Haar-like features make the image

into sum of geometrical figures. The various pre-determined basic figure sets replace

the existing complex environment into simple and powerful landmarks. Then we refer

to them for easy navigation.

Similar to the mask-based filtering algorithms above, in a biological vision system,

there are many receptors in the retina. This vision system has a complex structure, and

both cone cells and rod cells are directly connected with an image pixel. Bipolar cells

receive synaptic inputs from either rods or cones, or both (Paik and Ringach, 2011),

and they are the real basic units for visual perception regarding shape. Many insects

demonstrate excellent homing navigation capability even though they have a low-level

vision system. We think that even a simple model of visual features might be sufficient

for good homing navigation.

Previous research argued that vision occurs in the brain’s visual cortex (V1) proposing

various models, but recent research indicates differences. Research about the distribu-

tion of Bipolar cell structures (Paik and Ringach, 2011) trace the root of these basic

image process functions to retinal positions. In this research, they found that the distri-

bution of the receptive field has a noisy hexagonal form (RGC mosaics before LGN)

and they suggest the distribution of bipolar cell using a Moire mosaic model without

other complex models. Figure 2.24 shows the distribution of RGC dipoles in hexago-

nal distribution. In this figure, nearest neighbors are connected into dipoles and they

operate as line detectors with preferred orientation. The red dot means on-cell and blue

dot means off-cell.
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Figure 2.24: Locally, patterns are organized into pairs of dipoles, in which cells of oppo-

site center sign are nearest neighbors of each other. Cortical pooling of inputs from a

dipole (relayed by the LGN) would result in simple-cell receptive fields with side-by-side

ON and OFF sub-regions. (Paik and Ringach, 2011)

Figure 2.25: Orientation maps as Moiré interference patterns between retinal ganglion

cell mosaics. The superposition of two hexagonal lattices results in a periodic interfer-

ence pattern. (Paik and Ringach, 2011)

If there are specific distributions of bipolar cells in the retina, then the above output

can easily be achieved. Figure 2.25 shows the principle of orientation mapping using

a Moire mosaic. Similarly, there are two types of dots and there are two differences

between two distributions. One is the angle difference between two patterns marked

as θ. The other is the distance between neighboring cells. These two factors create a

combination that has a hexagonal pattern. From this argument, the brain uses basically

line-detected information from the sum of the bipolar cell distributions that are basi-

cally installed in the retina. We think that we can use this receptor system by using

organized bipolar-like mask generation.
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2.7 The importance of these researches

In this chapter, we surveyed about the various histories of bio-inspired visual navi-

gation. Compared with conventional SLAM techniques, bio-inspired snapshot-based

models have simplicity but not enough robustness. Those researches successfully re-

duce the complexity but have various problems that we introduced above parts. How-

ever, we have question about the completeness of current models with these problems.

These are Localization, Occlusion problem, observing FOV, Alignment and proper

Feature selection. However, we think that geographic map of the localization problem

can be replaced by topological maps including multiple snapshot images based on

the origin of local visual navigation. Therefore, if we can divide the overall area into

small sections successfully and our models have robustness in each section, global

performance can be more reliable.

Also, in this field, alignment problems are solved by alignment algorithms that we said.

Typically, a visual compass shows robustness and also is partially applied into warping

model. We also select the visual compass in alignment by comparing various models

and applying it into our models.

However, there are three problems, the first one being the ‘feature selection’ problem.

Obviously, there has been a lot of research using various sensor data, but we cannot find

a simple model combining range data with visual information in a snapshot model. We

think that if the insect uses both range and vision then it also has simple form. There-

fore, based on the snapshot model, we apply moment function from physics combining

two measurements without increasing complexities in chapter 3.

The second of the three problems, is the FOV (field of view) problem. Basically, a lot of

the models using visual information about movement in a horizontal direction are able

to find the proper size for the FOV, thus showing the best output. On the other hand,

various ants have almost 1000 ommatidia (Australian desert ant called Melophorus

Bagoti : 840-1180 (Schwarz et al., 2011) and the desert ant called Cataglyphis : 940

(Zollikofer et al., 1995)) with fixed size. Therefore, we designed vision receptors like

these 2 types of ant, and tried to apply them by using the outputs as feature into the

homing problem in chapter 4.

Finally, the third is the occlusion problem. Based on the simplicity of snapshot model,

we cannot find a perfect method for this problem without feature matching. There-
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fore, we tried to find the robustness in occluded situation and the basic principle of

the snapshot-based homing, without clustering, so then it can be directly applied into

filtering occlusion from observation. We interpret each pixel as a single pixel-wise

landmark and find mathematically convexity. Also, we tested the effect of matching by

using a simple sequence matching algorithm called DTW in chapter 5.

According to reasons above, we designed new models in each chapter to find answers

for each question and succeeded in finding new robust models. Therefore, in this disser-

tation, we need state-of-art techniques to check robustness. These is the DID (Descent

in Image Distance) method (Zeil et al., 2003; Möller and Vardy, 2006), MinWarp-

ing algorithm (Horst and Möller, 2017; Fleer and Möller, 2017), COMALV (Center-

Of-Mass ALV) (Mangan and Webb, 2009; Hafner, 2001) and MCOMALV (Modified

Center-Of-Mass ALV).

DID : In this paper, we use 720x100 pixels with both 0.5 angular resolution in hori-

zontal direction and ±50 pixels around horizontal line in vertical direction.

MinWarping : In this paper, we use 720x100 pixels with both 0.5 angular resolution in

horizontal direction and ±50 pixels around horizontal line in vertical direction.

COMALV : In this paper, we convert image including 720x100 pixels into 90 x 80.

The it has both 4 degree angular resolution and ±40 pixels around horizontal line in

vertical direction.

MCOMALV : Combining with DID approach, we modified the original COMALV

into MCOMALV (Modified-COMALV) by using three reference images. Similar with

DID, we extracted 90 ommatidia output from three images and calculated each of the

differences with the current one. Then, homing direction is calculated by finding the

ratio between the three differences. In this paper, we use the same setting in input

visual cue with COMALV.

2.8 Summary of Chapter 2

In this chapter, we examined various research studies regarding visual navigation.

Based on the snapshot model, these algorithms have both robustness and simplicity

that can be easily applied into navigation. There have been many different models in

local homing navigation according to each characteristic and they can be classified into



54 Chapter 2. Background

different categories, as previously discussed in this chapter. To present our new mod-

els, we evaluated overall navigation algorithms and found common problems. Our goal

is to develop a new navigation algorithm imitating insect navigation that is both robust

and simple. The proposed model is designed to partially solve the common problems

observed in state of the art methods.



Chapter 3

Visual Navigation Using Moment

Models

In this chapter, we apply a concept of moment function to our new navigation model

based on snapshot model of holistic method. Through this part, we aim for checking

the effect of distance factor in navigation problem. For example, one of the research of

SLAM (Kwon and Song, 2011b) uses elevation information to invent moment model,

called Elevation Moment of Inertia (EMOI) to reduce the data size. It reveals that the

EMOI can be the representative value at each position which can reduce the surround-

ing range value and height information into one scalar EMOI value. Then, first, we

expand this EMOI concept (Lee and Kim, 2016b) to build moment model for homing

navigation by using various feature values. We use both color with range measurement

for checking the effect of distance factor in navigation problem. Second, we made new

models with various forms by making generalized version of the first model. We make

multiple moment models with mathematical proof of our overall models. Third, based

on these analyzed moment models, we check the convergence patterns in both sim-

ulation and robot experiments. Then we add appendix to explain in details. The one

of these researches is published (Lee and Kim, 2017a) and another one is under the

preparation for submission(Lee and Kim, 2017b).

55
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3.1 Moment Model for Homing Navigation

In physics, the area moment of inertia is a property of an area which reflects how

its points are distributed. By analogy, the area moment is defined as a distribution

of point measurements in our navigation model. For a given set of landmarks in the

environment, we analyze the landmark distribution as a combination of their positions

and features. The color intensity or height of landmarks can be feature candidates.

The color of visual cue is the feature used in this paper. We define the moment measure

M as follows:

M =
N

∑
i=1

ri
2Ci =

N

∑
i=1

((x−ai)
2 +(y−bi)

2)Ci (3.1)

where there are N landmarks, ri is the range value of the i-th landmark, that is, the

distance from the current location (x,y) to the landmark location (ai,bi), and Ci is the

feature value, for example, color intensity of the i-th landmark.

The above measure is similar to the area moment of inertia in physics,
∫

r2dm. We can

also see this measure as a potential function built with a set of landmarks. From that,

we can find the gradient as the first derivative of potential function as follows:

∇M = (
dM
dx

,
dM
dy

) = (Mx,My) =
N

∑
i=1

(2(x−ai)Ci, 2(y−bi)Ci) (3.2)

where this gradient vector indicates the change of potential function corresponding to

the current position (x,y). To find the minimum convergence point with the gradient,

we calculate the determinant of Jacobian matrix

J(∇M) =

(
d2M
dx2

d2M
dxdy

d2M
dxdy

d2M
dy2

)
=

(
Mxx Mxy

Myx Myy

)
=

N

∑
i=1

(
2Ci 0

0 2Ci

)
(3.3)

where this Jacobian matrix is produced from the second-order differential of the gradi-

ent equation. Mxx is a second-order differential with respect to x and Myy with respect

to y. Mxy is equal to Myx and they are zero.

The determinant of Jacobian matrix is calculated as

det(J) = (
N

∑
i=1

2Ci)× (
N

∑
i=1

2Ci) = (
N

∑
i=1

2Ci)
2 > 0 (3.4)

We assume that each feature value (Ci) is positive. The sign of the 2nd derivatives of

potential function is positive as shown below:

Mxx = Myy =
N

∑
i=1

2Ci > 0 (3.5)
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From the above property, there is only one global convergence (minimum potential)

point with its gradient zero, and the determinant of Jacobian is positive. Let (X ,Y ) be

the convergence point. Then

∇M(X ,Y ) =
N

∑
i=1

(2(X−ai)Ci, 2(Y −bi)Ci) = 0 (3.6)

The position (X ,Y ) is calculated as

X =
N

∑
i=1

aiCi/
N

∑
i=1

Ci, Y =
N

∑
i=1

biCi/
N

∑
i=1

Ci (3.7)

where the convergence point (X ,Y ) is the weighted average of landmark positions with

respect to the landmark features, that is, the center of the landmark distribution. The

moment measure based on features of landmarks has unique convergence point (X ,Y ),

regardless of any current position (x,y).

Thus, we argue that if there is no environmental change or no occlusion observed as the

robot moves, then we can find the same convergence point in spite of any movement or

any change in angular position. To guarantee the unique convergence point, the feature

value should be positive. In our experiments, the landmark characteristics are defined

as the height of landmarks or color intensity, which is positive. The moment measure is

an index of landmark distribution and its center of distribution can easily be estimated

as an invariant feature, which will be useful in homing navigation. In Figure 3.1, the

surface of potential function is convex-shaped, and the unique convergence point is

available. Various types of feature (Ci) values are available and the convergence point

can change depending on the features.

3.1.1 Homing Vector Using Moment Model

We introduce how to estimate the homing vector using the moment function. We as-

sume there is a reference compass available. Each landmark has the feature value and

range information. An agent can observe a distribution of landmarks at a given posi-

tion. Assume the same landmarks are observed at any position in the environment. We

take the above global convergence point as the reference point to estimate the homing

vector.

If there are N landmarks observed at the current position P = (x,y), their relative dis-

tance ri = ||(ai−x,bi−y)|| and the feature value Ci are measured for i= 1, ...,N, where
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Figure 3.1: Moment measure as a potential function where the landmark height is re-

garded as a feature value (left: potential function, right: contour line

(ai− x,bi− y) is the estimated landmark position in the coordinate with origin at the

current position. The reference point vector R = (Xc,Yc) can be calculated by Equation

(3.7). In a similar way, N landmarks are observed at the home position H̄ = (Hx,Hy).

Their relative distance r′i = ||(a′i−Hx,b′i−Hy)|| and the feature value C′i are measured

for i = 1, ...,N, where (a′i−Hx,b′i−Hy) is the estimated landmark position with origin

at the home position H̄. The reference point vector R′ = (Xh,Yh) can be calculated by

Equation (3.7) again at the home position.

Then, we find the relation for homing vector
−→
H :

−→
H = H̄−P' R−R′, (3.8)

since we assume that the same reference point is estimated irrespective of any obser-

vation point, that is the two vectors R and R′ should end at the same reference point,

starting from the different positions, the current position and the home location (a little

deviation of the reference points may be observed by noisy sensor readings or land-

mark occlusions).

At an arbitrary position P = (x,y), a mobile robot has information of the relative dis-

tance and the visual features with a laser sensor and a vision camera. Equation (3.7)

has absolute coordinate representation, and so, we evaluate the convergence point in
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the coordinate with origin at the observation point.

Xc =
N

∑
i=1

(ai− x)Ci/
N

∑
i=1

Ci, Yc =
N

∑
i=1

(bi− y)Ci/
N

∑
i=1

Ci (3.9)

where P = (x,y) is the current observation point and (ai− x,bi− y) is the relative

distance of the i-th landmark in the current view. Similarly, the convergence point can

be evaluated in the home coordinate as follows:

Xh =
N

∑
i=1

(a′i−Hx)C′i/
N

∑
i=1

C′i , Yh =
N

∑
i=1

(b′i−Hy)C′i/
N

∑
i=1

C′i (3.10)

where (Hx,Hy) is the home location. Then, the difference of the two reference points

measured at two observation points (the home location and the current position) is

given by:

R−R′ = (Xc,Yc)− (Xh,Yh) (3.11)

= (
∑(ai− x)Ci

∑Ci
,
∑(ai− y)Ci

∑Ci
)− (

∑(a′i−Hx)C′i
∑C′i

,
∑(a′i−Hy)C′i

∑C′i
) (3.12)

' (
∑(ai− x)Ci

∑Ci
,
∑(ai− y)Ci

∑Ci
)− (

∑(ai−Hx)Ci

∑Ci
,
∑(ai−Hy)Ci

∑Ci
) (3.13)

= (
∑(Hx− x)Ci

∑Ci
,
∑Hy− y)Ci

∑Ci
) (3.14)

= (Hx− x,Hy− y) = H̄−P (3.15)

where it is assumed that the same landmarks and the same visual features are observed

at any position, (ai,bi) = (a′i,b
′
i), Ci =C′i for i = 1, ...,N. Hence, the homing vector

−→
H

can be estimated by the above property,

−→
H = (Xc,Yc)− (Xh,Yh) (3.16)

Each position defines its own reference map, but there exists a unique convergence

point that is the same position regardless of any coordinate. By the convexity of the

moment potential function, the minimal potential point can be reached from any posi-

tion. We provided a proof that the homing vector calculated by the above model can

reach the home position from any position, if the environment is isotropic, that is all

landmarks and their features are invariantly observed at any position.

3.1.2 Moment Model with Multiple Features
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If there are multiple features available for landmarks, then we can build a separate

moment model for each feature. The set of moment models will lead to independent

reference points, but we can assume that the distribution of each feature in the environ-

ment will be almost equal for any measured position if the environment is isotropic,

that is the majority of landmarks are commonly observed in the environment. The

homing vector for each feature can be voted together, which can help estimate homing

direction more accurately.

We can test the moment model with RGB color intensities, three visual features for

each pixel. The image colors provide three different features, red, green and blue color

intensity for each pixel. The landmark feature Ci can thus have three components. The

moment measure for each feature, red, blue and green intensity, respectively, is defined

as follows:

MR =
N

∑
i=1

ri
2Ri =

N

∑
i=1

((x−ai)
2 +(y−bi)

2)Ri (3.17)

MG =
N

∑
i=1

ri
2Gi =

N

∑
i=1

((x−ai)
2 +(y−bi)

2)Gi (3.18)

MB =
N

∑
i=1

ri
2Bi =

N

∑
i=1

((x−ai)
2 +(y−bi)

2)Bi (3.19)

where (ai,bi) for i = 1, ...,N are the landmark position with respect to the current

position P = (x,y) and (Ri,Bi,Gi) are the color intensity for the i-th landmark.

Then, the above three measures lead to three reference points at a given position P =

(x,y), using Equation (3.9).

(XR,YR) = (
∑(ai− x)Ri

∑Ri
,
∑(bi− y)Ri

∑Ri
), (3.20)

(XG,YG) = (
∑(ai− x)Gi

∑Gi
,
∑(bi− y)Gi

∑Gi
), (3.21)

(XB,YB) = (
∑(ai− x)Bi

∑Bi
,
∑(bi− y)Bi

∑Bi
), (3.22)

Three reference points can be determined both at the current position and at the home

location. The difference of the reference points can estimate the homing direction.

The home vector
−→
H via the three reference points using the color intensities can be

derived as a combinational form,

−→
H = (

−→
HR +

−→
HG +

−→
HB)/3 (3.23)
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Figure 3.2: Figure shows the principles of localization based on distances to conver-

gence points in reference map. R is the convergence point with using red information.

B and G are using blue and green. Dotted lines show the candidates from each conver-

gence point with distance from current point to convergence point

where
−→
HR is calculated with red color intensity,

−→
HG with green and

−→
HB with blue, using

Equation (3.16).

As shown above, the color intensity of pixels can be applied to the moment model with

multiple features. We can extend the moment measure into that with various visual

features. The visual feature Ci allows any characteristics of landmarks, and also, mul-

tiple features can derive multiple homing vectors. The sum of the homing vector for

each feature can be effective on noisy feature readings. RGB color space can be con-

verted into another space, for example HSV space, and each feature can make separate

homing vectors. Furthermore, to handle noisy sensor readings, we can allow a cut-off

threshold for a feature value, and some feature can be set to Ci = 0. This has the effect

of choosing a set of landmarks in the omnidirectional view, instead of using the whole

pixels. If Ci = 0 or Ci = 1 with the range value ri = 1, the moment model becomes

similar to the ALV model (Lambrinos et al., 2000). If Ci = 0 or Ci = 1 with continuous

range value ri > 0, the model is similar to the DELV model (Yu and Kim, 2012).
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3.1.3 Navigation Using Moment Function with Multi-Dimension Form

3.1.3.1 Area integration Moment navigation

Our prior model treats each measurement as a particle having feature value instead

of mass. Like a star in the space, it can find the convergence point and homing direc-

tion. Attached to that, a material called ’Dark matter’ that we cannot directly observe

composes about 80 percent of the mass of the universe. Attached with this concept

of black matter, We expand our moment idea. In our past model, omni directional

measurement is used as simple dot having feature. Then this area, where we try to

finding homing direction, can be a closed space with boundaries. We fill this empty

space with virtual landmarks having equal feature value to the one of end point in

each direction. Although these imaginary features are not arranged in equal density,

but we can approximate some effects of filling the space. We call it as simple area in-

tegration moment navigation, following this assumption, it can be calculated by using

higher dimension term (n = 3) in moment function. Therefore we check the convexity

of multi-dimension cases of moment model in next section.

3.1.3.2 Convexity of Multidimensional moment function

In this part, we prove the condition about convexity of various moment function using

both radius and characteristic value. We design general type of moment function about

changing dimension number like

Mn =
N

∑
i=1

Mi,n =
N

∑
i=1

rn
i Ci =

N

∑
i=1

((ai− x)2 +(bi− y)2)
n
2Ci (3.24)

where n is dimension number and multiplier to range value (r) and Mn is moment func-

tion with this dimension. N is the number of measurements, Ci for feature value of i-th

measurement, (ai,bi) for location of measured feature and (x,y) for current location

of robot. Then we solve it to find global convergences in this condition according to

changing dimension number. Then the output is

f


n≥ 1

0 < n < 1

n≤ 0

det(J(∇MK(X)))> 0 MK,XX(X)> 0 success

unknown MK,XX(X)< 0 unknown

unknown MK,XX(X)< 0 f ail

(3.25)
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Figure 3.3: The simulation of unique convergence example on the field. Height value

is used as feature of each landmark. First one shows the surf output and the second

shows contour line.

where three conditions having outputs of both determinant of Jacobian and quadratic

differential about X (Mk,XX ). In this part, we can check that first case (n ≥ 1) has

convexity and the others are not. Because, those two conditions are requirements for

unique global minimum. Therefore we can say that the convexity of moment functions

can be realized when positive Ci and dimension number over one. Figure 3.3 shows

simple simulation about unique convergence point when we use n = 2. There are some

objects having height and we use it as feature value. Overall distribution of potential

field has unique convergence around (80,0). (You can check the detail procedures of

above calculation in appendix.)

3.1.3.3 Generalized version of homing navigation

Our prior model is about the navigation using moment function with second order

(n = 2) case that can find both homing direction and current location algebraically.

Similar to the case of convexity proof about generalized version of moment function,

we try to make generalized version of homing navigation with various moment func-

tion. Then general moment potential with n dimension,
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Figure 3.4: Experiment about the location of convergence point according to the

changes of order number (n). The environment of experiment is equal to the ones of

figure 11 and 12. Red dots are the minimum points with text figuring order number.

Mn =
N

∑
i=1

(ri)
nCi (3.26)

To solve this equation, we change the variable k = n/2 like

Mk =
N

∑
i=1

(ri
2)

k
Ci =

N

∑
i=1

((ai− x)2 +(bi− y)2)
k
Ci (3.27)

Next, similar with prior courses, we calculate derivatives of this potential field like,

∇Mk =
N
∑

i=1
k{(ai− x)2 +(bi− y)2}k−1

[2(ai− x)Ci,2(bi− y)Ci] (3.28)

When this dimension number is equal to 2, we can find where the convergence point

((Xc,n,Yc,n)) is. However, when this value is over 2, it cannot be calculated. But, there

must be a unique minimum point and then it satisfies

N
∑

i=1
k{(ai−Xc,n)

2 +(bi−Yc,n)
2}k−1×2(ai−Xc,n)Ci = 0

N
∑

i=1
k{(ai−Xc,n)

2 +(bi−Yc,n)
2}k−1×2(bi−Yc,n)Ci = 0

(3.29)

Therefore we can check that potential curve has global minimum at (Xc,n,Yc,n) but

cannot calculate the location of this point at once. We do some additional experiment
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about the location of convergence point according to the changes of order number (n).

As calculation about the minimum point of moment function can be possible only when

n = 2, we find the minimum points in other cases by area search. Figure 3.4 shows the

movement of minimum point.The output is not linear. Then we apply numerical search

using gradient descent model like

(Xt+1,Yt+1) = (Xt ,Yt)− γt∇Mk((Xt ,Yt)) (3.30)

γt =
(Xt−Xt−1,Yt−Yt−1)

T [∇Mk(Xt ,Yt)−∇Mk(Xt−1,Yt−1)]

||∇Mk(Xt ,Yt)−∇Mk(Xt−1,Yt−1)||2
(3.31)

where (Xt ,Yt) is updated location of anticipated convergence point in step t and γ is

learning rate in gradient descent. It is terminated when the amount of change in each

step is decreased under 0.1. After searching, we use it as convergence point and it is

unique and fixed location like

R−R′ = (Xc,Yc)− (Xh,Yh) = (Hx− x,Hy− y) = H̄−P (3.32)

where it is assumed that the same landmarks and the same visual features are observed

at any position, (ai,bi) = (a′i,b
′
i), Ci =C′i for i = 1, ...,N. Hence, the homing vector

−→
H

can be estimated by the above property,

−→
H = (Xc,Yc)− (Xh,Yh) (3.33)

Also, we try to reduce this process calculating the location of convergence point into

derivative form without repetition. In this part, without precise location of convergence

point, it calculates homing direction by following gradient of each point like

−→
Hk(x,y) =−∇Mk = ∇Mk(x,y)−∇Mk(xhome,yhome) (3.34)

where
−→
Hk(x,y) is calculated homing vector at location (x,y) with dimension (k = n/2).

Then this form is designed to align convex moment curve fitted to home position

(X0(xhome,yhome)). Also, this type of moment function satisfies strictly convex con-

dition at home position therefore we can use it in homing. Because it satisfies three

convex conditions which are

det(J(∇Mk(X)))> 0 Mk,xx(X)> 0 ∇Mk(X0) = 0 (3.35)

where

J(∇Mk) =

(
d2M
dx2

d2M
dxdy

d2M
dxdy

d2M
dy2

)
=

[
Mk,xx Mk,xy

Mk,yx Mk,yy

]
(3.36)
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this Jacobian matrix can be calculated by quadratic differential of each term including

Mxx for quadratic differential about x and Myy about y. Then our model can satisfy

those three convergence conditions to home position, the homing vector (
−→
H ) is cal-

culated by subtraction between those two vectors. If there is no occlusion and mea-

surement error, it can calculate proper homing direction. Also, different to the second

order case, the other cases cannot find current location. But the overall flow of this

potential field can reach to the home position by convexity. We show detail procedure

in appendix.

3.1.3.4 Generalized area integration model having uniformity

Through the above parts, we can find the convergences of moment function having var-

ious dimension numbers. In this part, we modify the simple area integration model to

having equal density and analyse the effects of filling operation in homing navigation.

To make equal density, we modify the prior simple model into integral form like

M f =
∫ 2π

0

∫ rθ

0
r2CθρdAdθ =

∫ 2π

0
Cθ

∫ rθ

0
r2

ρ(rdrdθ) (3.37)

where the M f is area integration moment level, N for the number of landmarks, Ci for

feature value of i-th measurement, ri for distance to feature and ρ,ρ′ for normalize

constant. Then it can be arranged into

M f = ρ

∫ 2π

0
Cθ

∫ rθ

0
r3drdθ = ρ

∫ 2π

0

1
4

r4
θCθdθ∼=ρ

′
N

∑
i=1

r4
i Ci (3.38)

Then we can observe the final output having more higher dimension number (n =

4) with normalization constant. Next, we attach the multidimensional model into this

output like

M f ,n =
∫ 2π

0

∫ rθ

0
rnCθρdAdθ =

∫ 2π

0
Cθ

∫ rθ

0
rn

ρ(rdrdθ) (3.39)

where the M f ,n is area integration moment level, N for the number of landmarks, n for

dimension number, Ci for feature value of i-th measurement, ri for distance to feature

and ρ,ρ′ for normalize constant.

M f ,n = ρ

∫ 2π

0
Cθ

∫ rθ

0
rn+1drdθ = ρ

∫ 2π

0

1
n+2

rn+2
θ

Cθdθ (3.40)
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Figure 3.5: Difference between concepts. (a) is using only range with area integration

method. (b) is using both range and color with area integration method. (c) is using

only range with area integration method. (d) is using both range and color with area

integration method.

where M for the number of objects, n for dimension number, C j for feature value of

j-th object, r j for distance to feature and ρ′′ for another normalize constant. In this part,

we can check that the final output can be the same form of multidimensional case.

Figure 3.5 shows the differences between suggested methods. Our moment models can

be divided into two parts. The one of generalized version (a) uses distribution of land-

marks and we call it perimeter method. The other of generalized area integration (b)

uses imaginary filled area in landmark distribution and call it area integration method.

Also each one can be attached with color information like (c) and (d).
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3.2 Experiments and Results

3.2.1 Simulations

3.2.1.1 Simulation about multi-dimension experiments

Initially we test our approach in simulation environment including a set of landmarks.

A set of landmarks (discrete landmarks) are given in an arena and each landmark has

its height and we assume that the distance to each landmark is obtained with a laser

sensor. Figure 3.6, we can observe the unique convergence point with a feature value of

height for each environment. The home location may be different from the convergence

point but the moment model guides well the homing direction.

Figure 3.6 shows that the moment potential has a convex shape and it has the minimal

peak point. Even if the landmarks are not uniformly distributed, the moment measure

has the minimal reference point. A pair of positions including the home location can

share the same reference point using the relative distances to a set of landmarks and

the landmark features. In simulation environment, there is no error to estimate the

reference point and the homing direction at each position is very accurate.

Also, we do some additional experiment about the location of convergence point ac-

cording to the changes of order number (n). As calculation about the minimum point

of moment function can be possible only when n = 2, we find the minimum points

in other cases by area search. Figure 3.8 shows the movement of minimum point.The

output is not linear.

3.2.1.2 Simulation about pixel-wise assumption

In this part, we test various cases with high dimension number having unique conver-

gence that we proved. Different to prior case, we made simulation environment that can

generate image-like measurement. These measurements have omni-directional range

and color distribution of the horizontal line and it is very similar with real experiment.

If our assumption is right, then this output can make successful outputs with higher

dimension number.

Figure 3.9 shows some cases of using various dimension number. First one using n = 2

is equal to the normal case, third one using n = 3, fourth one using n = 4 and fifth
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Figure 3.6: Test with two different simulation environments; the first row shows the mo-

ment potential and the second row shows vector maps including homing vector on the

contour plot (triangles: landmark positions, black dot: home location)

one using n = 10. All the cases can make successful homing pattern and there are

some differences. Therefore we can say that our generalized model can find homing

direction with various dimension number.

Next, we check the homing performance according to changing dimension number to

check our pixel-wise assumption. According our theorem, if the objects have cylinder

shapes and ratio between distance to radius is enough small, homing performance using

potential field with n = 3 has better output than prior one with n = 2.

Figure 3.10 shows the output and we can check that there is the best case when the

dimension number is equal to 3. Also, there are red circles meaning statistically equal
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Figure 3.7: Simulation output for various moment functions. Vector maps including blue

arrows pointing calculated homing direction at each position using n = −1,0.2,2,10.

Curved line shows the contour line of moment curve. Black dot shows the home location

and triangle shows the location of landmark.

minimum points. Then we can check that minimum points is not equal to other cases

and we can know that our assumption can work. However, this simulation is no mea-

surement error and there is no background which also can be landmark and make

occlusion.
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Figure 3.8: Experiment about the location of convergence point according to the

changes of order number (n). The environment of experiment is equal to the ones of

figure 11 and 12. Red dots are the minimum points with text figuring order number.

3.2.1.3 Simulation about inter-filled moment navigation

In the early part of this paper, we suggest the inter-filled moment navigation inspired

from dark matter. It includes higher dimension term and, in prior parts, we check the

convexity of moment function with various dimension numbers. Also we suggest gen-

eralized version having unique convergence with various dimension numbers. Through

these parts with simulation environment, we can test our inter-filled moment navigation

having three different dimension number.

Figure 3.11 shows some cases of using various dimension number in inter-filled model.

Left one using n = 2 is equal to the normal case, right one using n = 3. In this sim-

ulation, those two cases make successful homing ability with very small differences.

Therefore our generalized model can be applied into simulation with various dimen-

sion number of inter-filled moment model.

Next, we also check the homing performance according to changing dimension number

to check our pixel-wise assumption in this part. Figure 3.12 shows that the output of

2 is the statistically best. Because combination of three dimension number makes the

one (n = 2) using 2,3,4. Then we can think that global best (n = 3) based on pixel-wise

assumption is partially applied into this part.
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Figure 3.9: Simulation output for various moment functions having different dimension

number in pixel-wise assumption. Vector maps including blue arrows pointing calculated

homing direction at each position using n = 2,3,4,10. Blue square shows the home

location and four circles shows volume and color.

3.2.2 Experiments with Moment Model

Additional to output of our methods, we compare our second model with state-of-

art techniques. In this part, we introduce some other algorithms which are used in

comparison.

Table 3.1 shows various methods classified by the feature selection, the range sensor
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Figure 3.10: Performance graph for homing accuracy according to changing dimension

number (n) of generalized moment function. The environment of experiment is equal to

the ones of Figure 3.9. Red dots means the minimum point and statistically equal point.
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Figure 3.11: Simulation outputs for inter–filled moment functions. Vector maps including

blue arrows pointing calculated homing direction at each position using n = 2,3. Blue

square shows the home location and four circles shows volume and color.

or distance estimation, and the alignment process. With reference compass, no align-

ment process is required, and six methods are available. Without reference compass,

eight methods are listed (for Ci = 1, no visual feature is observed and only landmark

rearrangement will be tested, since the visual compass is not applicable). In the result

part, we try to check overall performances of these combinations.
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Figure 3.12: Performance graph for homing accuracy according to changing dimension

number (n) of inter-filled moment function. Red dots means the minimum point and

statistically equal point.

Table 3.1: Various methods classified by the feature, the range sensor and the alignment

process

Method Feature Range Alignment method Class

with

reference

compass

DID color intensity no sensor aligned by compass I

moment color intensity equal distance (ri = 1) aligned by compass II

moment equal intensity ground-line estimation aligned by compass III

moment color intensity ground-line estimation aligned by compass IV

moment equal intensity laser sensor aligned by compass V

moment color intensity laser sensor aligned by compass V I

without

reference

compass

DID color intensity no sensor visual compass Iv

moment color intensity equal distance (ri = 1) visual compass IIv

moment equal intensity ground-line estimation landmark rearrangement IIIr

moment color intensity ground-line estimation visual compass IVv

moment color intensity ground-line estimation landmark rearrangement IVr

moment equal intensity laser sensor landmark rearrangement Vr

moment color intensity laser sensor visual compass V Iv

moment color intensity laser sensor landmark rearrangement V Ir

3.2.2.1 Moment model in real environment with depth sensor readings

We investigate a possibility of the moment model in real environments. The moment

measure allows various features for landmarks in its calculation. In our experiments, a

holistic approach over the landmark distribution is used and the omnidirectional depth

information in combination with visual features are encoded in the moment value.

Initially we measured the moment with RGB color intensities in the panoramic image.

The holistic view take all the pixels as landmarks in the environment. The information

about 720 pixels near the horizontal line and the corresponding depth determines a mo-
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Figure 3.13: Contour plots at two different positions in the indoor environment (a) con-

tour of moment potential at (460, 460) (b) contour of moment potential at home position

(500, 500); black dots indicate the minimum potential points

ment potential. The contour map of the moment potential is displayed in Figure 3.13.

The range sensor readings and color intensities can change depending on the observa-

tion point. Figure 3.13 shows that the minimal potential positions closely match each

other in real environment, although there is a little deviation of the minimal potential

position (reference point) when it is calculated at two different observation points. The

measurement error or a few occlusions of landmarks can induce a little deviation of

the ideal reference point, thus causing homing error potentially.

To see the effect of the two components, the color intensity and the distance of land-

marks, we tested the moment with the unit distance ri = 1 or the unit feature Ci = 1.

In the first test, only color intensity is available for landmarks under equal distance

assumption (unit distance ri = 1). Figure 3.14 (a) shows the result and relatively large

homing errors are observed. It implies that landmarks only with color intensity have

difficulty in representing the surrounding environment. The distribution of RGB colors

change depending on the observation point, which will highly influence the estimation

of the reference point as well as the homing direction. In contrast, another test with

continuous-ranged distance but no color intensity shows much better homing perfor-

mance – see Figure 3.14 (b). The depth information of landmarks greatly contributes

to the estimation of homing direction.
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Figure 3.14: Homing performance only with color intensity or only with range data (ref-

erence compass available) (a) only with vision but the unit distance (ri = 1) (all land-

marks have equal distances) (b) with only range data but the unit feature (Ci = 1) (all

landmarks have the same visual feature or same color intensity) (red box at (500, 500)

indicates home and arrows show the homing direction at each point)
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Figure 3.15: Homing performance with both range data and color intensity (reference

compass available); red box indicates home position and the arrows show the homing

direction at each point
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Figure 3.16: Homing performance with various feature values (a) Ci is the blue color

intensity (b) Ci is the red color intensity (c) Ci is the V intensity in HSV space (d) Ci = 1

or 0 depending on the discetized condition with HSV (if
√

H2 +S2 +V 2 > 50, Ci = 1,

otherwise Ci = 0); red box at (500, 500) indicates home and arrows show the homing

direction at each point.

Figure 3.15 shows vector maps using both the distance information and color intensity

when a reference compass is available. The moment model with both features shows

good homing performance at any position in the environment, mostly better than the

moment model only with distance. Thus, the moment model, a combination model

of distance and visual features, is a more promising approach to read the landmark

distribution or characteristics in the environment.

Instead of the RGB space, we can apply one color, for example, red-colored intensity

to the moment measure. In this case, a single reference point is available to derive the

homing vector. Also, the HSV space for one pixel can produce another visual feature

and the moment with the HSV intensity can derive different reference points, but it

also produces successful homing performance. To discretize the continuous-ranged
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Figure 3.17: Homing performance of moment model without reference compass; both

range data and color intensity are used and the coordinate alignment process is applied

(a) visual compass (b) landmark re-arrangement method

attribute value, a cut-off threshold can be used; if a feature value is greater than the

threshold, we set Ci = 1, otherwise Ci = 0. In this case, the moment measure is like

extracting a special feature of landmarks, by collecting all the landmarks with Ci = 1.

Then the moment model can be converted to the ALV or the DELV model depending

on the distance information (unit distance or continuous-ranged distance). Figure 3.16

shows the homing performance result depending on various patterns of the feature Ci.

Even one color intensity together with depth information provides reasonable homing

performance. More features or a different representation of the visual feature like the

HSV space can estimate well homing directions. A choice of special features satisfying

a given condition can also find homing directions – see Figure 3.16(d).

If there is no reference compass available, we need to align the coordinates for the

snapshot images obtained at two positions. One of popular approaches is the visual

compass approach by pixel matching process. Another approach is the landmark rear-

rangement method. The methods were applied to the above environment. The moment

model priorly needs this alignment process. Figure 3.17 shows the results. With visual

compass, there are some large angular errors at the right side corner, while the land-

mark re-arrangement method shows relatively small angular errors towards home at all

the points.

To compare the moment model and the DID (Descent in Image Distance) method, we

demonstrated the homing results with the DID method in Figure 3.18. The DID method

uses only visual images to estimate the homing direction. Despite the limitation, it can
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Figure 3.18: Homing performance with the DID approach (a) with reference compass

(b) visual compass without reference compass; red box indicates home position and

arrows show the homing direction at each point.

estimate the homing directions reasonably. It seems that whether the DID method has

reference compass or not has no large impact on the homing performance. For overall,

the DID method has larger angular errors in the average than the moment model, and

it is due to lack of depth information of landmarks.

3.2.2.2 Moment model in real environment with ground-line distance

We applied our moment model to another environment, one of Vardy’s dataset called

’a1original’ (Möller et al., 2007), which include many panoramic snapshots, but with-

out distance map. The omnidirectional images were collected for the indoor environ-

ment and the arena size is 2.7m x 4.3m and there are 170 points with 10 cm regular

intervals for snapshots.

Figure 3.19 shows the homing performance results with reference compass. Similar

to the previous results with our lab environment env0 shown in figure 3, the moment

model only with color intensity shows the worst performance. The model with ground-

line distance shows very successful performance. The model with both distance and

color intensity together shows a little more improved performance. Some positions

have angular deviation in the direction to the goal position, which is related to the

error in distance estimation. Without laser sensor, only visual image can determine

the homing direction effectively. It can be inferred that the distance parameter in the

moment model greatly influences the homing performance.
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Figure 3.19: Homing performance for Vardy’s image environment with reference com-

pass (a) moment model only with color intensity (b) moment model only with estimated

distance (c) moment model with estimated distance and color intensity; distance is es-

timated using the ground line in the image without laser sensor (arrow indicates the

homing direction)
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Figure 3.20: Homing performance for Vardy’s image environment without reference

compass (a) visual compass and moment model only with color intensity (b) visual com-

pass and moment model only with estimated distance (c) visual compass and moment

model with both estimated distance and color intensity (d) landmark rearrangement

method and moment model with both estimated distance and color intensity; distance

is estimated using the ground line in the image without laser sensor (arrow indicates

the homing direction)

Figure 3.20 shows the performance depending on the coordinate alignment methods.

Even without reference compass, similar patterns of homing performance were ob-

served. The moment model only with color intensity is insufficient to guide homing,



3.2. Experiments and Results 81

0 5 10

0

2

4

6

8

10

12

14

16

0 5 10

0

2

4

6

8

10

12

14

16

0 5 10

0

2

4

6

8

10

12

14

16

(a) (b) (c)

Figure 3.21: Homing performance for Vardy’s image set without reference compass;

the landmark rearrangement method to align the coordinate and the moment model

with estimated distance and color intensity are used (a) home location (0,0) (b) home

location (7,2) (c) home location (5,16)

but the model with ground-line distance shows much better homing results. Also, the

landmark re-arrangement method seems better than the visual compass method – see

Figure 3.20 (c)-(d). Even when we change the home locations, the moment model with

landmark rearrangement robustly works well for homing as shown in Figure 3.21. With

only visual snapshots, we are successful to estimate the distance to landmarks as well

as adjust the coordinate alignment, and to decide the homing direction ultimately.

3.2.2.3 Comparison of homing performances with various methods

We measured angular errors for homing directions with various methods listed in Ta-

ble 3.1. We assume that the desired homing direction is the direct path from the current

position to the home location. In the moment model, we encoded the depth informa-

tion of landmarks and the visual features into a moment potential. We also tested the

coordinate alignment for the environment without reference compass. The snapshot

image at the home location becomes warped at the current position and it influences

the landmark distribution and the moment characteristics.

The method I and II use only visual features to decide the homing direction and they

have large angular errors. The moment model without depth information has short-

comings, compared to the DID method (method I) as we see the performance for the

method I and II. However, in the moment model, the depth information of landmarks
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Figure 3.22: Homing performance with reference compass and without reference com-

pass; x-axis indicates testing methods described in Table 3.1 (a) angular errors in the

indoor environment (b) angular errors in Vardy’s image set

by a laser sensor or the estimation of the ground-line distance in the visual image

significantly improves the homing performance – see the method III – V I. The same

result can be found in both the indoor environment env0 and Vardy’s data set. Also, if

there is a real measurement of the distances to landmarks, it can improve further the

performance as shown in Figure 3.22 (a).

We also found that the landmark rearrangement is quite effective in aligning the coor-

dinates. In many cases, the average performance with the landmark rearrangement is

better than that of the visual compass. The methods (IV and V I) with a combination of

two components, landmark distance and visual feature, has lower error performance,

when compared to the methods with only distance (III and V ). The DID method is

based on the visual images and their image difference, and the above experiments im-

ply that only visual information seems insufficient to guide homing. The DID is worse

in homing performance than the moment model with the visual feature and the depth

information.

Table 3.2-4.2 shows angular errors for homing direction. Mostly the errors are within

45 degrees. The method II only with the visual feature shows a relatively large portion

of angular errors greater than 45 degrees in the two different environments. The results

are consistent with the performance shown in Figure 3.22. Especially, the DID method

shows somewhat poor performance in Vardy’s image set without reference compass.
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Table 3.2: Angular errors with various methods for the indoor environment env0 (N is

the number of testing points)

method error (deg.) N 0≤ εθ < 45◦ 45≤ εθ < 90◦ 90≤ εθ < 180◦

with

reference

compass

I 21 (±12) 34 97.1% 2.9% 0%

II 57 (±57) 34 67.6% 5.9% 26.5%

III 19.4 (±11.6) 34 97.1% 2.9% 0%

IV 13.4 (±8.8) 34 100% 0% 0%

V 6.4 (± 4.3) 34 100% 0% 0%

V I 5.7 (±4.1) 34 100% 0% 0%

without

reference

compass

Iv 23 (±15) 34 94.1% 5.9% 0%

IIv 59 (±56.4) 34 58.8% 14.7% 26.5%

IIIr 19.1 (±11.7) 34 97.1% 2.9% 0%

IVv 18.4 (±15.1) 34 94.1% 5.9% 0%

IVr 19.1 (±11.7) 34 97.1% 2.9% 0%

Vr 7 (±5) 34 100% 0% 0%

V Iv 14 (±25) 34 94.1% 0% 5.9%

V Ir 7 (±6) 34 100% 0% 0%

Table 3.3: Angular errors with various methods for Vardy’s image set (N is the number

of testing points)

method error (deg.) N 0≤ εθ < 45◦ 45≤ εθ < 90◦ 90≤ εθ < 180◦

with

reference

compass

I 23.31 (±13.66) 169 97.1% 2.9% 0%

II 33.28 (±28.01) 169 72.19% 24.26% 3.55%

III 14.31 (±8.35) 169 100% 0% 0%

IV 13.8 (±8.96) 169 100% 0% 0%

without

reference

compass

Iv 33.30 (±34.54) 169 79.88% 11.83% 8.29%

IIv 35.15 (±32.02) 169 69.82% 23.08% 7.1%

IIIr 14.53 (±8.43) 169 100% 0% 0%

IVv 19.56 (±21.22) 169 96.45% 0% 3.55%

IVr 14.53 (±8.43) 169 100% 0% 0%
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Table 3.4: Table for various types of experiments

feature range alignment
Dimension

Number
mark

With

Compass

Color Intensity None Aligned none I

Equal Intensity

Assumption
Estimation Aligned 2 II

Intensity Estimation Aligned 2 III

Equal Intensity

Assumption
Estimation Aligned 4 IV

Color Intensity Estimation Aligned 4 V

Equal Intensity

Assumption
Measurement Aligned 2 V I

Color Intensity Measurement Aligned 2 V II

Equal Intensity

Assumption
Measurement Aligned 4 V III

Color Intensity Measurement Aligned 4 IX

Equal Intensity

Assumption
Measurement Aligned 4 -numerical X

Without

Compass

Color Intensity None Visual Compass none Iv

Color Intensity Measurement Visual Compass 2 V IIv

Color Intensity Measurement Rearrangement 2 V IIr

Color Intensity Measurement Visual Compass 4 IXv

Color Intensity Measurement Rearrangement 4 IXr
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3.2.3 Experiment about Various Dimension Number

Based on our model, we made some combinations to build various navigation mod-

els. Following Table 3.4,there are 14 cases. With reference compass (aligned), there

are three cases. The first method is using DID (I) as reference, second ones of mo-

ment model using equal intensity assumption and estimated distances with perimeter

method (IIP) and third with both color intensities and estimated distances with perime-

ter method (III). Fourth is with area integration method (IIA) without color and fifth

area integration method (V ) with color. The ones from sixth to ninth use measured dis-

tances instead of estimated distances (V I,V II,V III, IX). To compared with our deriva-

tive model with numerical method, we add one more type using numerical searching

(X) for convergence point when the dimension number is four.

Without reference compass, there are five variations by combination of various align-

ment algorithm with both DID and moment model. First one is using DID after align-

ment by visual compass (Iv). Second method are moment models using intensity and

measured distances with perimeter method aligned with visual compass (V IIv), rear-

rangement method (V IIr). Third methods are with area integration method aligned with

visual compass (IXv), rearrangement method (IXr). In the result part, we try to check

overall performances of these combinations.

In this part, we do experiment about the effect about dimension number of moment

function navigation. We use laser sensor to get range data and vision sensor to color

information. Through the experiments above, we can check the homing convergence.

In those experiments, they can almost perfectly find the homing direction at each cur-

rent position and the outputs have small differences. Also, we do experiments for gen-

eralized moment form (n = 0.1,2,4,6,8,10) in this real environments.

3.2.3.1 Robot experiment for multi-dimension tests

Next, we apply our model to real environment. We do robotic experiment based on

simulation output with environment using MATLAB 2017a. This environment, as men-

tioned above, have various objects like dresser, drawers, trash cans, large vases, win-

dows, partitions as landmark objects. Then our vision and range sensors make panoramic

measurement and we combine them by using generalized moment model.

First, we do experiment about the effect about dimension number of moment function
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Figure 3.23: Robot experiment output for various moment functions. Vector maps in-

cluding arrows pointing homing direction use n = 2,3,4,10. Environment is equal to

the prior figure. The red box at (500,500) is home and the arrows show the homing

direction at each point.

navigation. We use laser sensor to get range data and vision sensor to color informa-

tion. Through the experiments above, we can check the homing convergence. In those

experiments, they can almost perfectly find the homing direction at each current posi-

tion and the outputs have small differences. Also, we do experiments for generalized

moment form (n= 0.1,2,4,6,8,10) in this real environments. Figure 3.23 is the output

and we can check the homing convergence in cases whose n variable over 2.

Then we can check that these cases using real data can also make successful homing

pattern and there are some differences. All those outputs agree with the ones of simu-

lation. Therefore we can say that our generalized model can find homing direction also

in real experiment with various dimension number.
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Figure 3.24: Performance graph for homing accuracy according to changing dimension

number (n) of generalized moment function. Left one is without color information and

right one is with both color and range. Red dots means the minimum point and statisti-

cally equal point.

Next, we check the homing performance according to changing dimension number.

Figure 3.24 shows the output and we can check that there is best case when the dimen-

sion number is equal to 3 (not 2). However, there are red circles meaning statistically

equal minimum points and we cannot easily say that the one using n = 3 is the best.

We think that our assumption is not strictly satisfied in real world then the output has

weak effect by higher dimension.

3.2.3.2 Robot experiment for various forms

In this part, we did some tests using various form of moment functions.

I, Iv : DID First of all, in this part, we analyse other algorithm called DID. It requires

multiple images as references for finding homing direction and Figure 3.18 shows the

output using three images. These outputs also successful homing patterns with com-

pass or without compass (in this part, we use visual compass in alignment). Figure 3.25

shows the output using DID. First one is with compass sensor and second one with vi-

sual compass algorithm.

IIP and IIA: moment methods using estimated distances

In this part, we apply the estimate distances to moment model. Figure 3.26 shows

the outputs. These models use estimated distances. First one (IIP) uses generalized

moment model with perimeter without color information and second one (III) with
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Figure 3.25: DID result using three visual cues as reference images. Left one is for

aligned condition and right one is using visual compass. The red boxes at (500,500)

are home position of those experiments and the arrows show the homing direction at

each point. The left one is using compass sensor and the second with visual compass

method in alignment.

both range and color intensities. Third one (IV ) uses generalized moment model with

area integration method without color and fourth one (V ) with color.

IIIP and IIIA: moment methods using measured distances

In this part, we apply the estimate distances to moment model. Figure 3.27 shows

the outputs. These models use measured distances. First one (IIIP) uses generalized

moment model with perimeter without color information and second one (V II) with

both range and color intensities. Third one (V III) uses generalized moment model

with area integration method without color and fourth one (IX) with color.

V IIv, IXv, V IIr, IXr: using both measured distances and intensities in non-aligned con-

dition

Similar with experiments above, we test our models without compass. These mod-

els use measured distances and color intensities. Figure 3.28 shows the outputs. First

one (V IIv) uses generalized moment model with perimeter and second one (IXv) uses

area integration model with visual compass. Third one (V IIr) uses generalized mo-

ment model with perimeter method and fourth one (IXr) uses area integration model

with rearrangement algorithm.
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Figure 3.26: Robot experiment result with estimated distances. Using perimeter mo-

ment model : (a) shows the case without color, (b) with estimated distances. Using area

integration moment model : (c) without color, (d) with estimated distances. The red box

is home located at (500,500) and the arrows show the homing direction at each point.

3.2.3.3 Comparison with numerical method(X )

In this part, we test our two methods. The one is based on derivative of moment curve

with area integration and the other is based on numerical convergence point search.

They commonly have equal dimension number (n = 4) and has small differences. In

this part, we use only range distribution and the output is Figure 3.29. Left one (X)

shows the vector map including calculated homing direction at each point with blue

arrows in n = 4 and the output is almost same. Right one shows the changes of homing

accuracy according to dimension number from 1 to 10.
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Figure 3.27: Robot experiment result with estimated distances. Using perimeter mo-

ment model : (a) shows the case without color, (b) with estimated distances. Using area

integration moment model : (c) without color, (d) with estimated distances. The red box

is home located at (500,500) and the arrows show the homing direction at each point.

3.2.3.4 Comparison of overall methods

In prior parts, we test our methods using real robot experiment. In this part, we anal-

yse our outputs compared with other algorithms called DID. Based on these results,

we check overall performances through various conditions. The outputs are shown in

Figure 3.33 and Table 5.1.

3.2.3.5 Applying to other environment

Next, we apply our model into other dataset. In this part, we use Vardy’s open dataset

including several panoramic images which is broadly used in this field. It is the one
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Table 3.5: angular errors of different methods

error µ (±σ) N 0≤ εθ < 45◦ 45≤ εθ < 90◦ 90≤ εθ < 180◦

With

reference

I 21.6 (±11.9) 34 97.1% 2.9% 0%

II 19.4 (±11.6) 34 97.1% 2.9% 0%

III 13.4 (±8.8) 34 100% 0% 0%

IV 28.3 (±18.7) 34 91.2% 8.8% 0%

V 21.9 (±13.6) 34 100% 0% 0%

V I 10.4 (±6.2) 34 100% 0% 0%

V II 9.3 (±5.7) 34 100% 0% 0%

V III 8.2 (±4.4) 34 100% 0% 0%

IX 7.6 (±3.6) 34 100% 0% 0%

X 8.8 (±7.1) 34 100% 0% 0%

Without

reference

Iv 23 (±15) 34 94.1% 5.9% 0%

V IIv 17.6 (±18.6) 34 94.1% 5.9% 0%

V IIr 18.1 (±16.2) 34 91.2% 8.8% 0%

IXv 14.6 (±16.2) 34 94.1% 5.9% 0%

IXr 13.1 (±7.3) 34 100% 0% 0%
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Figure 3.28: Robot experiment result using both measured distances and color inten-

sities with two alignment algorithms. Aligned by visual compass : (a) shows the case

with perimeter, (b) with area integration model. Aligned by rearrangement algorithm :

(c) shows the case with perimeter and (d) with area integration model. The red box is

home located at (500,500) and the arrows show the homing direction at each point.

called ’A1originalHh’ used in Andrew Vardy’s experiment (Möller et al., 2007). They

are from ’http://www.ti.unibielefeld.de/html/research/avardy/’. Area is 2.7m x 4.3m

and there are 170 points with 10cm intervals.

Figure 3.30 is the output and we can check the homing convergence in cases whose

n variable over 2. In this part, we use estimated distances, not measured one. Then

the output cannot be directly equal to the one of measured one but overall patterns are

similar.

Figure 3.31 shows the outputs with aligned condition. These models use estimated

distances. First one (IIP) uses generalized moment model with perimeter without color
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Figure 3.29: Blue line shows the output of multidimension cases using derivative and

red one for numerical method. Each circle means statistically minimum positions in each

distribution.
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Figure 3.30: Performance graph for homing accuracy according to changing dimension

number (n) of generalized moment function. Left one is without color information and

right one is with both color and range. Red dots means the minimum point and statisti-

cally equal point.

information and second one (III) with both range and color intensities. Third one (IV )

uses generalized moment model with area integration method without color and fourth

one (V ) with color. Figure 3.32 shows the outputs with alignment algorithms. These

models also use estimated distances. First one (IIIv) uses generalized moment model

with perimeter and second one (Vv) uses area integration model with visual compass.

Third one (IIIr) uses generalized moment model with perimeter method and fourth

one (Vr) uses area integration model with rearrangement algorithm. The outputs are

also shown in Table 5.2.
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Figure 3.31: Robot experiment result with estimated distances. Using perimeter mo-

ment model : (a) shows the case without color, (b) with estimated distances. Using area

integration moment model : (c) without color, (d) with estimated distances. The red box

is home located at (500,500) and the arrows show the homing direction at each point.
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Figure 3.32: Robot experiment using Vardy’s image set result using only color intensities

with horizontal line. (a) is the output using DID with pre-aligned images. (b) uses DID

aligned by visual compass. (c) uses area integration model aligned by visual compass

and (d) aligned by rearrangement. The red box is home located at (5,8) and the arrows

show the homing direction at each point.

3.2.4 Experiment with Occlusion

First, we focus on the issues of snapshot-based models. Among these issues, the occlu-

sion problems under dynamic circumstances are challenging objective for our model.

Therefore, we have added some experiments and assessments to evaluate the model
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Table 3.6: angular errors of different methods in Vardy’s set

error µ (±σ) N 0≤ εθ < 45◦ 45≤ εθ < 90◦ 90≤ εθ < 180◦

With

reference

I 23.31 (±13.66) 169 97.1% 2.9% 0%

II 17.01 (±9.64) 169 100% 0% 0%

III 20.73 (±12.78) 169 97.1% 2.9% 0%

IV 10.81 (±7.37) 169 100% 0% 0%

V 12.77 (±9.4) 169 100% 0% 0%

Without

reference

Iv 33.30 (±34.54) 169 79.88% 11.83% 8.29%

IIIv 26.96 (±20.76) 169 88.76% 8.28% 2.96%

IIIr 20.74 (±12.96) 169 97.1% 2.9% 0%

Vv 17.55 (±20.76) 169 96.5% 0% 3.5%

Vr 12.97 (±9.42) 169 100% 0% 0%
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Figure 3.33: Performance graph between various models and angular errors. First one

is with our dataset and second one with Vardy set.

under more difficult circumstances involving occlusion issues and dynamic conditions.
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Figure 3.34: Occlusion test using moment model (n = 2). In the same field of ’ourlab’

environment, we placed four trashcans together making a convex hull and calculated

the homing direction at various locations including inside, around, and outside of the

convex hull. The red rectangle at (500,500) represents the home position and the blue

arrows show the calculated homing direction.

Our model aims to the find partial solutions for occlusion problems. This occlusion

can be generated for many reasons and can cause large errors in homing problem of

snapshot-based methods. Therefore, we have designed a new experiment that includes

occlusion outside the convex hull. The convex hull is distinguished using the bound-

ary connecting all the surrounding landmarks. Therefore, measurements outside of the

convex hull will have occlusion. In contrast to past experiments, we calculate the hom-

ing direction at these points. Figure 3.34 shows the output. There are two environments

having different object arrangement. The image on the left has 24 points on the inside

of the convex hull, 3 points around the convex hull, and 1 point on the outside of the

convex hull. The image on the right also has 24 points on the inside of the convex hull,

4 points around the convex hull and 1 point on the outside of the convex hull. In this

part, we see that the surround ones show homing directions with smaller homing errors

under 45◦. However, two cases on the outside show poor results. Therefore, we can see

the necessity of an additional home image at the boundary of the convex hull using the

limit of locality in snapshot model to apply in wide range navigation.

Next, we perform another experiment under dynamic circumstances by artificially
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Figure 3.35: Homing test with dynamic environments. On the left, we see some objects

marked by black circles to far position (similar with the wall position) and right one

moves some parts marked by black x-marks to near position (similar with other object

position). The red box is the home position and red x-marks are used for measured

landmarks. The blue arrows are used to calculate the homing direction and have an

error smaller than 45◦ and red are not.

changing measurements. We control the home measurement by moving some portion.

Figure 3.35 shows the output. Left one having small manipulation shows successful in

overall locations but right one shows some fails in manipulated directions. Therefore,

we try to check the effect of the manipulation ratio on the homing direction by chang-

ing this area. The output is Figure 3.36. Left one moves them to far points and right one

moves to near points with increasing the area. Increasing the size of this area lowers

the overall output . With this, we can verify that our model can operate in cases having

less than 100 degree manipulations. The performance worsens significantly beyond

100 degree manipulations.

3.3 Summary of Chapter 3

In this chapter, we suggest a series of new navigation methods using various moment

models. Specifically, our first method can figure out homing direction by using the

unique convergence point from reference map. We expand this moment function to

modified versions using various features, various dimension numbers and we check

each operation. In this part, we check that there is the unique convergence of first mo-
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Figure 3.36: Performances of homing tests based on the area of the dynamic region.

These are the changes in the size of the manipulation area in each case. The x-axis

shows the size of area (in degree) and the y-axis shows angular error. Each error bar

shows both mean and length of confidence interval (95 percent with assumption of

t-distribution).

ment model in homing problem, and changing dimension number has various effects,

which is started from inter-filled case. First, if this number is over 1, we prove that

there must be unique minimum point. Second, if this number is negative, it can operate

like obstacle avoidance. As our model does not use any object extraction, the output

of landmark vector summation to omni-directional measurement can be different from

the original purpose. Therefore we try to fill the space with landmark information by

area integration. We have focus on the models using higher dimension and we find re-

markable features from our situation. Then we can figure out that the one using higher

dimension number (n > 2) in moment potential is more appropriate to the original

purpose than normal one (n = 2).



Chapter 4

Visual Navigation Based on Visual

Masks

In this chapter, we apply a concept of visual masks to our new navigation model based

on snapshot model of holistic method. Through this part, we try to find the effective

model of visual receptors in homing problem. For instance, in biological vision system,

there are numerous receptors in retina. Both cone and rod cells directly accept visual

cues like filter. Bipolar cells receive synaptic inputs from either rods or cones, or both

of them (Paik and Ringach, 2011), to find shape information and these are considered

as the basic unit for visual perception. Many insects with bipolar cells demonstrate ex-

cellent homing ability even though they have poor resolution. Then, first, we partially

imitate the structure of bipolar cell by using the various types of haar-like feature, and

apply generated multilayer masks on horizontal line into homing navigation. Second,

we made a new model by adding randomness in mask generation process. We argue

that the difference of matching score for each mask can indirectly estimate the distri-

bution of landmarks in the environment, and it can ultimately determine the homing

direction. Also, using additional reference images like learning phase of insect, we

try to find a robust homing method based on the image differences. We demonstrate

the effectiveness of the method in several environments. The one using visual masks

is under the preparation for submission (Lee and Kim, 2017d) and the other one us-

ing randomly generated haar-like masks is under review (Lee and Kim, 2017e). Detail

procedures of our model is depicted in next part.

99
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Figure 4.1: Bipolar cell model. The first is an ON cell and the second an OFF cell. They

are composed of two regions: the blue region indicates increased activity, and the red

region indicates decreased activity. The shown combinations operate either an ON or

OFF switch. The ON cell fires when the surrounding pixels are darker than the central

pixel, whereas the OFF cell fires in the opposite case. The bipolar cell is a combination

of both cells, shown at the right of the graph.

4.1 Visual Mask Modelling

The bipolar cell model, which is a fundamental concept of the proposed method, con-

siders both ON and OFF cells. In fact, the function of these cells located in the retina

are basic concepts for image processing in neural networks. The ON and OFF cells

are excited by brightness and darkness, respectively, and are composed of positive and

negative regions, as illustrated in Figure 4.1. In the cells, one region has a larger area

than the other, and the regions are represented as concentric circles. The function of the

cells is determined by the combination (i.e., difference) of activity in the two regions.

Zon =
e
− (X−µXon )

2+(Y−µYon )
2

2σ2on

2πσ2
on

,Zo f f =−
e
−

(X−µXo f f
)2+(Y−µYo f f

)2

2σ2
o f f

2πσ2
o f f

,

where Zon and Zo f f represent the firing rate of the ON and OFF cells, respectively.

σon and σo f f are standard deviation of distribution of each cell. µX and µY are center

location of each cell. Hence, these cells exhibit exponential firing rates and require

location and deviation information. However, ON and OFF cells exhibit an opposite

behavior, as the ON cell reacts to brightness, whereas the OFF cell reacts to darkness

in the input image.

The bipolar cell can be modelled by summing the firing rates of the two types of cells:
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Figure 4.2: Bipolar cell activity of the (a) ON cell, (b) OFF cell, and (c) bipolar cell that

combines the activity of both cells.
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Figure 4.3: Structural form of the cells used in the proposed method. Basic (a) ON and

(b) OFF cells, and (c) bipolar cell with its activity shown along the x-axis direction.

Zbipolar(X) = Zon(X−λ,µYon,σon)+Zo f f (X +λ,µYo f f ,σo f f )

Zbipolar = Zo f f +Zon.

where λ is the distance between two cells and σ represents the size variation of the

corresponding cells. Zbipolar is approximated simulation output of bipolar cell. Hence,

this model can be obtained from the sum of the activity of neighboring ON and OFF

cells. This model can achieve the operation of a line detector. In addition, we denote

the smallest bipolar cell as being level 1. Figure 4.2 shows the outputs of the bipolar

cell model. The ON cell firing shows a peak at the center, whereas the OFF cell firing

shows a negative peak at the center. The z axis corresponds to the activation level of

the cells according to location, and it resembles a Haar-like feature. The figure also

shows that the bipolar cell combines the activity of the two cells. Figure 4.3 shows the

top view of the activity of these cells. Two peaks can be seen in the bipolar cell model,

which can operate like an edge detector. This set of bipolar cells constitutes a basic
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component of the proposed method.

Based on bipolar cell reaction, we approximate the operation by using simple Haar-like

mask called visual mask. Haar-like mask has two region and find its matching score

with input image. If there is a snapshot image I available, the matching score S(I,M)

for a given Haar-like mask M is calculated as

S(I,M) = | ∑
i∈M+

Ii/m1− ∑
i∈M−

Ii/m2| (4.1)

where Ii indicates the i-th pixel of the image and m1 = ∑
i∈M+

1, m2 = ∑
i∈M−

1 are the

size of white and black regions, respectively. The score calculates the difference of

the mean values of pixel intensities of white and black regions. In this part, we try to

approximate the on-cell with white region and off-cell with black region.

4.1.1 Navigation Using Visual Mask

4.1.1.1 Multi-level visual mask set generation

Using simple sets of visual masks can be inadequate when considering the complexity

of a real visual environment. Hence, we define larger sets having more complex mask

structures than the masks of level 1, corresponding to levels 2 and 3 (we consider level

3 as the maximum level) in order to obtain size-invariant characteristics.

To define the additional levels, we compose various masks along the horizontal line.

First, we compose visual masks along the x axis that contain one ON and one OFF

region of different sizes. This composition allows vertical edge detection, which is

important for visual navigation using omnidirectional views. In addition, agent mo-

tion can change the perceived size of visual cues. To avoid such variations, we use

the concept of a multiscale image pyramid. Therefore, each mask set is composed of

equidistant visual masks along the x axis, which have different sizes according to the

above formula. Consequently, unlike a common visual mask, the proposed variation

includes scale parameter.

Next, we compose mask sets at four different levels. The above formula shows the

generation of variable-size visual masks to perform edge detection. We use three levels

of visual masks and define one more type of mask set called level 0. This level also

contains bioinspired elements, which correspond to cone cells that react to a certain
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Figure 4.4: Multiscale mask sets. The background represents an omnidirectional im-

age that includes a yellow object. Four sets of equidistant masks are depicted. Level

0 behaves like a cone cell for color acquisition. Levels 1 to 3 contain visual masks for

vertical edge detection at various scales. The mask brightness at each level determines

the output.

visible light bandwidth, and it acquires the color of objects by combining their signals.

Therefore, we use this level for color detection in the image filtering process.

From the abovementioned definitions, we can construct mask sets that describe four

levels, from 0 to 3. Then, we repeatedly generate them along the horizontal line to

determine a group of 720 equidistant masks per level. The generated masks are used

as windows to evaluate input images. For instance, Figure 4.4 illustrates a general

situation, which shows a background image including a yellow landmark and the four

levels. The first column of masks perfectly acquires the edge, and hence their output is

bright at all the levels. The second and third columns show a low brightness, as they

are not aligned with the landmark edge. The third column output is bright only at level

3, as it is slightly at the right of the edge. The columns are located along the horizontal

line to have a resolution of 0.5 ◦ when evaluating an input image.

4.1.1.2 Applying generated mask to input visual cue

After generating the outputs from the mask levels, we apply them in an image process-

ing stage. We use the visual data from the surroundings of an omnidirectional camera.

A raw picture obtained from the camera which cannot be directly used to perform the

intended navigation task.

To process this raw picture, we first set its center and the region to use for navigation.

In the figure, the red dot represents the manually set picture center. In this part, we

do not use any pre-processing technique such as histogram equalization, because the
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Figure 4.5: Visual mask firing. The masks are placed along the horizontal line. The

background and yellow rectangle represent the image plane and an object, respectively.

Each visual mask fire according to the location of the object edge, as illustrated in the

red curves below each image. It can be seen that the masks operate as vertical edge

detectors, and the firing rates vary as the object moves.

used dataset has observation stability that makes such additional processes unneces-

sary. However, if the proposed method is applied, for instance, to images that present

illumination variations, additional processing might be required. To perform naviga-

tion, we use two of the abovementioned images, one corresponding to the home and

the other to the current position, in order to apply the snapshot model.

4.1.1.3 Visual mask set activity

The above sections present the generation of mask sets and the process to determine

image alignment. The next step is to combine these aspects. As mentioned above, we

use the generated mask sets as windows to evaluate the surroundings and detect visual

cues as the image changes.

First, we obtain the activity of each mask in the corresponding set. Each mask fires

according to the section of the image that it covers, thus returning the corresponding

activity sum as output. To illustrate this activity, Figure 4.5 shows visual masks that are
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Figure 4.6: Matching algorithm operation. Level 0 retrieves color information along the

horizontal line. The yellow and pink rectangles represent objects with different color

information. There are seven mask columns, and two levels are illustrated (we omitted

levels 2 and 3 for simplicity). Mask brightness represents its activity in the graph.

arranged along the horizontal line and evaluate two images. The corresponding mask

firing is shown as the red curves below the images. When a landmark object moves, a

different pattern of mask firing is obtained. Then, we collect all the mask outputs and

generate the output for the i-th level mask as Siθ = Mi(θ)∗ I according to direction θ.

Nevertheless, using only visual mask activity is not be sufficient for homing navigation.

Therefore, we add a matching and filtering algorithm for the level outputs.

4.1.1.4 Matching and filtering mask set output

This stage aims to increase the robustness of the mask outputs between two images.

First, we retrieve color information along the horizontal line by using the masks at

level 0. Next, edge information is determined from masks at levels 1 to 3. Here, if the

outputs of masks at these levels are below a threshold, the corresponding mask is in-

hibited. These steps are affected by the input image and consequently by the landmark

location, and hence the output corresponding to home and another position images will

be notably different.

Next, we calculate the matching scores among mask activity, where the noninhibited

masks from two images are compared to each other in order to obtain the matching

scores at each level. The matching score is the inverse of the difference between out-
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Figure 4.7: Filtering algorithm operation. Unlike Figure 4.5, high mask activity is exhib-

ited in two columns at the right of the first active column. To solve ambiguity, the two

connections marked with X are removed.

puts. Then, similar images result in a high score, as illustrated in Figure 4.6, which

shows three cases. The activity of the first group of circled masks clearly matches. In

addition, the activity of the second and third group of circled masks match at level 1.

However, masks at level 0 exhibit a matching divergence. At this stage, we consider

the connections between active masks as having weights that are equal to the matching

score. Hence, similar matches will generate even higher scores.

Finally, we filter out ambiguous cases. This process is designed to remove misleading

matches, as shown in Figure 4.7. The second and third matching masks show similar

activity and are connected with corresponding weights. However, a single connection

should be present, and to select either one can generate an incorrect result. Therefore,

we delete both connections to remove ambiguity. In addition, we increase the weight

(score) value where no ambiguity appears, and select a specific amount (e.g. 25%) of

matches with the highest rates to be considered in the navigation process, thus increas-

ing robustness.

After the matching and filtering process, we determine landmark vectors that represent

location information according to the obtained mask activity outputs. The obtained

score values result from the matching weights between masks according to location and

size. We define each landmark vector by considering the angular position as the angle
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Figure 4.8: Landmark vector extraction corresponding to Figure 4.5. The vectors are

constructed considering matching weights and angular locations of the landmarks ob-

tained from mask activity. Then orange and yellow arrows represent the mask activity

(i.e., edge detection) obtained from the first and second images, respectively. The thick

arrows represent the sum landmark vectors. The homing direction is determined by

subtracting these representative vectors.

of the landmark with respect to the center of each mask column, and the magnitude

as the obtained weight value. Then, we generate landmark vectors according to the

number of obtained matches in both images. Finally, we combine the landmark vectors

from the home and current position images.

(SH,i,SC,i) = (Mi(θi)∗ IHome,Mi(θi)∗ ICurrent) (4.2)

where SH,i is score of i-th mask in home image (IHome) and SC,i in current image

(ICurrent). Hence, the sum of each of the two landmark vector sets from the images

can be considered as representative vectors for each location, according to the snap-

shot model. Therefore, we can find the homing direction by subtracting their values:

−→
H =

N

∑
i=1

−−→
LVH−

N

∑
i=1

−→
LVC =

N

∑
i=1

(SH,icos(θi)−SC,icos(θi),SH,isin(θi)−SC,isin(θi)) (4.3)

Figure 4.8 illustrates the landmark vectors and homing direction for the images in
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Figure 4.9: Landmark vector types. Top view showing the arrangement of landmarks

that are represented as circles (left). The corresponding omnidirectional image is delim-

ited by the concentric circles around the central black dot. The green arrows represent

the original landmark vectors. Without clustering, the pixel-wise landmark can be either

the red (using the estimated distance based on the ground line) or blue regions (using

only angular position of pixel landmark).

Figure 4.5, and we can visually compare the firing rates to the obtained vectors. It

can be seen that landmark vectors correspond to each activity peak, where vectors are

indicated by the thin arrows and their sums correspond to the thick arrows in Figure 4.8.

The homing direction is represented by the thick black arrow in the figure.

The homing direction allows to determine the motion necessary to reach home from

any other position. Given that this method does not use any distance sensor, the cal-

culated direction must be accurate. Moreover, we verify the homing direction at each

iteration by comparing the current and home locations. In the next section, we prove

the global convergence of the proposed method. Therefore, we guarantee that the agent

using the proposed navigation method reaches the home position.

4.1.1.5 Global convergence to the home position

We now describe the method in mathematical terms. First, we model the environment

from where images are acquired. We assume that each landmark is a cylindrical ob-

ject without occlusion in the experiment area. The cylinder is a shape commonly used

in navigation, because it does not show pose variation along the horizontal direction,

thus simplifying its model. In addition, many types of objects can be approximated by

cylinders, and including complex and varied shapes for the landmarks would consid-
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Figure 4.10: Principle and concept of pixel-wise landmarks. The graph shows a top

view of the landmark cylindrical object (gray circle). Xi is the center of the cylinder with

radius ri. Two observations are considered at points X and X’. Equal length vectors

called ALVs point to the object edges, as represented by the blue arrows. Their sum at

each observation point results in the red arrows, which are not geometrically equal to

the real landmark vector.

erably increase the complexity of the proposed navigation method. This would also

contradict the simplicity we aim to attain, such as that of the visual mask structure.

Figure 4.9 illustrates the basic principle of the proposed navigation method. The en-

vironment is considered as flat, and both the floor and background are assumed to be

homogeneous white surfaces. In addition, we delimit the floor by using a horizontal

line. The figure shows four landmarks (from L1 to L4) that have a cylindrical shape

and different colors. The input image corresponds to the panoramic projection of the

circular image shown at the left, which resembles the honeybee vision. The green ar-

rows represent landmark vectors containing both angular and distance information,

which can be retrieved by using a range sensor and a clustering algorithm. Given that

our experimental robot does not include either of these, we use robust the matching

edges obtained from the visual mask sets and processes that constitute the proposed

method.

The proposed method emulates visual masks that exhibit their maximum activity when

acquiring vertical edges and uses only angular information of these edges. However,

these mask landmark vectors (CLV) are different to those obtained from sensing and

clustering techniques. Hence our assumption of a cylindrical shape for landmark ob-

jects.
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Similar to the ALV method (Lambrinos et al., 2000), overall summation of unit land-

mark vector can be expressed by

−→
O = ∑

θ

−→
Vθ = ∑

i
wi
−→u (θi). (4.4)

where we use the CLV summation (
−→
O ) to represent an image location observed from

point X . As vector summation is commutative, the CLVs of one objects can be defined

by a weighted sum of unit vectors −→u (θi).

Λ = ||−→V ||= 2(1− R2
i

r2
i
),

−→
V =−→u (θi +ϕ)+−→u (θi−ϕ) = 2(1− R2

i
r2

i
)−→u (θi).

(4.5)

where ri(X) be the distance between observation position X and landmark location Xi,

and the radius of the landmark object be Ri. Figure 4.10 shows that the length of the

vectors pointing to the object does not correspond to the distance, but it is proportional

to the shape (see details in Appendix). Therefore, we adjust the model for a multi-

object environment by

∇M = ∑
i

2(1− R2
i

r2
i0
)[X0,Y0]−2(1− R2

i

r2
i
)[X ,Y ]. (4.6)

where ∇M is calculated homing vector form potential field of this model. ri0 is distance

between i-th object and home location (X0,Y0) and ri with current location (X ,Y ).

In addition, we verify that the three conditions for global convergence to the home

position are satisfied:

∃i, j(i 6= j) : (yi− y)(x j− x)− (xi− x)(y j− y) 6= 0

Mxx(X)> 0,D(X)> 0,∇M(X0) = 0.
(4.7)

where (xi,yi) is i-th location of landmark and (x j,y j) is j-th location of landmark.

Mxx is second derivative of x in field potential (M), ∇M(X0) for gradient of potential

which is equal to homing vector at home position and D is determinant. Until the

adjustment of the landmark object does not satisfy the conditions above, the proposed

method provides the direction to achieve home through the homing vector (see details

in Appendix).
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Figure 4.11: Examples of Haar-like masks and their matching in the image; six types

of masks with one or more rectangles. Type I has one rectangle, Type II and III two

regions, Type IV and V three regions, and Type VI four regions; lower picture shows a

panoramic image and matching of those Haar-like masks.

4.1.2 Navigation Using Landmark Model with Various Haar-Like

Masks

Based on prior modelling, we try to apply randomness in mask generation like bio-

inspired retina. In our approach, 5000 Haar-like features are randomly generated and

applied to the two snapshot images. The feasures have random sizes, patterns and loca-

tions in the image. Figure 4.11 shows examples of Haar-like features and their match-

ing in the snapshot. The matching score can be calculated as how closely a Haar-like

feasure match a patch in the snapshot image. Each Haar-like feature can be a land-

mark candidate at its angular position in the snapshot. We assume that the change of

the snapshot image depending on the displacement of an observer’s position can be

reflected on a set of Haar-like mask scores. The matching score of each Haar-like fea-

ture relies on the pattern matching. If the feature has similar pattern to a patch in the

snapshot image, the score becomes high. The difference of a Haar-like feature score

measured in a pair of snapshot images can provide a sign of moving direction. That

is, the homing direction can be analyzed as a moving direction to decrease the score

differences obtained from a set of Haar-like features.

If there is a snapshot image I available, the matching score S(I,M) for a given Haar-like
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Figure 4.12: Matching scores for 5000 Haar-like masks. Six types of masks are tested

and larger sizes of masks indicate higher matching scores; black dot for type 1, blue

x for type 2, red star for type 3, magenta + for type 4, cyan diamond for type 5, green

triangle for type 6.

mask M is calculated as

S(I,M) = | ∑
i∈M+

Ii/m1− ∑
i∈M−

Ii/m2| (4.8)

where Ii indicates the i-th pixel of the image and m1 = ∑
i∈M+

1, m2 = ∑
i∈M−

1 are the

size of white and black regions, respectively. The score calculates the difference of the

mean values of pixel intensities of white and black regions. We can easily see that the

shape, location and size of the mask is important to get high score.

Many interesting landmarks are observed near the horizontal line. Random Haar-like

masks are generated around the horizontal line. The bottom image in Figure 4.11 shows

examples of well-matched cases for six types of masks. Type 1 can be matched well

on a flat section or object. Type 2-3 are good for the boundary line matching, and Type

4-5 can be better for isolated segmented objects. Type 6 will be effective on the corner

of objects.

Each mask has a configuration (θ,y) with size (w,h)= (∆θ,∆y) in the panoramic image

that has 720 width (0.5 degree resolution) and 120 height pixels. For a snapshot image,

5000 Haar-like features were randomly generated. In this part, each mask has boundary

in the size of generation. We generate them at random position around horizontal line
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within±10 pixels. Then we randomly pick its mask type and designate both width and

height. This width is between 6 pixels and 120 pixels. Also this height is between 18

pixels and 60 pixels. Figure 4.12 shows a distribution of scores for the whole set of

masks, and each mask has its own angular position in the snapshot image. We will see

a large collection of masks contribute to see the visual characteristics of the snapshot

image, more strictly speaking, a population of the mask score differences in the two

snapshots characterize dominant change in the visual landmarks.

A set of Haar-like masks is applied to the two snapshot images, home (I0) and the

current view (I). Each type of mask has one or two rectangular regions, white (M+) or

black (M−). Then a mask (M j) can be represented by

M j(θ j,y j,w j,h j) = M j+∪M j−, M j+∩M j− = /0 (4.9)

where the j-th mask M j has an angular position θ j, y-axis position y j, width w j and

height h j. There is no overlapped area between white and black regions, and the center

position of a mask is (θ j,y j).

We calculate the matching score S(I,M j) for each Haar-like mask M j, using eq. (1),

and a landmark vector
−→
L j(I) is defined as a combination of the score and angular

position of each mask. That is, its score is set as the vector length and the angular

position as the vector direction. Thus, the landmark vector is written as

−→
L j(I) = S(I,M j)û j = (S(I,M j)cosθ j,S(I,M j)sinθ j) (4.10)

where I is a snapshot image taken at a specific position, θ j is the angular position for

mask M j and û j = (cosθ j,sinθ j) is a unit vector for direction θ j.

Based on the snapshot model, we can estimate the homing vector as a difference be-

tween the landmark vectors at the home location and at the current position.

−→
H =

N

∑
j=1

−→
h j =

N

∑
j=1

(w jû j− v jû j) (4.11)

=
N

∑
j=1

(w j− v j)û j =
N

∑
j=1

(∆L j cosθ j,∆L j sinθ j) (4.12)

where N is the number of masks, w j = S(I0,M j), v j = S(I,M j) for the home snapshot

image I0 and the snapshot I at the current position, and ∆L j = w j− v j.

The above landmark model is similar to the weighted form of ALV model (Lambrinos

et al., 2000) or the DELV model (Yu and Kim, 2012, 2011b,a). This model is an ab-

stract form of landmark vector. The matching score is not proportional to the landmark
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distance, but large magnitude of ∆L j can be observed along the moving direction from

the current position to the home position, since much change of the visual image along

the direction can happen. A set of masks around the angular position can greatly con-

tribute to ∆L j = S(I0,M j)− S(I,M j), which will be effective to estimate the homing

direction.

Figure 4.13 shows an overview of our algorithm. Random masks with a variety of

types are generated and their matching scores are calculated over two snapshot images

at the home location and at the current location. Each mask determines a landmark

vector whose direction is equal to the angular position of the mask and the matching

score of the mask over a snapshot is denoted as the length of the landmark vector. A

collection of landmark vectors represent a snapshot image, and possibly the averaged

landmark vector can be an representative vector for the snapshot at a given location.

The difference of the two averaged vectors at the home location and at the current

position can determine the homing direction, similar to the DELV model (Yu and Kim,

2012). Or each mask calculates the difference of the matching scores over the two

snapshots and a collection of the differences for a set of masks can estimate the homing

direction.

4.1.3 Navigation Using Relative Distance of Matching Scores

The above landmark model (Method 1) describes how to estimate the homing vector

using the matching scores of Haar-like masks. The method is largely affected by the

image contrast or brightness. We note the relative score differences of masks rely on

how far away the two snapshots are. The score difference increases when the distance

becomes larger. We separate the relative distance into two components, the x-axis or

y-axis movement.

To handle the problem, Method 2 uses multiple snapshot images including the home

image (I0), an image near home along the x-axis (IX ) and another image near home

along the y-axis (IY ). Those images are compared with the image at the current posi-

tion through Haar-like feature masks. The method first calculates the matching score

difference of each mask M j between a pair of snapshots. The sum of the matching

score difference over a set of masks approximately estimates the distance between the

two snapshot positions. The relative distances of matching scores among the snapshot

positions can determine the homing direction. Similar with DID which shows best
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Figure 4.13: Overview of the Haar-like feature homing algorithm. Initially random masks

are generated and the matching score of each mask over the home snapshot image

can be calculated. Then a set of landmark vectors are derived from the mask scores.

The same set of masks are applied to the current snapshot and another landmark vec-

tors are obtained. The homing vector can be estimated from the two sets of landmark

vectors. Lower figure shows a diagram of landmark vectors at the home location (H)

and at the current location (C). The matching score for each mask becomes the length

of the mask landmark vector. The average of landmark vectors are represented as blue

arrow and red arrow, respectively. The difference of the two averaged vectors makes

homing direction, displayed with green arrow.

performances in explaining insect’s navigation, we try to mimic multiple images to

robustly find homing direction. As mentioned in introduction, we think that learning

sequences of insect’s homing can be directly approximated gathering multiple refer-
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ence images around home position. Therefore, based on image distance assumption,

we use three reference images in method 2.

The homing direction can be estimated as follows:

Xdi f f =
N

∑
j=1
|S(IX ,M j)−S(I,M j)|−

N

∑
j=1
|S(I0,M j)−S(I,M j)| (4.13)

Ydi f f =
N

∑
j=1
|S(IY ,M j)−S(I,M j)|−

N

∑
j=1
|S(I0,M j)−S(I,M j)| (4.14)

−→
H = (Xdi f f ,Ydi f f )

1√
X2

di f f +Y 2
di f f

(4.15)

where the homing vector (
−→
H ) is determined by the ratio between the x-direction dif-

ference and the y-direction difference.

The sum of score differences over a set of Haar-like masks for a pair of snapshot

images can derive the relative distance between the positions for the snapshot images.

Equation (6)-(7) is a simple but reasonable measure to determine the relative difference

of the distance along the two different directions.

Figure 4.14 shows an overview of our second model. Random masks with a variety

of types are generated and their matching scores are calculated over images includ-

ing three reference images at the home location and the other at the current location.

There are differences in the sum of mask scores based on image distances and the ratio

between three images and current one are directly applied into finding homing direc-

tion. According to method 1, the combination of Haar-like masks can represent the

visual information in those images and we try to find local gradient by using multiple

reference images.

We propose two methods using Haar-like masks. One is to utilize the matching score

of masks and the other is to estimate the relative distance of matching scores for the

current position and home, through a set of masks. The second model needs two extra

images near home.

In this part, we introduce process of our algorithm according to order of progress. We

use only vision data using camera and the robot with this camera is located in the

static experiment area. Later part is composed of visual mask modelling, image pro-

cess, alignment, arrangement, scoring, landmark vector generation and finding homing

direction. Also we add proof of global convergence in last part.
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Figure 4.14: Overview of the Haar-like feature homing algorithm. Initially random masks

are generated and the sum of matching scores of each mask over three reference

images (H, Hx and Hy) can be calculated by applying the same set of masks. Each

summation is directly proportional to geometric distance and the homing vector can be

estimated from the differences of two terms. It shows that changes between pairs with

the width of blue links and overall length as red arrows, respectively. The ratio between

two pairs makes homing direction, displayed with green arrow.
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4.2 Experiments and Results

4.2.1 Simulations

For the simulations, we considered various environments containing only cylindrical

objects to comply with the abovementioned assumption. Figure 4.15 shows the corre-

sponding results, where we considered different sizes, colors, locations, and number of

landmarks. Overall, small errors can be perceived from the obtained homing directions,

but global convergence is suitably satisfied.

In addition, some unsolvable cases are illustrated, but they are expected as determined

by the convergence proof in Appendix. Nevertheless, these cases are uncommon in a

real world scenario, and they are less severe than those that might arise from algorithms

such as the ALV method (see details in Appendix).

4.2.2 Experiments Using Visual Masks

4.2.2.1 Visual navigation using only visual masks

The most basic part of the proposed method is the visual mask model. Hence, we

evaluated its operation. Figure 4.16 shows the activity of visual masks corresponding

to two images. The lines superimposed to each image represent the activity of the visual

masks corresponding to each region along the horizontal line. We aimed to efficiently

use the difference between the activity patterns to determine the homing direction. The

left graph in Figure 4.17 illustrates the homing direction using only visual masks. It

can be seen that the direction vectors mainly point to the home position, but additional

processing is required to improve performance.

4.2.2.2 Visual navigation using mask set with matching

Next, we evaluated the mask operation integrated to the proposed matching algorithm.

The homing directions are depicted in the right graph of Figure 4.17. The algorithm

behavior is still inaccurate, but the inclusion of the matching process shows a con-

siderable improved compared with the previous evaluation, shown in the left graph.

However, the overall performance needs to be further improved.
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Figure 4.15: Simulation of homing navigation for different environments. The red square

and circles represent the home position and landmarks, respectively. We also consid-

ered the landmark colors and a white background. The arrows indicate the homing

direction at the corresponding positions.

4.2.2.3 Visual navigation using multilevel mask set with matching and filtering

Finally, we evaluated the complete proposed method, including the multilayer mask

structure, connection weight matching, and filtering.

First, we evaluated the effect of the number of mask levels. Figure 4.18 shows the

homing directions according to the number of mask levels. We tested the method using

1 (left graph), 6 (middle graph), and 9 (right graph) mask levels. The difference in the
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Figure 4.16: Landmark vector generation. (a) and (b) are taken from near positions.

Only one type of visual masks along the horizontal line were considered. The lines over

the pictures represent the firing rate of visual masks at the corresponding locations. The

landmark vectors from the (a) and (b) are represented using (c)red and (d)blue lines,

respectively.

homing directions is noticeable, but they are not significant. However, the calculation

time notably increases according to the number of mask levels. Therefore, we should

use a moderate number of levels (e.g., two or three).

Next, we evaluated the effect of mask size. For this experiment, we varied the basic

mask size. Figure 4.19 shows the homing directions according to three different mask

sizes. Either using a very small (left graph) or large (right graph) mask size generates

inaccuracies in the calculated homing directions.

We also evaluated the effect of the amount of selected matching masks after filtering.

Figure 4.20 clearly shows that the highest amount of selected masks (i.e., 40%) pro-

vides much better homing directions than the lower rates. However, higher rates do not
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Figure 4.17: Homing directions from experiments using only the visual masks and com-

bining these results with the matching algorithm. The blue square and red arrows rep-

resent the home position and the calculated homing directions at the corresponding

positions, respectively. The left graph shows the results using only the visual masks,

and the right graph adds the matching process.
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Figure 4.18: Homing directions obtained from the proposed method considering the

effect of the number of mask levels. The blue square and red arrows represent the

home position and the calculated homing directions at the corresponding positions,

respectively. We considered (a) 1, (b) 6, (c) and 9 mask levels.
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Figure 4.19: Homing direction obtained from the proposed method considering the ef-

fect of mask size. The blue square and red arrows represent the home position and the

calculated homing directions at the corresponding positions, respectively. We consid-

ered masks located (a) every 1◦, (b) 2◦ and (c) 4◦.

provide better results than the 40% rate. The abovementioned experiments were useful

to evaluate variations on different parameters of the proposed method.

Finally, we evaluated the proposed method according to the home position. Figure 4.21

shows the homing directions for three home positions. The results suggest that the

homing navigation based on the calculated directions is accurate, provided that the

home position is not very near to the objects.

In this section, we show general results that reflect the performance of the proposed

method according to the parameter and home position variations described in the pre-

vious section. Figure 4.22 shows the effect of the number of levels in the top-left graph,

and we can see that not many levels are required as the performance remains stable.

Hence, increasing the number of levels does not notably improve in accuracy, but a sin-

gle level is not for successful homing navigation. In fact, a single level produces severe

errors in near site and the overall homing pattern is contaminated. Thus, we suggest

using 3 levels for suitable navigation. The top-right graph shows the effect of mask

size, where we can verify the minimum error cases, and we used 4◦ as the most suit-

able solution. The bottom-left graph shows the effect of the amount of selected masks

after filtering. In this case, using rates above 40% does not increase performance, but
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Figure 4.20: Homing direction obtained from the proposed method considering the ef-

fect of the amount of matching masks selected by the filter. The blue square and red

arrows represent the home position and the calculated homing directions at the cor-

responding positions, respectively. We considered different amount of matching masks

selected after filtering: (a) 6%, (b) 12%, and (c) 40%.

demands more computational time. From these results, we tuned the proposed method

by using 2 levels, mask size of 4◦, and 40% of the highest matching masks. Finally,

the bottom-right graph verifies the angular error of the tuned version of the proposed

method. We considered the point (5,5) as the home position and obtained a 100% of

homing accuracy. Furthermore, the mean angular error is below 30◦.

4.2.3 Experiments using Modified Mask Generation

4.2.3.1 Visual navigation using randomly generated masks

Next, we expand our prior model using visual masks to use various types of masks with

random generation. In this part, we test five indoor environments, ‘ourlab’ from our lab

environment and Vardy’s dataset environments ‘a1original’, ‘screen’, ’arboreal’ and

‘hall1’. The first landmark model uses only one home snapshot while the second model

uses three snapshots around the home location, including the home snapshot image.

Each environment has panoramic snapshot images in the grid with regular intervals.
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Figure 4.21: Homing directions according to different home positions. The blue square

and red arrows represent the home position and the calculated homing directions at the

corresponding positions, respectively. We considered three home positions: points (a)

(1,1), (b) (5,8), and (a) (7,13).

We first test Method 1 based on Haar-like feature scores, where one home image is

used. The whole set of Haar-like features has 5000 randomly generated masks with

varying sizes, random locations and types.

An example of matching score differences for a collection of random masks is shown in

Figure 4.23. The score differences within a window size of 90 degrees are accumulated

into each bin and it roughly estimates the best homing direction (90◦, the weighted

average of histogram as a population coding). If the test position (5,7) is close to the

home location (5,8), more symmetric distribution is observed. Even at a far position

(5,1), the distribution of matching score difference can determine the homing direction.

We also note that the sum of bin heights has information of geometric distance to home.

This idea will be used in Method 2.

Figure 4.24 shows the homing performance, depending on the number of random Haar-

like masks. Even 100 masks can roughly estimate the homing direction at most of po-

sitions, although there are large angular errors for homing direction at some positions,

especially at the bottom left area. With 500 masks, the homing performance was much

improved. More masks were assigned to reflect well the environmental situation in that

area. A sufficient number of random masks can guide homing well and the angular er-
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Figure 4.22: Performance graphs according to the different parameters(a:number of

floor, b:minimum size of cell, c:pick percent) evaluated in the previous section. The (d)

graph considers distance from home with respect to point (5,5). The blue lines represent

the mean values.

rors can be reduced greatly. As the number of random masks increases, the homing

performance can be improved up to a limit.

The angular errors for homing can be calculated as the difference between the desired

homing direction and the estimated homing direction. The desired direction is directly

drawn from the current position to the home location. Figure 4.25 shows the angular

errors depending on varying number of masks. The set with 1000 masks or more shows

stabilized homing performance as we observed the same result in Figure 4.24. The

limit of homing performance may be related to the scope of the location, size or type

of varying masks.

Next, we applied our landmark model to two different environments, ‘a1original’ and



126 Chapter 4. Visual Navigation Based on Visual Masks

0 60 120 180 240 300 360
−200

−150

−100

−50

0

50

100

150

200

degree

d
if
f 
s
c
o
re

=
h
o
m

e
−

c
u
rr

0 60 120 180 240 300 360
−200

−150

−100

−50

0

50

100

150

200

degree

d
if
f 
s
c
o
re

=
h
o
m

e
−

c
u
rr

(a) (b)

0

30

60

90

120

150

180

210

240

270

300

330

0

100

200

300

400

0

30

60

90

120

150

180

210

240

270

300

330

0

100

200

300

400

(c) (d)

Figure 4.23: An example of histogram of matching score differences over a pair of snap-

shot images (blue curve indicates a low-pass filtered result over the histogram) (a) close

distance for the two snapshots (b) far distance for the two snapshots Circular plot for

each case. Based on center, it plots matching score in each direction and plot homing

direction. Blue arrow is optimal direction and black is calculated one. (c) close distance

for the two snapshots (d) far distance for the two snapshots

‘screen’. In Figure 4.26, the model shows a reasonable pattern of homing directions in

the environment ‘a1original’, but the flow of homing directions is not successful at the

left side of the environment ‘screen’. The ‘screen’ environment has some occlusion of

visual landmarks, which makes the problem difficult. The suggested landmark model

with Haar-like masks assumes that all the landmarks should be viewed in any position.

Violating that condition may degrade severely the homing performance.
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Figure 4.24: Homing performance in ‘ourlab’ environment using Method 1 with varying

number of Haar-like masks (a) 100 masks (b) 500 masks (c) 1000 masks (d) 5000

masks; red circle indicates the home position and each arrow the homing direction.

4.2.3.2 Visual navigation using relative distance model

In a similar way to the above experiments with Method 1, we tested Method 2 based

on the relative distance of matching scores. This method uses three snapshot images

around the home location and thus three comparisons with the snapshot at the current

position are required. The matching score difference between each pair of snapshots

can determine the homing direction.

Figure 4.27 shows the sum of matching score differences for the two snapshots at the

home location and at an arbitrary position and it is roughly proportional to the distance

between the two positions. The image difference depends on the environment, but if a

target position is fixed, the geometric distance can be estimated by the matching score



128 Chapter 4. Visual Navigation Based on Visual Masks

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

Number of target masks

A
n
g
u
la

r 
e
rr

o
r(

d
e
g
)

40 45 50 55 60

40

45

50

55

60

Figure 4.25: Left : Angular errors with Method 1 depending on varying number of Haar-

like masks for environment ‘ourlab’ (error bars indicate 95% confidence intervals as-

suming t-distribution). Red circle means min value in 95 percent within error distribution

Right : Homing route test from various location.
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Figure 4.26: Homing performance in environments ‘a1original’ and ‘screen’ using

Method 1 with 1000 random masks; red circle indicates the home position and each

arrow the homing direction.

difference at an arbitrary position. As shown in Figure 4.27, the sum of score differ-

ences changes within a variance for a fixed distance and four spots in the grid have the

same distance from the home location (four x marks are available for a fixed distance

in the figure). For small distances, the variance of the measure is small, and at a far dis-

tance, the variance becomes large. It indirectly supports that neighboring positions, or

positions close each other have more similar measure values. Deciding the homing di-

rection at a given location is involved with comparing the snapshot at the position and
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Figure 4.27: Sum of matching score differences over a pair of snapshots vs. distance

between the snapshot spots (one snapshot is the home snapshot image); blue line is

the curve fitted to data samples (a) environment ‘ourlab’ (b) environment ‘a1original’

three similar snapshots around the home location. Those image differences through a

set of Haar-like masks can more precisely estimate the homing direction.

Figure 4.28 shows the homing directions with Method 2 according to the number of

masks. With 100 random masks, many scattered direction patterns are observed. The

set with 500 masks or more show stabilized homing performance, while there are large

angular errors at a few positions near the bottom left corner. Method 2 shows more

direct direction patterns in homing, compared to Method 1.

When we tested varying number of random masks, the angular errors with Method

2 are significantly lower than those with Method 1 as shown in Figure 4.29. More

random masks can improve the homing performance, and the performance seems to

be stabilized with more than a limit number of masks. Attached to that, we add one

more experiment in Figure 4.29. The right one shows the homing route in various

starting position. There are eight starting positions and we can check those output

having successful homing patterns.

We applied Method 2 to the other four environments. Figure 4.30 shows the results

for homing performance, and Method 2 more robustly operate to estimate the homing

directions in most of positions. The method calculates the matching score differences

with three snapshots near the home location. The relative difference over the three

snapshots is not much influenced even when there are occlusion points or significant

change of landmarks at the current position. The surrounding background images will

more contribute to the sum of matching score differences.
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Figure 4.28: Homing performance in ‘ourlab’ environment using Method 2 with varying

number of Haar-like masks (a) 100 masks (b) 500 masks (c) 1000 masks (d) 5000

masks; red circle indicates the home position and each arrow the homing direction.

Figure 4.31 shows the result for homing in the environment ‘a1original’ with varying

number of masks. With a small set of masks, for instance, 100 masks, there are large

angular errors at many positions. Too sparse masks in the angular space have difficulty

in catching the landmark characteristics. As expected, more masks helps better homing

performance. A large number of masks can read the environmental features better. It

is notable that more direct paths to the goal position from an arbitrary position are

observed using Method 2 than Method 1.

Figure 4.32 shows the homing errors depending on varying number of random masks

in four different environments. We observe commonly that a small number of masks,

for example, 100 masks are insufficient to read the environmental information. The

set with 1000 random masks or more can sketch the visual cue needed for good hom-
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Figure 4.29: Left : Angular errors with Method 2 depending on varying number of Haar-

like masks for environment ‘ourlab’ (error bars indicate 95% confidence intervals as-

suming t-distribution) Red circle means min value in 95 percent within error distribution.

Right : Homing route test from various location.
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Figure 4.30: Homing performance with Method 2 in four different environments with

1000 random masks (a) ‘a1original’ (b) ‘screen’ (c) ‘arboreal’ (d) ‘hall1’; red circle indi-

cates the home position and each arrow the homing direction.

ing performance. For the environment ‘arboreal’, much change of angular errors are

observed when the number of masks increases. In contrast, the environment ‘hall1’ ex-

periences very smooth change of angular errors when the number of masks increases,

and a relatively small number of masks are sufficient to derive homing directions.

Table 1 shows homing performance for various environments. Method 1 shows good

results in the environment ‘a1origin’, but it has worse performance in the environment

‘hall1’. Method 2 produces small homing errors for all the test environments.
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Figure 4.31: Homing performance in ‘a1original’ (a d) and ’hall’ (e h) environment using

Method 2 with varying number of Haar-like masks (a,e) 100 masks (b,f) 500 masks (c,g)

1000 masks (d,h) 5000 masks; red circle indicates the home position and each arrow

the homing direction.

4.2.3.3 Comparison with other algorithms

Our snapshot models are compared with one of state-of-art techniques for visual hom-

ing navigation, the DID (Descent in Image Distance) method (Zeil et al., 2003; Möller

and Vardy, 2006), MinWarping algorithm (Horst and Möller, 2017; Fleer and Möller,

2017), COMALV (Mangan and Webb, 2009; Hafner, 2001) and MCOMALV.

Figure 5.42 shows vector maps to compare our approaches with other four benchmark

algorithms. Interestingly, Method 2 has more direct direction towards home than the

other approaches. Table 1 shows homing performance for Method 1, Method 2, DID,

MinWarping, COMALV and modified COMALV method for the environments. Except
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Figure 4.32: Angular errors with Method 2 depending on varying number of Haar-like

masks for four environments (a) ‘a1original’ (b) ‘screen’ (c) ‘arboreal’ (d) ‘hall1’ (error

bars indicate 95% confidence intervals assuming t-distribution) Red circle means min

value in 95 percent within error distribution

for ’OurLab’ environment, MinWarping shows the best performances and our method

2 is next. Also, compared with the DID method using the whole pixels for snapshot

comparison, but Method 2 uses Haar-like pixels for the image distance. Including all

the environments with calculation time from the table 2, our method 2 shows more

robust performance than others. Also, our model shows better output even when the

test position is far away from the home location.

Figure 4.34 shows four experiments. The first one shows the length of homing vec-

tor to distance from home position. We find that the sum of differences of matching

scores are proportional to geometric distances. Then the output shows reverse propor-

tion because the distances between reference images are fixed. The second one shows

the effect of blurring. Like insect perceives, we decrease the input image resolution
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Figure 4.33: Comparison of DID, MinWarping, COMALV and MCOMALV method in vec-

tor map in ORIG environment (a) the DID method (b) the MinWarping method (c) the

COMALV method (d) the modified COMALV method
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Figure 4.34: Four tests of method 2 with 1000 masks for length of homing vector to

distance (a), the effect of down-sampling in homing accuracy with sigma in Gaussian

blur (b), the effect of grid size in reference image selection (c) and the general score of

generated mask sets in repetition test (d) according to the sum of each mask.
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Table 4.1: Angular errors with various methods including ours in five environments (εθ

is the absolute angular error and n is the number of test points; 1000 masks used,µ is

mean of angular error and σ is the length of confidence interval in 95 percent. *p¡0.05).

ourlab a1original screen arboreal hall1

N 95 169 169 169 199

Method 1

error µ (±σ) 25 (±4.4) 16 (±1.8) 22 (±2.9) 27 (±3.0) 59 (±6.2)

0≤ εθ < 45◦ 77% 96% 89% 78% 42%

45≤ εθ < 90◦ 22% 4% 9% 21% 30%

90≤ εθ < 180◦ 1% 0% 2% 1% 28%

catchment area (%) 100% 100% 77% 68% 39%

Method 2

error µ (±σ) 20 (±2.6)* 9 (±1.2)* 13 (±1.4)* 18 (±2.4)* 13 (±1.4)*

0≤ εθ < 45◦ 88% 99% 100% 96% 99%

45≤ εθ < 90◦ 12% 1% 0% 4% 1%

90≤ εθ < 180◦ 0% 0% 0% 0% 0%

catchment area (%) 100% 100% 100% 100% 100%

DID

error µ (±σ) 25 (±3.0) 23 (±2.6) 19 (±2.0) 37 (±5.4) 21 (±1.7)

0≤ εθ < 45◦ 94% 92% 96% 75% 95%

45≤ εθ < 90◦ 6% 7% 4% 14% 5%

90≤ εθ < 180◦ 0% 1% 0% 11% 0%

catchment area (%) 100% 100% 100% 88% 100%

MinWarping

error µ (±σ) 61 (±9.5) 11 (±1.5)* 20 (±2.9) 16 (±2.4)* 31 (±4.2)

0≤ εθ < 45◦ 45% 99% 91% 92% 81%

45≤ εθ < 90◦ 25% 1% 8% 8% 13%

90≤ εθ < 180◦ 26% 0% 1% 0% 6%

catchment area (%) 67% 100% 100% 100% 95%

COMALV

error µ (±σ) 49 (±7.4) 19 (±2.0) 34 (±4.4) 44 (±6.3) 49 (±6.6)

0≤ εθ < 45◦ 56% 98% 71% 64% 58%

45≤ εθ < 90◦ 29% 2% 25% 21% 21%

90≤ εθ < 180◦ 15% 0% 4% 15% 21%

catchment area (%) 12% 100% 64% 51% 59%

MCOMALV

error µ (±σ) 35 (±5.4) 25 (±3.3) 19 (±2.9) 26 (±4.1) 24 (±2.2)

0≤ εθ < 45◦ 72% 86% 93% 83% 90%

45≤ εθ < 90◦ 25% 13% 6% 12% 9%

90≤ εθ < 180◦ 3% 1% 1% 5% 1%

catchment area (%) 96% 98% 99% 96% 99%

to find effect in homing accuracy. As haar-like mask has similar effect of average fil-

ter but large sigma can makes poor performances. The third one shows the effect in

sampling distance in collecting reference images. In this part, we change the distance

between home and other reference image location into grid size. Increasing distance in

x direction is directly applied into homing performances. Then we can think that we

make small distances between home and other references but there must be difficul-

ties in catchment area that we can not find in this experiment. The fourth one shows

the repetition of our model. According to the sum of mask region, our model has dif-

ferences in accuracy of homing performances from 9 to 20. Also, we check that the



136 Chapter 4. Visual Navigation Based on Visual Masks

0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

(a)

0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

(b)

0 2 4 6 8 10

0

2

4

6

8

10

12

14

16

(c)

Figure 4.35: Comparison between our second model with best case, DID method and

angle-fixed version. (a) vector map is the case using our second model, (b) with DID

method and (c) with angle-controlled version of our model.

Table 4.2: Comparison of time consumption with six different methods in the environ-

ment ‘a1original’

Method 1 Method 2 DID MinWarping COMALV MCOMALV

Calculating Time(sec) 0.3345 0.5721 0.0003 10.0158 0.00003 0.00005

time consumption of each methods through Table 4.2. In this part, we can check that

our method 2 shows small time and not bad performance than other two benchmark

algorithms.

Figure 4.35 shows three outputs. The left one shows the output using our second model

and middle one shows the output using DID method. The right one is modified version

of our second model to have equally distributed masks. In this part, we reorganize mask

generation for equally distributed in horizontal line and select particular mask having

highest score in equal direction. Then we can find a new output shows more similar to

DID than our model.

4.3 Summary of Chapter 4

In this chapter, based on snapshot model of holistic method, we suggest and test a

concept of visual masks as visual receptors to homing navigation. Our first method

imitates the structure of bipolar cell by using the two types of haar-like features and
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applied generated multilayer masks on horizontal line to find homing direction. We

find the convergence to home position by using both mathematical proof and experi-

ments. Next, we made new models by adding randomness in mask generation process.

With randomly generated masks, we can make homing pattern using the difference

of matching score for each mask by estimating the distribution of landmarks in the

environment. However, our models above cannot operate well in some environments

having occlusion. Without feature extraction, our model cannot afford to filter it out by

simpleness. Therefore, we apply using additional reference images like learning phase

of insect, we try to find another robust homing method based on the image differences.

Then we can demonstrate the effectiveness of the method in several environments.





Chapter 5

Visual Navigation Using Pixel-wise

Information

In this chapter, we apply a concept of pixel-wise landmark that treat each pixel as

landmark itself without object extraction. We try to find the basis principle of insect’s

homing navigation. For example, in vision system of insect, complex eye has poor

resolution and it is not sufficient to make distance information. If it does not use ob-

ject extraction by small number of neurons, it must use some other mechanism using

receptor based homing navigation. We think a pixel as basic unit itself in homing navi-

gation (Lee and Kim, 2016a). We call this pixel-wise landmark that operates like object

and propose the new visual-based landmark navigation algorithm based on changes of

these pixel-wise landmark information. Similar with ALV, It changes the snapshots

of both home and current into pixel-wise landmark vector sets without object extrac-

tion. We show the effects of both distance estimated model and color model without

distance. Through the experiments with mathematical proof, we investigate the conver-

gence of our model. Then we made another one like ACV using landmark matching

that is modified version of ALV. In this part, we use DTW algorithm that can match the

time-series warped data to original one. Because time series concept is replaced with

angular location then matched output of DTW is equal to the one of landmark vec-

tor matching. Therefore we add one idea about two static points which is not affected

by movements and located at the opposite direction. Combining DTW with finding

static points can make robust matching in pixel-wise landmarks. Finally, we use these

matching to build landmark vector like ACV model and make robust visual homing

algorithm. These researches are under the preparation for submission (Lee and Kim,

139
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Figure 5.1: Type of landmark vectors. The first one (top-view) shows the arrangement

of landmarks that are denoted as circles and the reflected omni-directional image rep-

resented by a circle with a black dot at the center in the first figure. The green arrows

indicate the original landmark vectors. Without clustering, the pixel-wise landmark may

be the one of either the red (Method using the estimated distance value based on the

ground line) or the blue arrow (Method using only the angular position of the landmark

pixel).

2017f,c). Detail procedures of our model is depicted in next part.

5.1 Pixel-wise Landmark Modelling

Prior to introducing our navigation algorithm, we explain our landmark modeling

method. In this case, the landmark is an entirely observed object (in the experiment

area) that can be considered as a geometrical feature in navigation. There exist numer-

ous types of objects that can be used as one of the landmarks in our navigation. Our

simple model did not include information of all of these things. Instead, we applied the

idea of pixel-wise landmark; that is, we treated a pixel as the landmark itself without

any clustering algorithm. In addition, we considered all objects as cylinders. This is

because cylindrical shapes are not affected by the pose of the robot in the horizontal

direction. If this modeling is appropriate, then other shapes can also be approximated.

Figure 4.9 shows the principle of the pixel-wise landmark method. The overall envi-

ronment is flat, and both the floor and background are white. In addition, a brown line

called the horizontal is an imaginary horizontal line that acts as a boundary between

the background and floor. There are four landmarks (L1 L4) that are cylindrical and

black in color. The input visual image is similar to the particolored circle of the first
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Figure 5.2: Principle and concept of the pixel-wise landmark method. The overall figure

presents a top view. The gray circle indicates the cylindrical landmark, and Xi, the center

with a radius ri. Two observations are made at X and X’. The equal distance vectors

called ALV point to the parts of object that are marked, as shown by the blue arrows.

The sum of the blue arrows is represented by the red arrow that is not geometrically

equal to the real landmark vector.

figure—this is similar to the vision of honeybees. Then, the green arrows are the gen-

eral landmark vectors containing both angular location and distance information; these

are obtained by using both the range sensor and clustering algorithm. Our robot does

not have both the sensor and clustering algorithm, but we use pixel-wise landmarks.

Then, first method uses pixel-wise landmarks of different lengths based on the ground

line marked as the red line in the black region. Second method uses only the angular

position of the pixel of the black region. However, these pixel-wise landmark vectors

(PLV) differ from the real ones. Therefore, we applied the assumption that all the

objects are cylindrical in shape for the sake of approximation.

Similar to the ALV method Lambrinos et al. (2000), we use a summation of PLVs (
−→
O )

as representative of one location (X) and it can be calculated like

−→
O = ∑

θ

−→
Vθ ' lim

δ→0
∑

i

Ri

ri

−→u (θi)

where −→u (θi) is unit vector pointing angle (θi) and it has weight (wi) for each i-th

object. ri is distance from position (X) to landmark location (Xi) and size (radius) of

each object is Ri. As shown in Figure 5.2, each weight of the object pointed by the

vectors is not equal to the real one, and the value is inversely proportional to the real
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(a) (b)

(c)

Figure 5.3: Example of simple landmark extraction a)The original omnidirectional image

from the webcam, b)binary image, and c)binary-panoramic image

value. Therefore, an appropriate model should be built to use it. (Detail procedure is

written in appendix)

5.1.1 Navigation Using Pixel-wise Landmark with Distance Estima-

tion

In this paper, we propose the pixel-wise navigation based on various assumptions.

This part shows the one of our model that uses estimated distance values. Prior to start,

this model uses pre-designated landmark information that are for landmark extraction.

Then, based on filtered image output, it tries to estimate distances to each angular

direction based on ground line and outputs are applied into homing navigation.

5.1.1.1 Collecting landmark pixel

First, according to the assumption of fixed color characteristics of landmark objects, we

can check whether a pixel is the one of the landmarks. If this is the case, we can extract

the landmark pixels as shown in Figure 5.3. There are four red landmark objects in (a),
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Figure 5.4: Principle of distance estimation. The mounted camera (O) has a height value

(Hrobot ), and the red dot indicates the camera position. Then, the green dot of contact

between the object (Landmark) and floor is equal to the one pixel on the ground line.

The angle value (θ′) between the horizontal line and ground line is directly proportional

to the distance.

and we can form a binary image containing the landmark information (b) by using a

simple HSV color filter. Thus, we can apply an adequate threshold value to change the

current image to a binary image with sketchy information about the landmark. Then,

there are only two types of pixels, black and white. Black pixels are pixels containing

the landmark object, and the white represent the background. In Figure 5.3 (c), the

panoramic form of (b), which is pixel-wise landmark information, is shown.

5.1.1.2 Distance estimation to collected landmark pixel set

After collecting the pixel-wise landmark from the image, we have to estimate the dis-

tance values. We obtain the panoramic image containing binarized landmark informa-

tion. In one panoramic snapshot [720× 90],as the horizontal x-axis indicates the angle,

the unit length along the x axis is equal to 0.5 degree. The origin of the horizontal x

axis is equivalent to the head angle at the moment of taking a snapshot, and its angular

location can be changed from 0 to 359 degrees.

If there are no occlusions, we can see the all of the landmarks in this panoramic image

at once. For example, in the ALV method (Lambrinos et al., 2000), panoramic images

are used to find the direction of the landmark. Then, the upper and lower most parts of
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Figure 5.5: Graph of the relation formula for the distance-fitting equation.

the panoramic image are cropped away, and the horizontal information in the middle of

the panoramic image is extracted before cutting. Along the lines of the ALV method,

DID and ACV do not use distance information. Therefore, we tried to use the lower

part of the panoramic image to obtain distance information. We can check that the

angle (θ′) between the horizontal line and ground line to the landmark is not directly

proportional to the real distance to the landmark. Then, if we can find the relation

between them, it can be used as the estimated distance value.

Figure 5.4 shows the principle of distance estimation based on the ground line of the

image. The y-axis under the horizontal line of the panoramic image includes two types

of pixels. The white one represents the background, and the black one, the landmark.

See the example of the image in Figure 5.3. There are four landmarks. The nearest one

has a short length from the bottom to the ground line, and the most distant one is longer

than the short one. We can check that the distance in the picture is not identical to the

real distance. To find the relation between the distance in reality and in the picture, we

set some rules.

First, we treat the landmark pixel as noise when the size is very small. Before this, as

we use only a binary process, the images contain a lot of noise. This rule thus reduces

the error and improves the probability of finding the landmark. Second, we find the

point of contact between the landmark and ground. From the bottom to the top of the

panoramic image, the point of contact between the landmark and ground can be easily

checked; no compensation is required for barrel distortion.

Based on these two rules, we can find the contact points and moderately remove the



5.1. Pixel-wise Landmark Modelling 145

Figure 5.6: Example of the distance estimation from the panoramic Image. Distance

fitting coefficient a1 = 5, a2 = 0.143, a3 = 0.0018 ,a4 = 10, red x is extracted landmark

pixels from home cite (500,500), the blue o from the other cite at (460,500).

noise. We start checking the vertical data from the center of the robot (x = 0 pixel in

the panoramic image). For a certain angle, we check the vertical data gradually and

count the total number of landmark pixels. If the black pixels that represent landmark

are found, and if their number exceeds the minimum landmark size, then the con-

nected pixels in minimum continuity are checked. The minimum landmark size value

and continuity value are manually determined by repeated experiments (the minimum

landmark size is 10 pixels, and the minimum continuity is 3 pixels). If the conditions

of landmark size and continuity are satisfied, then the first pixel is the contact point of

the landmark and ground. Then, using the angle and distance in the image to this pixel

as a reference, the direction and length of the landmark vector are calculated. After

checking all of the pixels in the panoramic image, this angle is linked to real distance

estimation.

We suppose that the relation between the real and reflected values can be written as a

polynomial like

d = a1d3
r +a2d2

r +a3dr +a4 (5.1)



146 Chapter 5. Visual Navigation Using Pixel-wise Information

a1 = 5, a2 = 0.0143, a3 = 0.00018, a4 = 10

where reflected distance (dr) with polynomials and real distance (d). Because we use

the numerical method to find the real distances from the reflected ones. Without spe-

cific physical modeling, we determine the relation by experiment for the distance vari-

ation, including defective instruments. Our objective is not to find a precise coefficient

but a suitable one. Therefore, our outcome has some error. However, if we once ob-

tain a rough pattern of landmark distribution, we can get the potential outcome using

our algorithm. In Figure 5.6, we can see the matching between the two landmark sets.

Despite the differences in each observation, the distance estimation from the reflected

image was relatively successful. Thus, we can get both angular positions and estimated

distances for each landmark pixel.

5.1.1.3 Homing navigation

We can extract both the angular location of pixel-wise landmarks and the estimated

distances. Then we change these PLVs of two images into a potential function to find

the home position. If our potential function(M) is positive convex, and the minimum

point is at the home position, then the returning course following the gradient of the

potential function (−∇M) must be reached at home (X0). The gradient of Method 1

can be written as follows:

−→
H =−∇M =

−−−→
O(X)−

−−−→
O(X0) (5.2)

where
−→
H is homing vector which is equal to the gradient of potential field (M). It can

be represented by subtraction of two summations of PLVs (
−−−→
O(X) and

−−−→
O(X0)) and −→u

is unit vector pointing each direction (θ). Based on snapshot model, the one is from

home position (X0) and the other is from current position (X). Attached with modelling

including pixel-wise landmark feature with estimated distances, it can be calculated

like

−−−→
O(X) = ∑

θ

Cθrθ
−→u (θ) = ∑

i
(

ηRiCi

||Xi−X ||
)[ai− x,bi− y] (5.3)

where θ is angle of holistic approach, i is for i-th landmark, C is feature value (color),

R is radius of each object, η is normalize factor, r is distance between i-th landmark
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location (Xi = (ai,bi)) and position (X = (x,y)). Then we apply it into first function

and gradient (M) can be changed into

∇M = ∑
i
( ηRiCi
||Xi−X0||)[ai− x0,bi− y0]− ( ηRiCi

||Xi−X ||)[ai− x,bi− y] (5.4)

where home position (X0 = (x0,y0)) and current position (X = (x,y)). Because two

summation of PLV sets of overall angular positions with estimated distance values

(r0,r) can be shortened by cylinder shape approximation of landmarks that is equal to

the one’s of ALV method. Also, we check three terms which confirm unique conver-

gence to home (X0) position. Detail procedure is introduced in Appendix. Then mathe-

matical expression about calculated homing vector (
−→
Ht ) with distance can be indicated

by

−→
Ht = ∑

θ

δ0(θ)C0(θ)r0(θ)
−→u (θ)−∑

θ

δ(θ)C(θ)r(θ)−→u (θ) (5.5)

where δ0 is binary object information of object at home position and δ at current po-

sition. It is the function of PLV selection that is 1 to selected pixel and 0 to the unse-

lected. C0(θ) and r0(θ) are observed feature value and distance at home position. C(θ)

and r(θ) at current position.

Finally, we obtain the direction to the desired position by using two PLVs from the

two snapshots—one from the desired position and the other, the current position. If

the robot uses our model, it can change the snapshot to PLVs at home. During the

journey, at the current location, the robot takes a snapshot and also changes the data

to PLV data. At each moment, the agent checks whether the current location is home

by calculating the S function (simple image difference function). If the location is not

home, the agent simply calculates the homing direction by using the PLV sets that are

much lighter than images. On completing the journey, the robot reaches home.

This method does not use any complicated or heavy image-processing algorithm. There-

fore, the speed is higher than that of other general methods, and the method is also

accurate. However, as this method is based on pre-designated landmark object infor-

mation and as the reliability of distance estimation is not perfect, we attempted to

upgrade our algorithm to treat various objects without pre-knowledge.

The simulation for method 1 is described here. First, we designate the positions, colors,

and radius of landmarks to build the simulation environment. Then, we collect the
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Figure 5.7: Simulation output in the vector map containing the homing vectors using

method 1. Circles of various colors are landmark objects, and blue square indicates the

home position. Red arrows indicate the calculated homing directions at each point.

color pixels in a horizontal line, and we directly use the distance values that are not

generated from the ground line. Therefore, there are no errors in measurement. We

collect the landmark pixel by filtering the background based on a fixed color value

and extract the PLVs. Then, the final homing direction is calculated by comparing the

home PLV set and the current one. Figure 5.7 shows the outputs. Some objects are

present around home, and we can calculate the homing direction at various points. For

each environment, we can directly observe the pattern of homing convergence in each

environment.

5.1.2 Navigation Using Pixel-wise Landmark Only Using Color In-

tensity

In the previous section, we presented the principle of the next algorithm modified

to a normal situation without any object information. This involves four steps. First,

we easily and simply pick the necessary pixel-wise landmarks of each image using

color distribution. Second, we build the landmark vectors by using the extracted pixel-

wise landmark information. Then, we can create the set of landmark vectors that can

represent each position. Third, we find the expected homing direction by PLV matching

to compare the home and current information. Fourth, we present adaptability to our

method to change the model into a proper form according to the returning process. We
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Figure 5.8: Example of landmark pixel extraction. (a)Input panorama image (is equal to

the one in Figure 5.9), (b) extracted image using intensity sorting algorithm, (c)spectrum

of the omni image, and (d) spectrum of the fitting image

present the detailed processes in the following sections.

5.1.2.1 Collecting landmark pixel

Unlike method 1, method 2 is a general method that does not need pre-knowledge

about surrounding objects. Therefore, we selected the PLVs of each image. Earlier, we

converted the omnidirectional image into a simple sequence of color values by image

processing. As the landmark vector points to the landmark, it has both length and

angle components. Therefore, we propose two procedures to generate the PLV without

distance estimation.

First, we use all of the color sequence data as vector lengths. We call it as meta-

distance, which acts as distance but is not equal to the real distance. There are 720 color

data values (with 0.5-degree angular resolution). Then, we form 720 vectors using both

the angular position of the pixel and the color value as the distance. In Figure 5.8 (a),

the gray panorama image from the home position is shown. We pick 720 pixels in the
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(a)

(b)

Figure 5.9: The example of image process. (a)input omni-directional image, (b) unfolded

panoramic image (c) after using histogram equalization.

(a)

(b)

(c)

(d)

Figure 5.10: Example of automatic pixel-wise landmark extraction. The first one is the

image at home position (50,50), and the third one is at a different position (54,58). The

second and fourth are the PLV extracted versions of the first and third, respectively. The

white region is the non-selected part. The number of pixels is automatically selected by

using both histogram equalization and score calculation.

horizontal line and generate the sequence data with color and angular values. Then, we

generate the spectrum of the sequence data in Figure 5.8 (c).

Second, we apply the sorting process to select useful vectors to build PLVs. Instead of

using the threshold value, we sort the sequence of data according to the size of color

value, and select the designated number of the data with higher values. If a pixel has

high color value, then the order of the pixel data after sorting is very early, and it is

picked up to build the landmark vector. Unlike the other two methods, in sorting, a

fixed number of pixels are taken from the sequence of data. Therefore, we can pick an

equal number of PLVs from the pixels. In Figure 5.8, the selected part obtained after

this procedure is shown.

Further, we apply modifications to enable automatic operation. Automation can be re-
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Figure 5.11: Top view of the environment shown in Figure 1. The various polygons

represent the objects in the reference map, and x shows the landmark pixel after fitting

270 pixels

alized based on histogram equalization. It is a technique for adjusting image intensities,

which is a normalization technique. In vision research, this technique is generally ap-

plied to reduce illumination errors. However, we use it for selection. We attempted to

create an algorithm that automatically finds the optimal number of pixels between two

images. There are three courses.

The first one is the normalization of two images by applying histogram equalization.

Then, all the pixels are sorted from 0 to 1. The second one sorts the normalized output.

Thereafter, based on normalized home data, we check how well all the pixels of the

current one match the home pixels. In this course, we calculate the score according

to the number of pixels that changes from 50 (minimum) to 720 (maximum). At each

time, the score calculated by the sum of the top three components of color matched the

list that has absolute angular differences between the current pixel with all the pixels

in the home data arranged in the ascending order of color differences. In this case,

the angular differences must be less than 180 degrees. In short, it roughly (picks top 3

units) finds the well-matched cases of pixels with small location changes (under 180

degrees). The final score is calculated by dividing the counted score with the square of

the number of pixels. Then highest value is output. Figure 5.10 shows an example of

automatic PLV selection. The output has small errors, but our algorithm can operate

with these errors.

In Figure 5.11, we show the other example distribution of PLVs obtained by the se-
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lecting method. The red square indicates the home, and the x-shape indicates the end

point of the landmark vectors from the home position. We indicate the real arrange-

ment of the landmark in various polygons with name tags. We can observe the effect

of the sorting process that successfully extracts the landmark, and we also verify that

the color distance is not equal to the real one.

In this part, we generate the landmark vectors using various methods. Unlike other

traditional methods, we do not use the real distance to the landmark or the exact angular

position of the landmark in the images. However, we apply some rules, and we pick

some pixels that satisfy the rule. Then, we generate the landmark vectors that have

color value as the distance. There are 720 pixels for one omnidirectional image, and

after fitting, there are about 90 to 500 landmark vectors. We reduce the 640 × 480

omnidirectional images into proper PLVs by approximately 90 to 300 times. Then, in

the next part, we compare them and find the way to reach home.

5.1.2.2 Homing Navigation

We generate pixel-wise landmark vector sets that fit into navigation by using color

values. Our object modeling is applied here, and the final sum of PLVs with color

values (Ci) can be expressed as follows:

−−−→
O(X) = ∑

θ

C(θ)−→u (θ) = ∑
i
(

ηRiCi

||Xi−X ||
) · 1
||Xi−X ||

[ai− x,bi− y] (5.6)

where θ is is the angular position of a landmark. Ci is a feature value (color) and Ri

is radius of the i-th landmark given at location (Xi = (ai,bi)) from the current view at

X = (x,y). As our model does not have any distance information, there is one more

term (1/ri, ri = ||Xi−X ||).

Based on the sum of PLVs without distance information, we test a gradient of potential

field like the prior method (5.4) with distance information as follows:

−→
H =−∇M =

−−−→
O(X)−

−−−→
O(X0) = (XF ,YF) (5.7)

where homing vector can be calculated as negative gradient of potential field and ∇M

is a gradient of potential field (see the potential M in appendix). Unlike method 1, a

simple gradient of the potential field cannot guide homing because the convergence

conditions are not satisfied. The convergence conditions are given by
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Figure 5.12: Concept of route selection in our model without distance information. ∇M is

equal to the one using distance information but it fails. ∇M1 and ∇M3 shows successful

homing using variation with different patterns. ∇M2 is reverse of ∇M1 and ∇M4 is

reverse of ∇M3.

det(J(∇M(X)))> 0 Mxx(X)> 0 ∇M(X0) = 0 (5.8)

where

J(∇M) =

[
d2M
dx2

d2M
dxdy

d2M
dxdy

d2M
dy2

]
=

[
Mxx Mxy

Myx Myy

]
(5.9)

This Jacobian matrix can be calculated by quadratic differential of each term including

Mxx for quadratic differential about x and Myy about y. The above potential M does

not satisfy one of convergence conditions, det(J(∇M))> 0, and cannot guide homing.

Thus, new gradient of potential fields to support the convergence are suggested. We

propose four homing vectors (∇M1,∇M2,∇M3,∇M4) as given by:

∇M1 =−∇M2 = (XF ,−YF)

∇M2 =−∇M1 = (−XF ,YF)

∇M3 =−∇M4 = (YF ,XF)

∇M4 =−∇M3 = (−YF ,−XF)

(5.10)

where ∇M1, ∇M2, ∇M3 and ∇M4 are extracted from ∇M which is not successful

without distance information. These terms do not use simple XF and YF ; instead, they

change their sign or order. Figure 5.12 shows the concept of these four routes. Black
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one (∇M) using (XF ,YF) fails in homing but there are two variations (∇M1 and ∇M3)

show successful homing routes. A sequence of a homing vector produces a homing

route what homing vectors guide homing should be investigated. Then those four gra-

dient functions are given by

∇M1 = ∑
i
( ηRiCi
||Xi−X0||2

)[ai− x0,−bi + y0]− ( ηRiCi
||Xi−X ||2 )[ai− x,−bi + y]

∇M2 = ∑
i
( ηRiCi
||Xi−X0||2

)[−ai + x0,bi− y0]− ( ηRiCi
||Xi−X ||2 )[−ai + x,bi− y]

∇M3 = ∑
i
( ηRiCi
||Xi−X0||2

)[bi− y0,ai− x0]− ( ηRiCi
||Xi−X ||2 )[bi− y,ai− x]

∇M4 = ∑
i
( ηRiCi
||Xi−X0||2

)[−bi + y0,−ai + x0]− ( ηRiCi
||Xi−X ||2 )[−bi + y,−ai + x]

(5.11)

where Ci is feature value (color) and Ri is radius of the i-th landmark at location (Xi =

(ai,bi)) for the current location (X = (x,y)) and the home location (X0 = (x0,y0)). Four

different types of suggested models are perpendicular to each other, and two different

directions are opposite (∇M1 ·∇M3 = 0,∇M1 = −∇M2,∇M3 = −∇M4). We observe

the convergence conditions of these four models. According to Equation (5.8), the

convergence condition for each gradient can be written as

∇M1(X0) = 0,det(J(∇M1(X)))≥ 0,(M1)xx = ∑
i
−ηRiCi cos(2θi)/D2

i = K1

∇M2(X0) = 0,det(J(∇M2(X)))≥ 0,(M2)xx = ∑
i

ηRiCi cos(2θi)/D2
i =−K1

∇M3(X0) = 0,det(J(∇M3(X)))≥ 0,(M3)xx = ∑
i
−ηRiCi sin(2θi)/D2

i = K2

∇M4(X0) = 0,det(J(∇M4(X)))≥ 0,(M4)xx = ∑
i

ηRiCi sin(2θi)/D2
i =−K2

(5.12)

where we set K1 and K2 for simplicity. These four cases like (Mk)xx are quadratic

differentials about x and they can be represented by two constants(K1 and K2). Hence,

at most two (K1 6= 0 and K2 6= 0) and at least one of four suggested models will have

homing convergence.

Among three convergence conditions, (∇Mk(X0) = 0,det(J(∇Mk(X)))> 0,Mk,xx > 0

for k = 1 ∼ 4), one condition ∇Mk(X0) = 0 is satisfied. The above four models are

analyzed in details to check the convergence.

Case 1. K1 6= 0 and K2 6= 0 : First, if these two constants are not zero, Equation (5.12)

can have two convergence models. (see appendix).
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Figure 5.13: Simulation for method 2. Blue square refers to home position, and there

are four landmarks with different size, location, and color information. Left one uses M1

and right one uses M3
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Figure 5.14: Simulation of method 2 under a special condition (K1 > 0,K2 = 0). There

are two identical landmarks, but we control the location to obtain this condition. The left

one corresponds to M1 and right one to M3.

Case 2. K1 6= 0,K2 = 0 or K1 = 0,K2 6= 0 : With this condition, two of four models

have (Mk)xx = 0. At least one of models will have convergence with non-zero K1 or

K2. For example, the case with K1 = 0 and K2 > 0 has ∇M3 as solution.

Case 3. K1 = 0 and K2 = 0 : With this conditions, there is no convergence model

violating (Mk)xx > 0.

Simulation was also conducted for method 2. We design various simulation environ-

ments, and we collect the color pixel information for landmarks. As there are four

models, we use different colors for plotting the homing directions of each model by

Equation (12) (∇Mk). Here, ∇M1 is indicated in red; ∇M2, in blue; ∇M3, in black; and
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Figure 5.15: Simulation of method 2 under a special condition (K1 = 0,K2 6= 0) with

different arrangement. There are two identical landmarks, but they differ from the one

in Figure 5.14. The left one corresponds to M2, and the right one, to M4.
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Figure 5.16: Simulation of method 2 under the most special condition (Mxx = 0 and

D(X0) = 0). There are four identical landmarks and arrangements. Four vector maps

show the different reactions of these four models.
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Figure 5.17: Example of homing navigation using a combination of models. The left one

changes the model from M1 to M3 in the normal situation. The right one changes the

model from M4 to M2 in the special situation. The starting point is (-5,-5), and the home

position is (0,0)

∇M4, in magenta.

Figure 5.13 shows the results for K1 6= 0, K2 6= 0. The left one uses M1, and the right

one uses M3. The other two models have opposite homing directions. These two fig-

ures have different homing route patterns. Figure 5.14 and 5.15, two situations show

the homing results for either K2 = 0 or K1 = 0. These environments are generated

to test the solution for these special situations. However, both cases have positive

det(J(Mk(X))). There must be one solution among four models. In Figure 5.14, M1

can be that solution, and M2 has the opposite homing pattern since K2 = 0. In addition,

M3 and M4 shows incomplete homing patterns. Figure 5.15 shows similar tendency

with K2 = 0. Figure 5.16 shows the results for K1 = K2 = 0. In this case, (Mk)xx = 0

and det(J(∇Mk) = 0. There are two regions for successful homing or failure. M1 shows

success routes along y-axis, but failure along the x-axis. All the points along the x-axis

have (Mk)xx = 0. Similar vector patterns are observed in the other cases.

We test the homing simulation using a combination of the four models. With home

snapshot, it randomly selects one model and follows the answer. We performed image

differences between home and current image. If this model is not appropriate (increas-

ing differences), then it changes model instead of current one. Examples are shown

in Figure 5.17. Our agent can arrive at home in both cases without referring to the

condition of the environment.
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Figure 5.18: Dynamic Time Warping (DTW) : The blue signal is the original signal and

the orange one is warped in the time domain. Then an Aligned output signal is produced

(the second signal) by using squared Euclidean distance.

Finally, we find the homing direction by using both home and current omnidirectional

images into two methods. Unlike other researches, in this study, we use a new con-

cept of pixel-wise landmarks and theoretically prove our model. We describe both the

simulation and experiment outputs in the next section.

5.1.3 Navigation Using Pixel-wise Landmark Matching Based on

DTW

5.1.3.1 Dynamic Time Warping

In time series analysis, dynamic time warping (DTW) is one algorithm used for mea-

suring similarity between two temporal sequences. There are various sequences that

are compatible with DTW, including audio, video, graphics, routes of gestures, and any

data which can be converted into a linear sequence A well-known example is automatic

speech recognition, which tries to solve the problem of different speaking speeds and

amplitudes (Sakoe and Chiba, 1978). DTW can also be used in partial shape matching

such as macro gesture recognition.

Note that there are some restrictions when applying DTW. The sequences are ’warped’
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non-linearly in the time dimension. Also, the start and end points of both signals essen-

tially must be equal. Thus, DTW is a method that calculates an optimal match between

two given sequences under those restrictions.

In the calculation process, we can arrange the two sequences with an unknown se-

quence on the x-axis, and the base template one on the y-axis. Both sequences start

on the origin of the grid. Each cell of the grid has a calculated distance between the

two sequences. To find the best match between them, we find a path that minimizes the

total distance between them. In this part, based on restriction, start point must be on the

origin of the grid so that the minimum distance summation on each cell is calculated

by comparison. The comparison process must proceed in the direction of increasing

x and y indices, called insertion, deletion, and match. At the end of the grid, once an

overall best path has been found, the total distance between the two sequences can be

calculated. This procedure is designed to find all possible routes and it is apparent that

for any reasonably sized sequences under restrictions, the number of possible paths

through the grid will be very large. Therefore, overall calculations require extensive

computation. There are alternative methods, such as SparseDTW (Al-Naymat et al.,

2009), MultiscaleDTW (Müller et al., 2006),and Fast DTW (Silva and Batista, 2016),

but we use the original version to obtain high accuracy.

5.1.3.2 Searching for Stationary Feature

The warping method based on holistic matching counts all of the errors resulting from

pixel matching but requires extensive computation. We design a flow template mod-

eled after Figure 2.9. These two cases show the pixel movements as flow according

to horizontal and vertical movements with equal distance assumption. From previous

research using complex feature point matching, we note the difficulties with matching

these points at particular angles having large variation. A robust search requires com-

plex matching algorithms like SIFT or SURF, which do not suit our aim of reducing

computation time and complexity.

Our idea is to use the unchangeable points, and there are only two such points ac-

cording to generated flow template. One is the convergence point that is behind the

movement direction and the other is the diffusion point in front. These stationary fea-

tures must be located at opposite directions and have similar intensity values. Also,

accurate extraction of the line connecting the two stationary points is directly related
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Figure 5.19: The example of extracted optical flows generated by the movements

around two points (convergence and diffusion point) and marked as blue arrows.

to finding the homing direction. Therefore we try to find the location of this stationary

feature point for pre-process of finding accurate homing direction.

5.1.3.3 Searching for Stationary Feature based on color distribution in horizon-

tal line

First, based on the Figure 5.19, we design a new model for finding the stationary feature

location. Because we think that the pattern around these two points can be found also

in feature matching. Also, the optical flow is one of the bio-inspired visual feature

matching which is widely used in extracting visual odometry information. Therefore

we apply optical flow matching algorithm (Farnebäck, 2003) based on Lucas-Kanade

method (Lucas et al., 1981). It calculates optical flow between two images by using

quadratic polynomials between all the points, not corners, to find optical flow. Then

the output shows robustness.

In this part, we have focus on only pixels around horizontal line to build simple method.

Figure 5.20 shows the basic concept of those two points. We denote the two important

points as two stationary features (CP: convergence point, DP: diffusion point). First we

make a moving window having only horizontal shifted direction according to warping

model. Next, we use correlation between direction of feature output and designing

moving window.Then we calculate the distribution of correlated output for each direc-

tion and find the maximum one as optimal direction.
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Figure 5.20: The idea of matching based on two important points. The gray circle means

surrounding objects. When the agent moves from home position to current position,

then flows are generated by the movements around two points (convergence and diffu-

sion point)

5.1.3.4 Searching for Stationary Feature based on Entire Image Pixels

In this part, we suggest another one based on optical flow matching. Different to first

method, we use all part of the 2 dimensional input image which is compared with

reference image.

Figure 5.21 shows the principle of finding stationary points based on optical flow. First

one shows the expectation of pixel movement around those two stationary points that

are located at opposite direction to each other.

Then, similar with first method, we try to find the specific location of stationary point

from the matched output. We use correlation between direction of feature output and

designing moving window. Also, this moving window includes two regions for extrac-

tion. And these region have center converged and diffused direction from each center.

Next, we calculate the distribution of correlated output for each direction and find the

maximum one as optimal direction.

As mentioned above, our alignment method based on a visual compass has some errors

associated with an agent’s position when located far from the home location. We add

one more step to compensate for non-aligned input in this case. The idea is to adjust

the search area by swinging those matches in an attempt to better align with the home
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Figure 5.21: The idea of matching based on two important points based on optical

flow. The gray circle means surrounding objects. When the agent moves from home

position to current position, then flows are generated by the movements around two

points (convergence and diffusion point).

location. For example, the previous steps only compare angular locations between two

images. However, the inputs with aligned error (distant locations) are repeatedly tested

with small rotated variations of the current view to find a more accurate location with

respect to the home location.

5.1.3.5 Matching based on Dynamic Time Warping

In this section, we attach the dynamic time warping algorithm. As mentioned in the

Introduction, the DTW method has some restrictions. First, the sequences are warped

non-linearly in the time dimension. Also, start and end points of both signals are basi-

cally fitted. Through the above steps, we find the two stationary points which have fixed

angular locations different to other pixels. These calculated points satisfy the condition

of both start and end points needed to apply DTW. Based on the diffusion point as the

start location, extracted wing data have warped angular locations in relation to each

other. Therefore we consider those warped angular locations as time-shifted warping

and we apply the original DTW to our navigation model.

In the calculation process, we arrange the two sequences into a distance matrix, one

with unknown sequence on the x-axis and the base template on the y-axis. This un-

known sequence is the current view and the base template is from the home snapshot.
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Both sequences start on the origin of the grid of the matrix. Each cell of the grid has a

calculated distance between two indexes of sequences. The algorithm then tries to find

the best match route between them, and we can find a path that minimizes the total

summation of distances between the two sequences. Based on DTW restrictions, the

start point must be on the origin of the grid and it is the diffused point, which is one of

stationary points. Next, DTW calculates minimum distance summation on each cell by

a comparison process. The comparison process proceeds in the direction of increasing

x and y indexes, called insertion (only y is increased), or deletion (only x is increased)

and match (both x and y are increased). After reaching the end of the grid, it can find

the best route by back tracking from this end point to the start point. This back tracking

checks all possible routes having various distance summation values, which represents

a very large number of possible paths requiring extensive calculations. That is, if we

perform a full DTW search of all combinations between two images, then the output

can be accurate but the number of calculations required is too large to use in real time.

Instead, we can apply DTW in our model by attaching the matched stationary points as

the start point. Then the combination of DTW and stationary point matching reduces

computation time and makes our model robust.

Figure 5.22 shows examples of matched routes. The blue line is the case using two

images having small differences. Red and black lines indicate current view images

that have large differences and locations in opposite directions from the home snap-

shot image. In short, we can determine which combination is effective for navigation

purposes.

Based on the above results, we have divided the combination method into two broad

categories

5.1.3.6 Wing matching method

Based on the snapshot model, a snapshot image from the home position is compared

to the current view. There must be two stationary points which can be calculated using

the methods previously described. We use both wing data and two stationary points

in this method. This first method is called the wing matching method and it uses two

stationary points, the diffusion point as the start point and the convergence point as the

end point, and applies DTW matching between both wings’ data.
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Figure 5.22: Three examples of route matching. The index of y-axis is called the base

index (the home snapshot image). The index of the x-axis is called the unknown index

(current view). The blue line is the matched output between left wings (Lθ) of the snap-

shot image (located at (5,8) of Vardy set)) and an example image from very near to the

snapshot (location (4,8)). The black line is between the snapshot and a distant image

(5,14). Red line is between the snapshot and another distant image (5,1).

The second part of Figure 5.23 shows the case using wing matching. In this figure, two

stationary points are selected. The green one is the diffusion point and the red one is

the convergence point. The color distribution of each wing is calculated and two wings

are matched (right and left wings).

5.1.3.7 Unifying matching method

If our stationary point extraction is perfect, then DTW matching is theoretically per-

fect. But our current alignment algorithm with visual compass has errors, especially in

distant locations. Then having a false aligned environment can produce errors by us-

ing wing matching. Therefore we developed a version called unifying matching which

improves the DTW calculation by unifying the two wings.

In this version, we accept the instability of both alignment and extraction of stationary

points. Therefore only one diffusion point is used as the start point and the data size

for DTW matching is doubled by unifying the two wings into one. If the data length is

L, then the length of each wing is L/2 and the overall number of DTW calculations for
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Figure 5.23: The concept of matching algorithm including score information. The first

figure shows an example environment including two landmarks. One is bright orange

color and the other is dark brown. Home and current location are marked by colored

triangles. Green (diffusion point) and red (convergence point) dots are aligned. Final

calculated homing direction by DTW matching is marked as a black arrow. The sec-

ond figure shows the output by using the wing matching method. The diffusion point is

selected as the start point and the convergence point as the end point of DTW match-

ing. Upper graph shows the information of Left wing (L and L0) in counter clockwise

direction. Lower graph shows the information of right wing (R and R0) in clockwise di-

rection. The third figure shows an example using the unifying matching method. It uses

the diffusion point as both start and end points. It connected both wings with double

lengths and was directly applied into DTW without a convergence point. The circles on

the y-axis of the graphs represent the information of color distribution in bar-code.

wing matching is 2×L2/4 compared to the unifying method, which is L2. Thus, the

unifying matching method allows the DTW output to be sufficiently accurate to avoid

serious mismatches.
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Figure 5.24: Example of connected-edge after inhibition. Blue line is for the data distri-

bution of the current view and red is for the snapshot image. For figure, height of the

blue line is increased to show connection. Each black line shows connected-edges for

every 10 indexes.

5.1.3.8 Connected-edge inhibition

After matching, our method can generate matched information including some connec-

tions between two indexes. Each connection is represented as an edge and each edge

has a start index from the current view and a target index from the snapshot (home)

image. Based on DTW matching, there must be multiple start indexes for one target

index. Also, there are multiple target indexes for one start index. Our goal is to inhibit

these multiple choices. Based on the snapshot model, we make multiple start points

be unique and select the one having the smallest distance. Therefore, we collect multi-

ple start points from each target index and compare distances between them and inhibit

other connected ones except for the one with the smallest distance. Then the number of

connections is equal to the number of target indexes in the snapshot image. Figure 5.24

shows an example of output after inhibition.

Also, there are various choices for edge inhibition. First is the non-inhibition case that

uses all of the connections in navigation. Second is the reverse inhibition case that

reduces only target indexes. Third is the all inhibition case. We tested all, and found
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that the three cases have lower performances than our method.

5.1.3.9 Vector set comparison

Based on both snapshot model and DTW matching with inhibition, we have pixels of

home and matched pixels of current view. We then create landmark vectors to find the

homing direction. As we cannot know the distances of the pixels, we create unit length

vectors pointing at the angular locations of snapshot pixels.

−→u (θ) = (cosθ,sinθ)
π

∑
θ=−π

−→u (θ) = 0 (5.13)

where −→u (θ) is unit vector pointing to each angle (θ) and overall summation is equal

to be zero. However, based on pixel-wise landmark matching, matched output can be

presented like

DTWf (θ) = (cosθ′,sinθ′)
π

∑
θ=−π

DTWf (θ) 6= 0 (5.14)

where DTWf (θ) is matching information of each angle then the summation is not zero

like ACV. Each landmark vector has unit length and the summation of all pixels in

the image is considered to be zero. Different to landmark vectors of snapshot images,

landmark vectors of matched pixels (DTWf (θ)) are also generated with asymmetric

properties. Then we can calculate the homing vector by summation of the differences

between two asymmetric vectors. We suggest two methods. The one is wing-matching

(
−→
H wing) and the other is unifying-matching (

−→
H uni f ying). These can be presented like

−→
H wing =

0

∑
θ=−π

(−→u (θ)−DTWf L(
−→u (θ)))+

π

∑
θ=0

(−→u (θ)−DTWf R(
−→u (θ))) (5.15)

−→
H uni f ying =

π

∑
θ=−π

(−→u (θ)−DTW fU(−→u (θ))) (5.16)

where DTWf L is pixel matching for left wing, DTWf R for right wing and DTWf U

for unifying model. Then the overall calculation of the homing vector in wing match-

ing is divided into two sets. On the other hand, the unifying matching method output

(
−→
H uni f ying) uses a set of matching vectors. Then we can find the homing direction by

comparing landmark vectors based on matched outputs.
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5.1.3.10 Homing navigation

Finally, we created a new model using two important points related to stationary char-

acteristics on a flow template. Based on the snapshot model, we align two images based

on the visual compass. Next, we try to find two stationary points between two images

based on correlation about flow direction. It calculates the differences between oppo-

site pixels, and pixel flow of remaining pixels around focus angle. Then a particular

angle is selected as the start point for DTW matching. This part focuses on reducing

the overall calculation by using those points instead of full DTW matching.

However, the calculated homing vector has wrong information for the distance factor,

because the length of the landmark vector is not equal to the distance. Therefore, we

cannot use this homing vector and we have to update it. So, we apply homing sequences

including multiple updates. The agent using our model has to find the homing direction

at a current point and move small distances along this vector. Next, the agent collects

another image after movement and updates the current view to update the homing

vector. With repetition of a prior course, the agent can arrive at the home point. At

each iteration, it tries to judge whether this point is home or not by calculating overall

differences between the home snapshot and the updated current view.

5.2 Experiments and Results

5.2.1 Experiments Using Pixelwise Landmark

Now, the robot experiment for method using distance information is described. The

environment of this experiment is identical to the one shown in Figure 5.3. There are

four landmarks in red color. Figure 5.25 shows the calculation output of homing direc-

tion at various locations. The first one is obtained using manually aligned images, and

the second one is obtained using a visual compass algorithm for alignment. Despite the

measurement errors, the homing convergence pattern is obtained. Figure 5.26 checks

the homing routes marked by a blue line. The line pointing outward without a com-

pass sensor indicate the fails; most cases are 100% in aligned condition and 82% in

visual compass case. In addition, these failures occurred at an outer location far from

the home position.
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Figure 5.25: The robot experiment output in a vector map including the homing vectors

using method 1 a) with aligned images, and b) using visual compass.
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Figure 5.26: Robot experiment output in the homing route using method 1 a) with align-

ment, and b) using a visual compass

As mentioned above, method using distance information has two limits. One is land-

mark extraction using pre-knowledge about objects. This procedure is not perfect, and

the output has obtrusive errors in spite of additional filtering processes. The other is

the reliability of distance estimation based on the ground line. Both extraction of the

ground line and distance estimation model have some errors. Then, the final output

also has errors caused by those error factors, and we conduct additional experiments

for second method without these procedures.
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Figure 5.27: Vector maps of three different methods and the homing route of the final

one. (a) is the case without PLV selection, (b) using gray information with PLV selection,

(c) is using RGB information with PLV selection, and (d) is the homing route plot of (c).

We performed a robot experiment for method 2. Figure 5.27 shows the first output.

There are three vector maps (a to c). The output (a) obtained using all gray informa-

tion without PLV selection shows some homing tendency, but the agent does not reach

home. (b) is the method using gray information with landmark selection. We manually

selected the 200 pixels with high values. Then there is no spinning pattern in the hom-

ing routes. (c) is based on the RGB information with the sorting method, and it shows

stability and accuracy in homing navigation. (d) shows the homing courses based on

output (c). The agent uses m3 in all the figures. We performed some additional exper-

iments by changing the home position. Figure 5.28 shows the various outputs, and we

can check the overall homing convergences.
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Figure 5.28: Vector map using RGB information and sorting method with changing

home positions. (a) 42,44 (b) 54,54 (c) 42,50 , square means home position
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Figure 5.29: Different output according to the selected model. The left one uses m3,

and the right one shows the output obtained using m1.

Next figure shows the effect of the selected model type. Figure 5.29 shows the output

of two models. The left one is equal to (c) of Figure 5.27. One is m1, and the other is

m3. These outputs are similar to the simulation output.

To compare the performances of these methods, we present performance graphs. Fig-

ure 5.30 shows that the case with RGB with sorting has the highest score for both

homing and accuracy. The case with gray without PLV selection has the worst perfor-

mance. However, the other methods such as using a simple threshold value or sorting

method have successful homing ability. In this course, the selection of the number of

pixel-wise landmark is very important and critically influences the output. Then, in the

next figure, we show the effect of the number of pixels. In Figure 5.31, we show the

effect for both RGB and gray with PLV selection method. First, the angular error of
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Figure 5.30: (a)Angle error performance, and (b)homing rate performance with different

method. I is the case using gray information without PLV selection; II is gray with simple

color threshold; III is gray with selection; and IV is RGB with selection
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Figure 5.31: The homing rate and angular error performances obtained by changing the

number of pixels. (a) Angular error performances of both gray and RGB by the sorting

method, and (b) homing rate performance of both by the sorting method

the homing vector are similar in both cases, but RGB with the sorting method performs

slightly better than the gray with sorting. The lowest point shows the highest accuracy,

but generally, the overall accuracy is good for all cases. The homing rates are also com-

pared. We checked the effect of using RGB information and show the broad domain of

the successful homing, which is broader than that of the gray one.
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Figure 5.32: Effect of automatic pixel-wise landmark selection. The left figure shows the

example of calculation of the score of PLV selection between (54,58) and (50,50). The

black line indicates the selected number with the maximum score (179). The right one

is the experiment on the effect of distance between two images in PLV selection. The

mean of the calculated optimal output is 146

5.2.1.1 Automatic pixel-wise landmark selection

This experiment deals with the performance of the automatic pixel-wise landmark se-

lection algorithm. In the previous section, a graph on the performance according to

the number of PLV was presented. All the error and homing rate values were calcu-

lated via manual experiments. Then the output of our automatic algorithm should be in

the proper region in both performance graphs. Figure 5.32 shows the output. The left

graph shows one example of calculating the optimal number. Our algorithm gathers

the scores for all test pixel numbers (x-axis) and the counted score (y-axis). The final

selected number is marked in black. In addition, we plotted multiple cases in the right

figure. The x-axis shows the distance between home and the location of the image, and

the y-axis shows the calculated optimal number of PLVs. Finally, the mean of these

outputs is 146, and this value is in the safe region in Figure 5.31.

5.2.1.2 Comparison with other model

we compare our algorithms with the DELV model. Figure 5.33 is the output with two

graphs. These data are generated from robot experiment data. There are five methods,

and the first graph shows that the best one is full-DELV. However, model 2 with RGB

information yields almost identical performance. The second one shows the calculation

time for each method. However, our model has extremely small operation time, except
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Figure 5.33: Performance comparison between our models and DELV. FD is full DELV

using large computation; SD corresponds to DELV. M1 is method 1; M2, method 2; and

M2c, method 2 using RGB information. VC is the visual compass, and S is the selection

algorithm. The left graph corresponds to angular errors, and the right graph to operation

time.

for the selection algorithm. The values for M1, M2 and M2c include both VC and S

values. Thus, we see that our model is simpler and less accurate than DELV.

5.2.2 Experiments Using DTW Matching

5.2.2.1 The effect of finding stationary points via full search of DTW

Through the above parts, we suggest new visual homing techniques using both optical

flow information and DTW based on snapshot model. There are two variations in cal-

culation method about the stationary feature location. The one uses only pixels around

horizontal line (1D) and the other uses entire pixels (2D) of the images. Next, there

are two variations in calculation of homing direction by using DTW. The one divides

image into two parts called wing matching and the other uses entire image called uni-

fying matching. We make three variations by combining those cases. First one (I) uses

both 1D information in finding stationary points and wing matching in DTW. Second

one (II) uses both 1D information in finding stationary points and unifying matching

in DTW. Third one (III) uses both 2D information in finding stationary points and

unifying matching in DTW.

These new models are compared with one of state-of-art techniques. These are the

DID (IV : Descent in Image Distance) method (Zeil et al., 2003; Möller and Vardy,
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Figure 5.34: Example of the performance of our model compared with the one of full

DTW search. Each colored square shows the full search output. Y-axis is the index

of target angular location of the home snapshot and X-axis is the index of unknown

angular location of the current view. Colored dots show the output distance of DTW

where the darker one represents a more accurate method than the other. The left figure

is for the case between snapshot (5,8) and (5,9). The second figure is for the case

between snapshot (5,8) and (0,16). The red dot represents the full search and the blue

is for our model based on finding stationary points

2006), MinWarping algorithm (V ) (Horst and Möller, 2017; Fleer and Möller, 2017),

COMALV (V I : Center-Of-Mass ALV) (Mangan and Webb, 2009; Hafner, 2001) and

MCOMALV (V II).

Before starting our model, we check the performance of the method for finding station-

ary points. Our assumption is that this part can replace the full search of DTW, so we

compare the output of our method with the full search DTW, which requires extensive

calculation.

Figure 5.34 shows the comparison output. There are two figures. The left one is for

similar inputs which are located in close proximity. Overall pattern shows darker which

means the scores of DTW are generally small and the output has some differences. The

right figure indicates results using inputs located at a distant location. The pattern is

brighter than in the left figure, which means the errors of DTW are commonly high

while the calculated location based on indexes has small differences, indicating that

our model is capable of reasonable performance, even for distant points. Although
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Figure 5.35: Experiment about wing matching model (I). The left figure is the pre-

aligned case and right is aligned by applying the visual compass algorithm. Red cir-

cle indicates the home position and each arrow represents the homing vector with unit

length at each location.

there was error in the position estimation of the left figure, the difference was small

in the first place. The overall computation of full search DTW took almost 3 hours,

which indicates we cannot use it directly in our model. Therefore, our model based on

finding stationary points demonstrates robustness when compared with full search and

we use it with alignment to find the start point of DTW.

5.2.2.2 Modified Dynamic Time Warping method based on the Wing matching

method

We test our first model (I) using both 1D stationary point selection and the wing match-

ing algorithm. In this part, we use the calculated angular locations of both stationary

points and apply them into DTW matching of two wings. Figure 5.35 shows the out-

puts. The left figure with pre-aligned inputs shows almost perfect homing navigation.

However, the right one with non-aligned inputs shows poor homing performance be-

cause of alignment errors. But all the points in that figure show successful homing

navigation in the end except for (1,0). Those routes have a bit of error and cannot go

straight, but they eventually reach home with a little detour.
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Figure 5.36: Experiment of changing home position. Home position is changed with

pre-aligned inputs. The left figure uses (0,0) as the home position and right uses (9,16)

as the home position.

Attached to them, we test our algorithm with different home positions. Figure 5.36

shows the outputs. There are two different cases with pre-aligned inputs. Note that our

model is very robust to pre-aligned inputs with various home positions. Then, we try

to check the effect of each part in our algorithm.

5.2.2.3 Modified Dynamic Time Warping method based on the unifying matching

method

We observe that there are some difficulties in non-aligned inputs. Next, we test our

second method (II) using both 1D stationary point selection and unifying DTW. It

uses a four times larger part in DTW matching than wing matching to obtain higher

accuracy. Figure 5.37 shows the outputs. The two vector maps generally produce better

outputs the than wing matching method in accuracy. The unifying method, which takes

more than twice the computation amount than wing matching, is expected to produce

in better results.

Next, we test our third method (III) using both 2D stationary point selection and uni-

fying DTW. It requires the most large computations than others. Because it tries to find

stationary points by expanding search areas from 1D to 2D of input images. We expect
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Figure 5.37: Examples using the unifying model (II). The left figure uses pre-aligned

inputs and right one uses non-aligned inputs.
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Figure 5.38: Examples using the optical flow matching model (III). The left figure uses

pre-aligned inputs and right one uses non-aligned inputs.

that this model have the most accurate outputs. Figure 5.38 shows the outputs. The two

vector maps generally produce the best outputs than our other methods in accuracy.

However, we cannot easily say that the unifying model is always more robust than

the wing matching model. Figure 5.39 can serve as an example. It shows experiments

comparing the three methods in different home locations with pre-aligned inputs. In

this case, the home is located in the corner, so it is necessary to consider it from far

away. Different to above outputs, the wing matching method shows the best record in
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Figure 5.39: Examples comparing wing matching (I), unifying matching (II), optical

flow matching (III) for a distant home location. The left figure shows the wing matching

algorithm with (0,16) as the home position, middle one for unifying matching and right

one for unifying matching based on optical flow with the same home position.

this condition. Looking at the previous results, the wing matching method seems to be

more effective in returning home from a further distance although some errors cause

detours from the optimal path.

Effect of the inhibition into connected edges of DTW

In this section, we try to check the effect of connected edge inhibition. Figure 5.40

shows the outputs. Based on the output with one inhibition (the left one of Figure 5.35),

the other methods using non-, reverse- and both inhibition show poor performance.

Therefore we find that using a reasonable inhibition such as the method shown in

Figure 5.35 is helpful in navigation.

Effect of the searching area

In this section, we test the effect of the size of the searching area. With non-aligned

inputs, we have to use the visual compass to align them with the snapshot image and

it can cause some errors in alignment. We increase the search by additional small ro-

tations of input images to find optimal pairs in order to reduce the alignment error.

Figure 5.41 shows the output with various searching area sizes. What is interesting

here is that seeing unconditionally large parts of an area does not produce better re-

sults.
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Figure 5.40: Experiment of the effect of inhibition to connected-edges. the left figure is

without inhibition and the middle one is reverse inhibition. The right figure uses both

inhibition and reverse inhibition. The left side of Figure 5.35 is the case using one inhi-

bition with the highest accuracy.

5.2.2.4 Comparison with other algorithms

Figure 5.42 shows vector maps to compare our approaches with other four bench-

mark algorithms. Interestingly, in pre-aligned condition, our third one (III) has the

best record in homing accuracy than the other approaches.

Table 1 shows homing performance for our three models, DID, MinWarping, CO-

MALV and modified COMALV method in the ’A1original’ environments.

5.2.2.5 Applying into different environment

Also, we test the adaptability of our algorithm by using different image databases. As

mentioned in the environment discussion, we use 110 additional pictures from our lab

environment, and we apply our model to this data. Figure 5.43 shows the output for

both aligned inputs and non-aligned inputs. We verify successful homing navigation

through the results and confirm that our model is adaptable to other environments.
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Table 5.1: angular errors of different methods in ’a1original’ environment

error µ (±σ) N 0≤ εθ < 45◦ 45≤ εθ < 90◦ 90≤ εθ < 180◦

With

reference

I 6.33 (±0.97) 169 99% 1% 0%

II 5.71 (±0.92) 169 99% 1% 0%

III 4.89 (±0.75) 169 100% 0% 0%

IV 23 (±2.6) 169 92% 7% 1%

V 11 (±1.5) 169 99% 1% 0%

V I 19 (±2.0) 169 98% 2% 0%

V II 25 (±3.3) 169 86% 13% 1%

Without

reference

I 13.15 (±3.0) 169 93% 6% 1%

II 14.2 (±2.7) 169 95% 3% 2%

III 12.8 (±2.8) 169 95% 4% 1%

IV 29 (±3.4) 169 83.4% 14.2% 2.4%

V 11 (±2.1) 169 99.4% 0.6% 0%

V I 21.7 (±3.5) 169 94.1% 5.9% 0%

V II 38.2 (±4.9) 169 70.4% 18.9% 10.7%

Table 5.2: angular errors of different methods in our lab environment

error µ (±σ) N 0≤ εθ < 45◦ 45≤ εθ < 90◦ 90≤ εθ < 180◦

With

reference

I 12.33 (±1.46) 125 98% 2% 0%

II 11.7(±1.7) 125 97% 3% 0%

III 10.1 (±1.9) 125 100% 0% 0%

IV 25 (±3) 125 94% 6% 0%

V 61 (±9.5) 125 45% 25% 26%

V I 49 (±7.4) 125 56% 29% 15%

V II 35 (±5.4) 125 72% 25% 3%

Without

reference

I 15.9 (±3.5) 125 92% 6% 2%

II 16.9 (±3.1) 125 93% 6% 1%

III 16.2 (±3.4) 125 91% 7% 2%

IV 23 (±5.2) 125 94% 6% 0%

V 60.22 (±9.7) 125 48% 26% 26%

V I 58.25 (±7.9) 125 47% 34% 19%

V II 32.9 (±6.5) 125 81% 13% 6%
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Figure 5.41: Experiment of the effect about searching area size. The left side uses a

small searching area (±0deg) and middle one uses an intermediate area (± 15 deg

with 3 samples). The right figure uses a wide area (± 15 deg with 6 samples). The one

in Figure 5.35 uses a wider one (± 15 deg with 10 samples)
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Figure 5.42: Comparison of DID (IV ), MinWarping (V ), COMALV (V I) and MCOMALV

(V II) method in vector map in ORIG environment (a) the DID method (b) the MinWarp-

ing method (c) the COMALV method (d) the modified COMALV method

Table 1 shows homing performance for our three models, DID, MinWarping, CO-

MALV and modified COMALV method in the ’our lab’ environments.
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Figure 5.43: Experiment using different environments. Above is the example panoramic

image of our environment which is used as a snapshot. The lower left figure is the

output using wing matching with pre-aligned inputs. The lower right figure uses the

wing matching with non-aligned inputs. Red circles in both outputs represent the home

position.

5.2.3 Experiment with Illumination

We know that our vision based models can be affected by the illumination in the en-

vironment. Therefore, we put perform experiments during four different times of the

day. Figure 5.44 shows four cases. The first case was studied at 6:00 AM with limited

sunlight. The second case was studied at 2:00 PM with both sunlight and light from

the room. The third case was studied at 8:00 PM with light from the next room only.

The fourth case was studied at midnight with light from both rooms. In this part, we

evaluate the performance difference between sunlight and the light from fluorescent

light bulbs on the ceiling. These factors affect the brightness in the measured visual

cues.

The output is shown in Figure 5.45. There are two vector maps that show the calculated

homing directions of each of the two methods. The left map shows our model using

DTW and has a smaller error than the right map which uses MinWarping. These maps

were produced for the study at 6 AM. Another map showing the performance changes
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Figure 5.44: Images of the experiment at different times of the day. The first image was

taken at 6:00 AM, the second image was taken at 2:00 PM, the third image was taken

at 8:00 PM, and the fourth image was taken at 12:00 AM

over time shows that our model produces a better output during all times of the day

in our environment. Thus, our models above have partial robustness in dynamic, oc-

cluded, and illuminated environments without the use of optimization techniques.

5.2.4 Experiment with SLAM-like Loop Closing

Additional, we apply our snapshot-based model into the wide region. We chose the

loop closing problem which is widely mentioned in SLAM techniques. Loop closure

is a problem in recognizing a previously visited location and updating the accumulated

measurements. This can be crucial in decreasing errors by updating accumulated errors

in dead reckoning. Based on odometry, dead reckoning (path integration) is the process

of calculating the current position by using a previous position and advancing that

position based on known or estimated speeds. In this section, we use both distance(d)

and rotation angle(θ). Then it can be simply calculated by

θt = θt−1 +dθt[
xt

yt

]
=

[
xt−1

yt−1

]
+dt

[
cos(θt)

sin(θt)

]

When a match is detected, it uses an algorithm to compute the similarities in sensor

measurements and reset the current location based on the information from the previ-
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Figure 5.45: Output example of all day experiments. The left image shows the use of

our model based on DTW and the right image shows the use of MinWarping. The red

circle at (50,50) shows the home location and the black arrows show the calculated

homing directions. The lower image shows the changes of the overall homing perfor-

mances over time. The blue one is about our method using DTW and the red one about

MinWarping.

ously visited location. For example, this information can be extracted by comparing

features in the memory of the robot from each previously visited location.

Then, we apply our image difference concepts in comparing features instead of using

complex visual features. There are three parts in our algorithm. The first part is the

measurement of visual cues. The algorithm attempts to find the difference between

two neighboring images and match them to the current image to check the necessity of

additional snapshot gathering. If the accumulation of differences is larger than thresh-

old, the algorithm assumes that the robot has left the local area including past snapshot
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Figure 5.46: Loop closing test in the room and in the corridor environment. The image

on top is the illustrated top view. It shows the object location in the room and includes

the path of the robot moving. The following figures show the effect of loop closing using

simple image differences used in our models. Marking numbers (1∼ 8) show the corner

locations in robot route. First figure is the path without loop closing (using only odometry

information). Second figure shows the use of loop closing. The blue circles in the lower

images show the locations of new image acquisition.

and record another snapshot. The second part involves movement. The algorithm at-

tempts to update the location information and records the path. The third part is the

overall matching to past ones when loop closing Occurs. Here, we decide that moment

by calculating differences between older images (di f f ) and the recorded snapshot. It

can by calculated by

Di f f = min
θ

∑ |I0− rot(I,θ)|
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Figure 5.47: Examples of changing routes around loop closing. First one is before loop

closing and second one is right after loop closure. Third one and fourth one are next

examples after route update.

where I0 is the one of the recorded snapshot and rot(I,θ) means rotating current image.

If after traveling some distance, the image difference between the targeted past snap-

shot and the current image shows a small difference (under 50 percent of threshold

used in additional snapshot gathering), it tries to update the past route by updating its

current location and renewing the odometry.

To build loop closure, we make a simple assumption. The assumption is that there are

two independent errors in both rotation and distance with cumulative characteristic.

First, we perform alignments based on the rotation difference from the visual compass.

Then we can find the estimated angle (θT ) based on measurement . We can then find

the rotational error compared with the cumulative angle.

dθT = argmin
θ

∑ |I0− rot(I,θ)|

θT = θ0 +dθT = θ0 +
T
∑

i=1
dθiKθ

Kθ =
dθT
T
∑

i=1
dθi

In addition, as our rotation error modeling is designed as constants to dθ, the rotation

error component (Kθ) can be calculated. Next, after alignment update, we find the

distance error component (KD) making estimation of location more accurate. Then we

can rebuild the all path.

[
xt

yt

]
=

 xt−1 +dtKD cos(θ0 +
t
∑

i=1
dθiKθ)

yt−1 +dtKD sin(θ0 +
t
∑

i=1
dθiKθ)


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Figure 5.48: Performance evaluation. Three routes are shown on the left. The blue one

is the output of dead reckoning, the red one with loop closing and the black one is the

desired output. The right one shows the location error. Marking numbers (1 8) show

the locations of robot in the Figure 5.46. The “Index” is the frame number and the large

drop at around 1700 (marked with ”5”) is the moment of loop closing.

Figure 5.49: Examples of panoramic images. First one is from home, others from right

before loop closing in time-ordered sequence. Fourth one is the most similar one with

home image at loop closing.

To test this problem, we use two environments. The first environment is a room with

a corridor. There are many objects including a book case, a table, a window, an air

conditioner, trashcans and so on. The partition in the center of the room acts like a wall

dividing the space like a donut. Figure 5.46 shows them including robot route. During

the first rotation, we open the gate and extend the field and robot goes out. The output
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Figure 5.50: Loop closing test in hall environment. The first image shows this mission

of this part. The blue one is the robot moving along the designated route based on

odometry and orange one is the homing courses after finding similarities. The second

image is the recorded home image. The third image is the calculated image differences

according to this course and the fourth image shows the use of histogram equalization

in the image processing.

without loop closure shows failure in localization by accumulative errors in odometry.

However, another output with loop closure shows a successful update but fails in the

corridor after update because there is no more loop closing. The blue circles show the

location of an additional snapshot based on the calculated image differences.

Based on our loop closing method, detail changes around the moment of loop closure

are shown in Figure 5.47. There are four cases in time-ordered sequence. First case

shows a large error before loop closure. The second case shows successful alignment

based on image similarity after loop closure. The third and fourth cases shows good

outputs with continuous updates from past measurements. We calculate the perfor-

mance in Figure 5.48. In the figure on the left, the blue one is normal dead reckoning
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Figure 5.51: Homing sequences of using various our models. The red line shows the

output of our model using DTW, the blue line shows the output for the moment model

using distance estimation and the black line shows the output for the temporal update

of the pixelwise model. The magenta dot at (0,0) is the home location.

and the red one uses loop closing. The black line shows the desired course and we

check the errors between them. The second figure shows the output. Compared to the

normal one, our model shows performance improvements after loop closure (around

index 1700). Next we have focus on the visual cues between index 1600 and 1700 be-

fore loop closure. Figure 5.49 shows the aligned panoramic images. Compared with the

first image from home position, second one (index 1600) and third one (index 1650)

shows large differences than fourth one (index 1700) at loop closing. Our model also

shows better accuracy than the normal one in a time-ordered sequence. After update,

it fails in corridor region because there are new places and no more loop closing.

Next is the large open area in the hall of the building. There are many objects in-

cluding flowerpots with marble structures. This environment has a large glittering on

the ground and it can directly affect the output. In this environment, we designate a

single task to the robot. It records a single home image and rotates this area in rect-

angular course. Then there must be a moment having image difference be small and
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sequentially find homing directions from that position. Figure 5.50 shows this mission

in the first image and the second image is the recorded home image. The third image

shows the calculated image differences between home and other images at each point.

The fourth image is the case using histogram equalization to filter out the unnecessary

illuminations.

In this section, we test three of our models shown in the Figure 5.51. The first model

is based on DTW, the second model uses the moment model with distance estimation

and the third model uses pixelwise model of temporal update. The performance of the

first method shows high accuracy. However, the other two methods show successful

homing. The model using the moment model includes unstable distance information

which is estimated from the image and the other model uses simple pixel color values

without matching. Despite their simplicity, the overall homing patterns are successful.

With this in mind, we can check that our observations can be applied to the loop closing

problem which is widely used in modern SLAM techniques.

5.3 Performance Comparison in Static Environments

We suggest new visual homing techniques with various approaches. We tested them

by using simulations and robot experiments and compared their performances with

other benchmark algorithms. In this section, we attempt to evaluate our methods from

different views. We also attempt to integrate the outputs from the previous sections and

compare them with other benchmark algorithms.

Therefore, we select representative models from each section. Through section 3, we

try to apply the moment function into the homing problem to effectively combine range

data with color information and check if the new moment potential has convexity.

Then, we select two models using these properties. One (I) uses the moment function

(n = 2) including both range and color of each angular direction. The other one (II)

uses an area integrated version of the moment function (n = 4), including both range

and color of each angular direction. We check for better performance than the first one

by higher dimension from integration acting like clustering.

In section 4, based on bipolar approaches, we know that the probabilities of applying

visual masks in the homing problem as receptor and we can apply one more charac-

teristic of the insect “ommatidia” into the mask generation process which can largely
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Table 5.3: Performances in two test environments. Angular errors with various methods

including ours in two test environments (εθ is the absolute angular error and n is the

number of test points; 1000 masks used,µ is the mean of the angular error and σ is the

length of confidence interval in 95 percent. *p¡0.05).

I II III IV V VI VII VIII IX X

ORIG

µ 14 11 16 9 6 5 23 11 19 25

±σ 3.1 7.4 1.8 1.2 1.0 0.8 2.6 1.5 2 3.3

0≤ εθ < 45◦ 100 100 100 99 99 100 92 99 98 86

45≤ εθ < 90◦ 0 0 0 1 1 0 7 1 2 13

90≤ εθ < 180◦ 0 0 0 0 0 0 1 0 0 1

OURL

µ 6 8 25 20 12 10 25 61 49 35

±σ 1.4 3.6 4.4 2.6 1.2 1.9 3 9.5 7.4 5.4

0≤ εθ < 45◦ 94 45 56 72 100 100 77 88 98 100

45≤ εθ < 90◦ 6 25 29 25 0 0 22 12 2 0

90≤ εθ < 180◦ 0 26 15 3 0 0 1 0 0 0

enhance robustness. There are two selections. One selection (III) uses only one ref-

erence image while the other selection (IV ) uses three reference images like the DID

model to mimic simple learning around its home position.

In this chapter, we tried to interpret the basic principle of landmarks in navigation.

Based on pixelwise approaches, we can find that the simple homing using pixels as a

landmark can show success without object extraction based on RunDown update. Then

we improve it by attaching DTW matching and we select two of them. One model (V )

uses both 1D information in finding stationary points and wing matching in DTW. The

other (V I) uses both 2D information in finding stationary points and unifying matching

in DTW.

Compared with our models, we select four state-of-art techniques that are introduced

in background. These are the DID method (V II), MinWarping algorithm (V III), CO-

MALV (IX) and MCOMALV (X). Then, we use two environments to test them simul-

taneously. The one is ’ORIG’ from Vardy’s open dataset and the other is ’OURL’ that

we made.

The table 5.3 shows the angular errors and the other table 5.4 shows the calculation

complexity. Through the outputs, we can know that the one using DTW (2D,unifying)
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Table 5.4: Calculation time

Type Algorithm Time(sec) Type Algorithm Time(sec)

I Moment (d=2) 0.3345 VII DID 0.0003

II Moment (d=4) 0.5721 VIII MinWarping 10.0158

III Vmask (1ref) 0.00009 IX COMALV 0.00003

IV Vmask (3ref) 0.0007 X MCOMALV 0.00005

V DTW (1D,wing) 0.788 Alignment visual compass 0.0411

VI DTW (2D,unifying) 1.398 Alignment rearrangement 0.0988

shows the best record in Vardy’s environment. Also, all of our other methods and Min-

Warping show successful output. However, the calculation time of MinWarping due

to complexity is too high. In this part, we can know that both methods using visual

masks and DTW shows successful performances. Next, in our environment, the mo-

ment model having the higher dimension shows the best output. This is because it uses

the range data from the sensor not the image. This environment has sunlight from win-

dows and this cause large errors in the measurements, resulting in poor performances.

Despite the difficulties, our models show successful home arrival with small losses in

accuracy.

According to the integrated assessment of our methods, we can see that our meth-

ods have greater performances than other benchmarking algorithms. Our complex

models (II, IV,V I) from three chapters show smaller (6◦ = V I < IV < II = 11◦ =

V III(MinWarping)< others ) errors in homing direction and also shows a lower time

consumption. Also, our model can make successful homing characteristics in our en-

vironment including illumination problems. Some of the characteristics of our model

are shown below. Firstly, using an accurate range sensor makes the moment model

largely robust and its output shows higher accuracy than our other models. Secondly,

using the visual mask generated by following the structure of ant’s ommatidia, the

model can operate well and it can be improved by more future works. Lastly, using

DTW pixel matching shows the best outputs based on the optical flow and requires the

largest computation time among our models.
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5.4 Summary of Chapter 5

In this chapter, we suggest a series of new visual navigation algorithms using pixel-

wise landmarks. Based on insect’s vision, we made all the pixels as landmark called

pixel-wise landmark. We think the insects cannot afford to exact object detection, then

we try to take each retina input as landmark. Our new model use this pixel-wise land-

mark like object and it calculates homing direction based on changes of these pixel-

wise landmarks. Similar with ALV, It converts the snapshots of both home and current

into pixel-wise landmark vector sets and finds the sum of changes in landmark vectors

as home direction. We show the effects of using (estimated) distance model and ex-

pand it to the one using only color. Through the experiments with mathematical proof,

we investigate the convergence of our model. We find that the our model without dis-

tance cannot directly find homing direction but four types of candidates including one

answer having convergence. Among those candidates, it can find right answer by fol-

lowing each one decreasing the image distance between home and current one. In this

part, we think that if the small insect can use simple pixel matching, then it can directly

find homing direction without unnecessary movements. Therefore we add simple and

proper matching process like ACV that is modified version of ALV. It is DTW algo-

rithm that can match the time-series warped data to original one. Because time series

concept is replaced with angular location then matched output of DTW is equal to the

one of landmark vector matching. This matching is operated between home and current

pixel-wise landmarks to find angular differences. It needs adjusting start-end position

and we add the concept of two static points which is not affected by movements and

located at the opposite direction. Combining DTW with finding static points can make

robust matching in pixel-wise landmarks. It can operate like robust ACV model using

pixels as landmarks themselves in holistic approach without object extraction.



Chapter 6

Conclusion

In this dissertation, new studies of holistic matching approaches to visual navigation

have been presented. We have focused on both the simplicity and robustness of insect’s

navigation to solve the high complexity problem of conventional navigation methods.

Based on the holistic snapshot model, we suggest three new homing navigation meth-

ods using visual cues without object extraction. These methods can be classified into

three groups according to chapter.

6.1 Visual Navigation Using Various Moment Models

Chapter 3 is the first method we propose and uses the moment function. Instead of

using mass, we use color value to simply merge range data with visual cues in naviga-

tion. We think of each pixel as a mass object and convert pixels into a potential field.

Also we find the global minimum point and condition of convergence according to the

changing dimension factor. Based on these ideas, we suggest a generalized version for

changing dimension number and evaluate various effects. Different to the standard mo-

ment model with cylinder-shape landmark assumption, we find that the holistic model

using range distribution can be improved using a particular dimension number. We

verify that both range and vision can be incorporated into navigation without object

detection by using a characteristic moment function.

We think that there are some limitations. First is the form of the moment function.

We think other possible variations such as the sum of Ci/ri can operate as a collision

avoidance mechanism. Different to the basic model which has unique convergence, a

195
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property of this variation model is divergence from one landmark and rapid decrease to

zero. Therefore we can use this property for collision avoidance. However, we do not

apply this model into our current model. We also think there must be other variations of

the model having effective abilities. We will research those variations as future work.

Second is modifying our new alignment using a triangulation method by using three

convergence points. Different to other compass models such as visual compass, land-

mark arrangement, warping method, etc., the proposed model requires only three cal-

culations. Based on unique convergence of the moment model, each convergence point

has uniqueness in spite of variations in both angular and transitional position. We can

find the intersection point of the candidate by comparing three radii which have circu-

lar distribution from the center, similar to a triangulation method, but in this part, there

are errors in homing sequence without a compass. In these cases, measurement about

three convergence points has some errors due to the approximations involved, so we

will seek to upgrade our alignment model to have robustness.

Third is applying two boosting processes. One is applying feature matching to our mo-

ment model similar to SIFT to remove some occluded parts. As we do not use any

data process filtering or matching of inputs, there are many needless or occluded areas

of an image. However, our model does operate well and we can check convergence,

We will evaluate increasing the robustness of our model by applying additional pro-

cesses. The other is the unifying algorithm to multiple moment models. Because our

moment function can be expanded into various forms and applied to various sensors,

it should be possible to reduce the overall problems by the fusion of multiple moment

measurements if sensors are added.

6.2 Visual Navigation Using Visual Masks

Chapter 4 discusses the second method using a mask receptor. Inspired from the recep-

tor cells in the retina, we create a set of organized masks in the input image space and

use both the location and score of each mask to build a landmark vector. These bipolar-

like cells are generated by the combination of Haar-like features into various types.

First we systemically locate simple masks with vertical edge detectors having various

sizes as levels. We noted that changes in mask size can affect robustness. Therefore we

add some randomness in mask generation to have various types and sizes. This random
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property exhibits successful homing in simple environments but not in occluded ones.

The first model using this randomness calculates the matching score differences with

a set of Haar-like masks and then estimates the homing vector. When each mask is

expressed as a landmark vector whose length is set to the matching score, the averaged

landmark vector can represent the snapshot at a given location. The difference of the

two averaged landmark vectors can determine the homing direction, which is equiva-

lent to the net effect of the matching score difference with a set of masks. In this part,

we observe the linear proportionality of the sum of the mask scores to distances from

home and we apply multi-reference images to find image differences.

Another model we suggest is to use the matching score differences between one of

three snapshots near the home location and the snapshot at the current location. The

matching score difference approximately estimates the distance between a pair of snap-

shot spots, and the relative distance of matching score differences can determine the

homing direction. Our results show that a collection of random Haar-like masks rep-

resent the characteristics of a snapshot image well. Then our second model exhibits

robust homing performance. Sophisticated feature extraction is not required for visual

homing, but a set of simple masks are sufficient to find the visual features, especially

to derive the homing direction. In short, we verify that holistic visual navigation can be

operated with both freely distributed masks and multiple images around home, similar

to the learning phase of insects.

We think that there are some limitations. The first problem is the lack of biological

analysis. As our model is based on a bio-inspired bipolar cell structure, our model has

to focus on the biological structure of the vision system. In prior research, it is argued

that the bipolar cell is the basic unit of vision and the higher functions are combined

in the visual cortex. But in our model, higher functions can also be located in retina

positions before the brain. Therefore we will try to determine a robust algorithm from

biomimetics to explain the overall navigation principles of various creatures.

The second problem is mask generation. Compared with receptors in retina, our model

uses a small number of masks and generated masks are much larger than ones hav-

ing small FOV. We need to substitute the random arrangement of generated masks by

applying some rules of bio-inspired cell generation. In essence, we have to generate a

well-organized artificial retina system, Similar to the compound eye of dragon fly, our

model has to be modified to having a structure of well-organized masks. We think that

both a larger number of masks and a systemical arrangement of same can produce im-
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proved results than the current method. With this artificial receptor array, we emulate

an insect’s perspective.

We have to evaluate the recognition properties of this artificial retina.

The third challenge is finding the optimal mask arrangement. This challenge involves

customized mask generation for better homing ability, which is a different problem

than the second one mentioned above. If an output is near to a prior output, we can

think about not only the simplicity of the rather poor neurons of an insect, but also the

ability of insect’s eye in navigation that supplements its small brain. The information

may prove useful to similar researches in neurobiology regarding insect navigation.

6.3 Visual Navigation Using Pixel-wise Information

Chapter 5 presents the third method using pixel-wise landmarks. In this part, we re-

duce the concept of the landmark into the pixel to find the minimum unit of landmark

navigation. Similar to skyline extraction, we check the color distribution on a hori-

zontal line and estimate distribution in each direction by using the ground line. We

construct a landmark vector having estimated distance value and check for homing

convergence. Then we test another one using only color without distance estimation.

We suggest that overall homing pattern is changed by four selections which are per-

pendicular to each other according to our vector calculation model. We check for one

correct answer and convergence of our model. In this part, this model acts like ALV

and the four distractors can operate like the order in object matching. Therefore we

apply Dynamic Time Warping (DTW) to build an ACV-like holistic model using only

color distribution without object detection. It can robustly adjust the sequence of color

values in the horizontal line between two images but needs tuning on start and end

positions. We add one calculation, based on the flow template of the warping model,

locating two stationary points which can be used as focused points to DTW. This refers

to the only two points in the panoramic image that are not changed by the motion of

the robot. One point is in the approach direction and the other point is in the direction

away, which is appropriate to meet the DTW constraint. This DTW was originally de-

veloped for finding matching information between time shifted signals and we apply

it to visual navigation. In this part, the time shifted information is changed into angu-

lar location shifted information and we customize it for navigation by combining two
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concepts. Through the combination, we can avoid a full search using DTW to find the

homing direction and also increase the accuracy of finding the homing direction by

landmark vector matching. The overall model can produce successful homing patterns

from calculating angular position changes of pixels.

Furthermore, as mentioned earlier, we need to develop the algorithm to operate in

complex environments. One solution is the fusion with an image matching method

that uses prediction of the image. As we use the omnidirectional image, we can easily

change the image in the desired direction without having to move the agent. We can

compare the reference image with the current image, then estimate the direction or

pose of the robot and we can compensate our model to include these cases. Also,

optical flow can be the solution for dynamic situations. There are many optical flow

methods such as the one proposed by Lucas Kanade, Srinivasan (Esch et al., 2001;

Bouguet, 2001). The basic idea of the optical flow is that the difference in two images

and moving objects continuously creates optical flows. We can partially apply it into

our model to solve dynamic problems.

Another challenge is the single form of our model using DTW. Through the paper,

our model is divided into two methods. One is called wing matching and the other is

called unifying matching. Wing matching can reduce overall calculation by 25 percent,

but unifying matching produces better output. Each has their own advantages, but they

cannot be integrated into one model that takes advantage of their strengths and not

their weaknesses. Thus we will evaluate a modified version of our models having to

improve performance.

Another area to address is dynamic environments. Based on the snapshot model, we

should be able to obtain both simplicity and robustness. However, we did not apply

some filtering algorithms for dynamic situations, and therefore we will evaluate a

model that uses only background information for finding the current location by fil-

tering out other parts of the environment. Also this attempt may be helpful to our other

model using entire pixels that include occlusion.

Additionally, there are experiments in each chapter conducted in both simulations and

robot experiments. In this part, we use both handmade environments and open datasets,

we also present some mathematical proofs about our models. Based on landmark mod-

eling with certain assumptions, we can partially show the convergence of our navi-

gation model. However, the current model assumes that objects are cylinder-shaped
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objects and observed distances from one object are almost equal to another from the

centers of each mass. In real world, objects are not always cylindrical and distances

are measured from their surface, not their center. Therefore we will evaluate our model

using general objects of different shapes.

6.4 Future Works

6.4.1 Biological Modeling

As our algorithms originate from the navigation of insects, we used bio-inspired meth-

ods. We created a simple artificial retina including various types of receptors. The

method using masks can calculate successful the homing direction in a local area.

However the method only focused on finding homing direction in the area where over-

all visual information is certainly sustained. But insects can find the homing direction

with occlusion and there is other research regarding animals accomplishing route fol-

lowing over long distances using vision.

We wish to improve our model to be applicable to larger landscapes. Perhaps the an-

swer lies in the discovery of place and grid cell structures, which appear to enable the

overall navigation abilities of insects at the neuron level. Firing of each cell has mean-

ing of localization and it must be a super-ordinate concept of local visual navigation.

Through learning phase, we can gather snapshot images in various locations and divide

them into small groups based on similarities. Each group is directly connected with

place cells like binary codes and also can be one point on the brain map in the grid cell

structure. If we create a proper neural network including multi-layers and train it to act

like both cells, we can easily find the target snapshot that we want to use at any point

along the path. Also, it perhaps makes homing direction in one time.

Different to other cutting-edge deep learning techniques, the assumption would be

that the input image has low resolution and the number of neurons actually used in

visual navigation must be smaller than in mammals. Therefore we think that the special

eye structure can be a clue for visual navigation, similar to our mask-based model.

Therefore we can try the simple composition of a neural system with both learning of

target images and a learned local snapshot model. Then, after the learning process, our

final output can find the homing direction in distant locations as a possible clue of how
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insect navigation works in the real world.

6.4.2 Engineering Modeling

Our model also takes advantage of engineering modeling by using DTW for pixel

matching and, we use the moment function and Haar-like features for information com-

pression. Then we made new mechanisms for finding direction through a combination

of those algorithms. However there are limitations that involve navigation in dynamic

situations such as having occlusions like illumination changes, objects moving, and

location changes. But insects can find the homing direction in dynamic situations and

other research indicates that other animals accomplish homing in dynamic situations

using vision.

We can consider three areas. First are the changes in the environment from external

stimulation, such as changes caused by the location of the sun. Our model without

feature matching can partially solve occlusion problem by shape recognition in low

resolution and find successful homing direction though not as well as an insect. The

fusion of other models with our mask-based model can boost performance to better

handle occlusion.

Second is improving the robustness of our models to dynamic environments, which

may be best accomplished by applying feature matching to improve the robustness of

our moment model. Feature matching can filter out occlusion and one-to-one matching

in measurement can be theoretically matched with localization by alignments based

on triangulation. Then the accumulation of the information of feature points can be

directly connected with both the topological and geographical maps in the learning

phase.

Last is the possibility of sensor fusion. Our moment model will gain robustness by

using a range sensor without the need for any special algorithms, or adding other types

of sensors, such as an odometer.
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Appendix

A.1 Environments

In following sections, we use both simulation and robot experiment to check the per-

formances of our methods. The one is simulation with virtual environment with various

objects. The other is real environments including various objects.

A.1.1 Simulation Environment

In this thesis, we proposed the visual-based landmark navigation. Thus this simulation

has imaginary environment including some cylinder-shape objects and it can generate

pixel image for horizontal line. Because we only have focus on pixels around horizontal

line and this simulation is check for simple action of our models. In this part, we can

get visual cues and can test our model without any intervention of disturbances.

Figure A.1 shows the output. It shows the top view of static simulation environment

with four cylinder-shape landmarks. Each landmark has position, size and color. The

blue square represents the home position and the red square is current position. Next

two collected omnidirectional snapshot images include pixels along horizontal line and

these pixels’ color values are equal to the ones of landmarks. We can change the size of

landmark, location, color and measurement positions including occlusion effect. Then

we can collect images from simulation to use in homing navigation of our algorithms.

203
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Figure A.1: Simulation environment and measured data from the sensors. (a) is top view

of simulation environment including four different objects with volume and color. Blue

square and red square is measurement positions then measured range data are shown

in (b). (c) is expected panoramic image from blue position and (d) from red position.

A.1.2 Experiment Environment

A.1.2.1 Our Dataset

We use robot experiment to check our algorithm in real experiment. This robot has two

parts. The one is mobile agent including both mobile and sensor parts. This mobile

part is Khphera style robot using two wheels (Roomba, Create 4400, iRobot, Bedford,

MA, USA). The other is measurement. There are two types of measurements. The one

is visual receptor of omni-directional camera (Logitech Webcam E3500 vision sensor

with reflection frame) and the other is range sensor (URG-04LX-UG01, HOKUYO,

Osaka, Japan). These two sensors are mounted on mobile part and gathering omni-

directional measurements.

Also, those three parts are connected with lap-top computer. This camera sensor col-
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(a) (b) (c)

Figure A.2: The part of the mobile robot. (a) i-Robot ROOMBA mobile part, (b) Omnidi-

rectional camera and (c) HOKUYO laser sensor measurement part

lects 720 pixels from horizontal line and laser sensor has about 240 degree region of

interest (ROI) with 0.36 degree resolution. Then we have to take 2 shots in two opposite

directions to make complete onmi-directional range data.

However, both data from sensors have a lot of numbers and have different resolution.

Therefore we reduce them into equal and proper size. First, the visual input has 640 x

480 RGB pixels of omni-directional form. Then we can change them into panorama

form by cutting and unfold them according to horizontal line that is virtual flat position

with 0.5 degree resolution. Because this horizontal line has almost entire visuo-spatial

landmarks in the environment that can be important clue in navigation. As we design

this model to local visual homing, this horizontal line have all landmarks when there is

no occlusion. After then we can reduce vision input data into 720 pixels in horizontal

line.

Second, fitted to converted vision data, we make range data be 720 points. The laser

sensor make omnidirectional range data by combining two shots with 1000 numbers

of points. Then we can extract the 720 numbers to fit to 0.5 angular resolution which is

equal to the visual one. After then, we takes only 720 range points to combine it with

visual cues. Then we can get both omni-directional color and depth information with

equal resolution as measurement.

With the robot system above, we test several indoor environments for homing nav-

igation. we made test environment called ’ourlab’. It is 5m x 5m empty classroom

with various objects like dresser, drawers, trash cans, large vases, windows, walls. We
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Figure A.3: Omnidirectional images. an image in our lab environment and robot includ-

ing visual sensor

Figure A.4: Environment of Robotic Experiments. First one is a omnidirectional photo.

Second one is the example color panoramic image and third one with gray one at center

position.

marked the home point and the other measurement points at intervals of 20cm. And

then we collect feature measurements on each points to do the experiment. We change

the position of these objects to do various experiments. We can see the environment in

the left one of Figure A.3.



A.1. Environments 207

(a) (b)

50 100 150 200 250 300 350

0

100

200

300

400

500

600

700

(c)

50 100 150 200 250 300 350

0

100

200

300

400

500

600

700

(d)

(e)

Figure A.5: Data from the sensors. (a) and (b) are the reduced panorama images

changed from omni-directional images and (c) and (d) are the reduced laser data. The

left ones are taken from location (50,50) and the right ones are from location (62,54).

(e) reconstructed reference map by range data with object labels

As the range data has two dimension, we can think these data can be on the horizontal

line and we can make reference map including feature points with both position and

color information. In Figure A.5, (a) is a picture of our environments including vari-

ous objects. (b) is captured visual cue at home position (500,500) and (c) is collected



208 Appendix A. Appendix

range data from equal position. Then reference map (d) shows the reconstructed fea-

ture points of environment marked as red x-shapes showing the observed points with

name tag. Finally, we make overall measurements into feature points having both RGB

pixel values and location from range data. Then we use these data in next experiment.

A.1.2.2 Open Dataset

Addtional to that, we apply our algorithm to common image dataset which is broadly

used in local navigation field. We use the one of Andrew Vardy’s experiment Vardy

and Möller (2005); Möller et al. (2007).

It can be taken from ’http://www.ti.unibielefeld.de/html/research/avardy/’. We use four

data. For example, the one called ’A1originalHh (shortly ORIG in our thesis)’ is 2.7m

x 4.3m and there are 170 points with 10cm intervals. We also change each omni-

directional images into panoramic form like Figure A.6.

Attached to ’ORIG’ environment, there are different environments that we use. Others

called ’arboreal (ARBO)’ and ’screen (SCRE)’ are modified version from first (ORIG)

one with additional small occlusion. Another called ’hall1 (HALL)’ is larger than oth-

ers with occlusion. Figure A.7 shows the example images from these environments.

We apply our model to this dataset and test our model. We test our model in various

ways and check the robustness in performances.

A.2 Moment Model for Homing Navigation

A.2.1 Proof of Global Convergence in Multi-Dimension Case

The general n-th moment model is as follows

Mn =
N

∑
i=1

Mn,i =
N

∑
i=1

rn
i Ci =

N

∑
i=1

((x−ai)
2 +(y−bi)

2)
n
2Ci (A.1)

where we suppose that there is N number of measured landmark. ri is the range value of

i-th landmark which is distance from current location (x,y) to landmark location(ai,bi)

and Ci is the color value of this landmark as feature.
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Figure A.6: Example of images used in experiment. First one is omni-directional image

that includes other needless parts like outside of mirror. Red dot represents the desig-

nated center point and blue line shows the imaginary horizontal line. Dotted yellow lines

shows the cutting region. Second one is converted color panoramic form and third one

is gray panoramic image

In this part, we try to check the condition of unique convergence point. To solve general

solution, we change n variable into k = n/2 like

k =
n
2
→Mk =

N

∑
i=1

((x−ai)
2 +(y−bi)

2)
k
Ci (A.2)

Then we take gradient form of moment function to find convexity.

∇Mk =
N

∑
i=1

k{(ai− x)2 +(bi− y)2}k−1
[−2(ai− x)Ci,−2(bi− y)Ci] (A.3)

where this gradient vector means the changes of potential function to current position

(x,y). Above gradient form has first condition about positive order number (k > 0).

After then, Jacobian matrix has to be calculated.



210 Appendix A. Appendix

(a)

(b)

(c)

(d)

Figure A.7: Example images of Vardy’s dataset (a) is one of ’A1originalHh (ORIG)’ (b)

is one of ’screen (SCRE)’, (c) of ’arboreal (ARBO)’ and (d) of ’hall1 (HALL)’

J(∇Mk) =

(
d2M
dx2

d2M
dxdy

d2M
dxdy

d2M
dy2

)
=

[
Mxx Mxy

Myx Myy

]
(A.4)

where this Jacobian matrix can be calculated by quadratic differential of each term

including Mxx for quadratic differential about x and Myy about y.

=
N
∑

i=1
2kCi{(x−ai)

2 +(y−bi)
2}k−2[

(2k−1)(x−ai)
2 +(y−bi)

2 2(k−1)(x−ai)(y−bi)

2(k−1)(x−ai)(y−bi) (x−ai)
2 +(2k−1)(y−bi)

2

] (A.5)

But, this form is too complex to find unique convergence conditions like
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det(J(∇Mk(X)))> 0 Mk,xx(X)> 0 ∇Mk(X0) = 0 (A.6)

And above three conditions are requirements for function convexity with the unique

global convergence to the point X0. Also, If X0 can be any real location that is not

duplicated with objects, then this model can be the global solution. Therefore we solve

above equation.

αi = 2kCi{(x−ai)
2 +(y−bi)

2}k−2

Xi = (x−ai)

Yi = (y−bi)

J(∇Mk) =
N
∑

i=1
αi

[
(2k−1)X2

i +Y 2
i 2(k−1)XiYi

2(k−1)XiYi X2
i +(2k−1)Y 2

i

] (A.7)

First, Mxx and Myy are positive with positive n > 1. For check the final condition,

determinant output of multidimensional moment function has to be calculated.

det(J(∇Mk)) =
N
∑

i=1
αi{(2k−1)X2

i +Y 2
i }

N
∑
j=1

α j{X2
j +(2k−1)Y 2

j }

−
N
∑

i=1
αi{2(k−1)XiYi}

N
∑
j=1

α j{2(k−1)X jYj}
(A.8)

In this part, we divide them into two terms. The one is i = j and the other is i 6= j that

is marked as Λ.

=
N
∑

i=1
[α2

i (2k−1)(X2
i +Y 2

i )
2
]+Λ

=
N
∑

i=1
[(2kCi{(ai− x)2 +(bi− y)2}k−2

)2(2k−1){(ai− x)2 +(bi− y)2}2
]+Λ

=
N
∑

i=1
4C2

i k2(2k−1){(ai− x)2 +(bi− y)2}2k−2
+Λ

(A.9)

we return the variable k into n(n = 2k)

=
N
∑

i=1
C2

i n2(n−1)r2n−4
i +Λ

=
N
∑

i=1
n2(n−1)M2

i,n/r4
i +

n−1
∑

i=1

n
∑

j=i+1
αiα j[{(n−1)2 +1}(XiYj−X jYi)

2 +2(n−1)(XiX j +YiY j)
2
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Because detail solution procedure of Λ is

Λ =
n−1
∑

i=1

n
∑

j=i+1
αiα j


(n−1)X2

i X2
j +(n−1)2X2

i Y 2
j +X2

j Y 2
i +(n−1)Y 2

i Y 2
j

+(n−1)X2
j X2

i +(n−1)2X2
j Y 2

i +X2
i Y 2

j +(n−1)Y 2
j Y 2

i

−2(n−2)2XiX jYiY j


=

n−1
∑

i=1

n
∑

j=i+1
αiα j[(n2−2n+2)(XiYj−X jYi)

2 +2(n−1)(XiX j +YiYj)
2]

=
n−1
∑

i=1

n
∑

j=i+1
αiα j[{(n−1)2 +1}(XiYj−X jYi)

2 +2(n−1)(XiX j +YiYj)
2]

(A.10)

Then final output can be written as

f


n≥ 1

0 < n < 1

n≤ 0

det(J(∇Mk(X)))> 0 Mk,xx(X)> 0

unknown Mk,xx(X)> 0

unknown Mk,xx(X)< 0

(A.11)

Then, we can check that there must be unique convergence point with n ≥ 1 and we

can find the right homing direction when we use n ≥ 1. Different to the prior one, the

case with n≤ 0 has no convergence point and the other case with 0 < n < 1 can not be

sure of the existence of unique convergence point.

A.2.2 Landmark Modelling

Theorem 1. As there is objects in the field with cylindrical shapes without occlusion,

then the summation of range vectors pointing angles within those objects can be rep-

resented by

−→
O = ∑

i
η

Ri

ri

−→u (θi) (A.12)

where−→u (θi) is unit vector pointing to particular angle(θi) and Ri is radius of the object

and ri is distance between view point and center of the object. η is the normalize

constant which is affected by angular resolution.

Proof: In this part, we explain our landmark modelling method. The landmark is a

entirely noticed object (in experiment area) that can be considered as geometrical fea-

ture in navigation. We apply the idea of pixel-wise landmark which means that we
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Figure A.8: Principle and concept of pixel-wise landmark. Overall figure is top-view form.

Gray circle means cylinder shape landmark and Xi is the center with radius ri. There

are two observation at X and X’. Then equal distance vectors called ALV point to part

of object that are marked as blue arrows. The sum of blue ones is red arrow that is not

geometrically equal to real landmark vector.

treat pixel as landmark itself without clustering algorithm to interpret surrounding en-

vironment. In this part, we put one assumption that all the objects have cylinder shape.

Because this cylinder shape is not affected by pose of the robot in horizontal direction.

We think if this modelling is right, then other shapes are also be approximated. When

there is only object (not background), final summation of pixel-wise landmark vector

is
−→
O and it can be written as

−→
O = ∑

i

−→
Vi ' ∑

i
lim
δ→0

−→
Vi = ∑

i
η

Ri
ri

−→u (θi) (A.13)

where, refer to Figure A.8, −→u (θi) is unit length vector point to the center of i-th land-

mark object and −→u (θi) is the perpendicular unit vector component of −→u (θi) then
−→u (θi) · −→w (θi) = 0. ri(X) is distance value between position X and landmark loca-

tion Xi and size(radius) of object is ri. δ is angular resolution and ϕ(= sin−1( Ri
||Xi−X ||))

is angle of right triangle including both radius and distance.
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Because
−→
Vi =

ϕ

∑
θ=−ϕ

−→u (θi +θ) =−→u (θi){cosϕ+ cos(ϕ−δ)+ cos(ϕ−2δ) · · ·+ cos(−ϕ)}

+−→w (θi){sinϕ+ sin(ϕ−δ)+ sin(ϕ−2δ) · · ·+ sin(−ϕ)}

lim
δ→0

−→
Vi =

−→u (θi)η
ϕ∫
−ϕ

cosθdθ+−→w (θi)η
ϕ∫
−ϕ

sinθdθ = η
−→u (θi)×2sinϕ+0

= η
−→u (θi)×2sin(sin−1( Ri

||Xi−X ||))

= η
2Ri
ri

−→u (θi)
(A.14)

where normalizer (η) is about the constant for angular resolution. In real part, we use

angular resolution as normalizer and use it into modelling output.

A.2.3 Applying Modelling into Navigation Model

Theorem 2. As there is objects in the field with cylindrical shapes without occlusion,

based on the Theorem 1, then adding pixel-wise landmark vectors to the square of each

distance can operate like extracting objects without an object extraction algorithm.

−→
H (x,y) =−∇M = ∑

i
wir2

i
−→
θi −wi0r2

i0
−→
θi0 = ∑

i
riCi[ai− x,bi− y]− riCi[ai− x0,bi− y0]

(A.15)

where
−→
H (x,y) is calculated homing direction and (x,y) is current location and (x0,y0)

is home position. ri0 is distance between home and i-th measurement and ri between

current and i-th measurement. θi0 is pointing angular position to measurement from

home and θi is from current position. i is i-th object in this part and (ai,bi) is center

location of measurement in reference map. Ri is radius and Ci is measured feature value

of this object. Then output is approximated to our original moment model despite of

using pixel-wise landmarks.

Proof: In this part, we try to apply pixel-wise landmark modelling into holistic match-

ing model.

∇M =
360◦

∑
θ=0

−→r0 (θ)−−→r (θ) =
N
∑

i=1
wi0ri0

−→
θi0−wiri

−→
θi (A.16)

The equation above is modelling of omnidirectional range data without object extrac-

tion. Then we can get both range and direction. With pixel-wise landmark model, these
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omnidirectional ranges can be changed into the weighted form of landmark model.

Each weight is composed of the summation about landmark vectors of equal object

and it is inversely proportional to distance to this object. In this case, we think ri >> Ri

and the environment without occlusion to simply approximate navigation model. The

output can be represented by

∇M = ∑
i

wi0ri0
−→
θi0−wiri

−→
θi

= η∑
i
( RiCi
||Xi−X0||)[ai− x0,bi− y0]− ( RiCi

||Xi−X ||)[ai− x,bi− y]

Mxx = η∑
i

RiCi(− (x−ai)
2

||Xi−X || + ||Xi−X ||) = η∑
i

RiCi
(y−bi)

2

||Xi−X ||

Myy = η∑
i

RiCi(− (y−bi)
2

||Xi−X || + ||Xi−X ||) = η∑
i

RiCi
(x−ai)

2

||Xi−X ||

Mxy = η∑
i
−RiCi

(x−ai)(y−bi)
||Xi−X ||

λi = ||
−→
X i−

−→
X ||= ||(Xi,Yi)||= ||(ai− x),(bi− y)||

D = MxxMyy−M2
xy = η2

n−1
∑

i=1

n
∑

j=i+1

(XiY j−X jYi)
2

λiλ j
> 0

∃i, j(i 6= j) : (bi− y)(x j− x)− (ai− x)(y j− y) 6= 0

Mxx(X)> 0,∇M(X0) = 0,D > 0

(A.17)

where i and j are the indexes of object, R for radius, C for color intensity, (ai,bi) for

the center location of i-th object,
−→
θ for unit vector pointing direction θ and

J(∇Mk) =

(
d2M
dx2

d2M
dxdy

d2M
dxdy

d2M
dy2

)
=

[
Mxx Mxy

Myx Myy

]
(A.18)

this Jacobian matrix can be calculated by quadratic differential of each term including

Mxx for quadratic differential about x and Myy about y.

But the output is different to our object like

∇M = ∑
i
( RiCi
||Xi−X0||)[ai− x0,bi− y0]− ( RiCi

||Xi−X ||)[ai− x,bi− y]

6= ∑
i

2Ci[ai− x0,bi− y0]−2Ci[ai− x,bi− y]
(A.19)

Therefore we apply r2
i to remove 1/r part of gradient component.

∇M = ∑
i

wi0r2
i0
−→
θi0−wir2

i
−→
θi = ∑

i
RiCi[ai− x0,bi− y0]−RiCi[ai− x,bi− y]

Mxx = ∑
i

RiCi = Myy

Mxy = 0

D = MxxMyy−M2
xy > 0

Mxx(X)> 0,D(X)> 0,∇M(X0) = 0

(A.20)
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Figure A.9: Top view illustrating the landmark model. The gray circle represents an

object with cylindrical shape of radius ri and located at position Xi, whereas X repre-

sents the position of observation. The model can robustly detect the landmark edges

and return unit vectors (blue arrows). The red arrow represents the sum of the two unit

vectors.

where X0 is home position In short, our model in the case using pixel-wise landmarks

has to use r2
i instead of ri because the overall summation is fit with original our model.

A.3 Visual Mask Model for Homing Navigation

A.3.1 Landmark Modelling

To perform visual homing navigation, we represent objects as cylinders to interpret the

surrounding environment. For the landmark model, we determine the sum of all edges

assuming no occlusions. Then, we can identify individual objects, as illustrated in Fig-

ure A.9. We consider two unit vectors per object and use their sum in the proposed

method. The generated vector,
−→
V , is different to the real vector for home position (X)

to object center (Xi), but there is a relation between them.

ri = ||Xi−X ||
∠XiXA = ∠AXA′ = ∠XiXB = ϕ = sin−1(Ri

ri
)

where ri is radius and Di is distance of i-th object from object location (Xi) to cur-

rent location (X). A mathematical description based on the above relations allows to

determine the vector length as
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Λ = ||−→V ||= ||−→u (θi +ϕ)+−→u (θi−ϕ)||

where Λ is a length of the generated vector (V ) and weight (wi) can be presented by

wi = 2
Λ

ri
= 2
{ri cos(ϕ)}cos(ϕ)

ri
= 2[cos{sin−1(

Ri

ri
)}]2 = 2(1− R2

i

r2
i
).

A.3.2 Proof of Global Convergence of Homing Vector

The proposed method is designed to find the homing direction by comparing two rep-

resentative vectors corresponding to visual cues.

−→
H =−∇M =

−−→
Curr−−−−→Home

∇M = ∑
θ

δ(I0,θ)
−→uθ0−δ(I,θ)−→uθ = ∑

i
wi0
−→ui0−∑

i
wi
−→ui

where

δ(I,θ) =

[
1, i f I(θ) = edge

0, otherwise

]
.

Using the landmark model, the above vector summation is simplified by using the edge

finding function Then, the gradient can be written as

∇M = ∑
i

2(1− R2
i

r2
i0
)X0−2(1− R2

i

r2
i
)X

where Ri is radius and ri is distance of i-th object from object location to current loca-

tion (X = (x,y)). r0 is distance from object location to home location (X0 = (x0,y0)).

If the gradient is convex with a global minimum, then our the homing vector can reach

home. In this situation, the required conditions are

Mxx(X)> 0,∇M(X0) = 0,D(X)> 0

where D is determinant of Hessian matrix and

J(∇Mk) =

(
d2M
dx2

d2M
dxdy

d2M
dxdy

d2M
dy2

)
=

[
Mxx Mxy

Myx Myy

]
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Jacobian matrix can be calculated by quadratic differential of each term including Mxx

for quadratic differential about x and Myy about y.

Next, we calculate the conditions for global convergence:

Mxx = ∑
i

∂(−2(1−R2
i

r2
i
)X)

∂x =∑
i

1
r5

i
(Yi

4 +(Xi
2−Ri

2)Yi
2 +2Xi

2Ri
2) ← ri ≥ Ri,

Mxx ≥ ∑
i

1
r5
i
(Yi

4 +(Xi
2− ri

2)Yi
2 +2Xi

2Ri
2) = ∑

i

1
r5

i
(2Xi

2ri
2)> 0,

Myy ≥ ∑
i

1
r5

i
(Xi

4 +(Yi
2− ri

2)Xi
2 +2Yi

2Ri
2) = ∑

i

1
r5

i
(2Yi

2Ri
2)> 0,

Mxy = ∑
i

∂(−2(1−R2
i

r2
i
)X)

∂y =∑
i

1
r5

i
(XiYi(3R2

i − r2
i ))← ri ≥ Ri,

Mxy ≤ ∑
i

1
r5

i
(2XiYir2

i ).

where Xi = xi−x and Yi = yi−y, Ri for radius and ri for distance from current location

(X = (x,y)). Then, we can verify the determinant of the Jacobian:

D(X) = MxxMyy− (Mxy)
2 ≥ ∑

i
∑
j

2
r5
i

2
r5

j
{(Xi

2Ri
2)(Yj

2R j
2)− (XiYir2

i )(X jYjr2
j )}← ri ≥ Ri

=
N
∑

i=1
4Xi

2Yi
2(Ri

4− ri
4)+4

N−1
∑

i=1

N
∑

j=i+1
[

Xi
2Yj

2Ri
2R j

2−XiYiX jYjri
2r j

2

+X j
2Yi

2R j
2Ri

2−XiYiX jYjri
2r j

2
]

= 0+4
N−1
∑

i=1

N
∑

j=i+1
{(XiYj−X jYi)

2ri
2r j

2} ≥ 0.

Therefore, we obtain two conditions that are required to prove global convergence:

∃i, j(i 6= j) : (yi− y)(x j− x)− (xi− x)(y j− y) 6= 0, ri ≥ Ri.

Furthermore, we can identify cases where converge cannot be satisfied. For instance,

Figure A.10 shows a case that can contradict converge. At the home position, the radius

and distance to the center of the objects are equal, and they are aligned and placed

together. In this situation, homing navigation will mostly fail.

Nevertheless, such situations are less severe than those occurring when using tech-

niques such as the ALV method, Thus, we consider that the demonstrated convergence

is, in general, a good feature of the proposed method.
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Figure A.10: Case where D(J(∇M)) = 0. The red square and arrows represent the

home position and homing directions with an angular resolution of 1◦. The gray circles

representing objects have equal radius, which is also equal to the distance between the

home position and the object centers. In addition, the objects are aligned through the

home position, and hence D(J(∇M)) can be zero at this position.

A.4 Pixel-Wise Landmark Model for Homing Navigation

A.4.1 Landmark Modelling

As our assumption is that there are perfectly cylinder shape landmarks. When there is

only object (not background), final summation of pixel-wise landmark vector is
−→
O and

it can be write

−→
O = ∑

i

−→
Vi ' ∑

i
lim
δ→0

−→
Vi = ∑

i

Ri
ri

−→u (θi) (A.21)

where, refer to Figure 5.2, −→u (θi) is unit length vector point to the center of i-th land-

mark object and −→u (θi) is the perpendicular unit vector component of −→u (θi) then
−→u (θi) · −→w (θi) = 0. ri(X) is distance value between position X and landmark loca-

tion Xi and size(radius) of object is Ri. δ is angular resolution and ϕ(= sin−1( Ri
||Xi−X ||))

is angle of right triangle including both radius and distance. Because
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−→
Vi =

ϕ

∑
θ=−ϕ

−→u (θi +θ) =−→u (θi){cosϕ+ cos(ϕ−δ)+ cos(ϕ−2δ) · · ·+ cos(−ϕ)}

+−→w (θi){sinϕ+ sin(ϕ−δ)+ sin(ϕ−2δ) · · ·+ sin(−ϕ)}

lim
δ→0

−→
Vi =

−→u (θi)η
ϕ∫
−ϕ

cosθdθ+−→w (θi)η
ϕ∫
−ϕ

sinθdθ = η
−→u (θi)×2sinϕ+0

= η
−→u (θi)×2sin(sin−1( Ri

||Xi−X ||))

= η
2Ri
ri

−→u (θi)
(A.22)

In this part, normalizer (η) is about the term of angular resolution. In real part, we

remove it and use modelling output.

A.4.2 Proof of Homing Convergence with Distance Information

To prove unique convergence of our homing model using distance information, sug-

gested model has to satisfy three conditions. These are

Mxx(X)> 0,D(X)> 0,∇M(X0) = 0 (A.23)

where

J(∇Mk) =

(
d2M
dx2

d2M
dxdy

d2M
dxdy

d2M
dy2

)
=

[
Mxx Mxy

Myx Myy

]
(A.24)

where this Jacobian matrix can be calculated by quadratic differential of each term in-

cluding Mxx for quadratic differential about x and Myy about y. Attached with modeling

above, if ri is larger than Ri, homing vector (∇M) can be approximately presented like

∇M = ∑
i

wi0ri0
−→
θi0−wiri

−→
θi = ∑

i
( RiCi
||Xi−X0||)[ai− x0,bi− y0]− ( RiCi

||Xi−X ||)[ai− x,bi− y]

Mxx = ∑
i

RiCi(− (x−ai)
2

||Xi−X || + ||Xi−X ||) = ∑
i

RiCi
(y−bi)

2

||Xi−X || > 0

Myy = ∑
i

RiCi(− (y−bi)
2

||Xi−X || + ||Xi−X ||) = ∑
i

RiCi
(x−ai)

2

||Xi−X ||

Mxy = ∑
i
−RiCi

(x−ai)(y−bi)
||Xi−X ||

(A.25)

where Ri for radius, Ci for color intensity, ri for distance from current location (X =

(x,y)) to i-th object location (Xi = (ai,bi)) and ri0 for distance from home location

(X0 = (x0,y0)). Then determinant of Jacobian condition can be calculated by
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Figure A.11: Counterexample of model using (XF ,YF) in homing navigation. There are

four landmarks with home position (0,0) and black arrows show the calculated homing

direction by using (XF ,YF).

λi = ||
−→
X i−

−→
X ||= ||(Xi,Yi)||= ||(ai− x),(bi− y)||

D = MxxMyy−M2
xy =

n−1
∑

i=1

n
∑

j=i+1

(XiY j−X jYi)
2

λiλ j
> 0

(A.26)

with one criteria

∃i, j(i 6= j) : (bi− y)(a j− x)− (ai− x)(b j− y) 6= 0 (A.27)

A.4.3 Proof of Homing Convergence without Distance Information

To prove the unique convergence of our homing model without distance information,

the suggested model showed to satisfy three conditions.

Mxx(X)> 0,det(J(∇M(X)))> 0,∇M(X0) = 0 (A.28)

where

J(∇M) =

(
d2M
dx2

d2M
dxdy

d2M
dxdy

d2M
dy2

)
=

[
Mxx Mxy

Myx Myy

]
(A.29)
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This Jacobian matrix can be calculated by quadratic differential of each term including

Mxx for quadratic differential about x and Myy about y. Attached with modelling with-

out distance, if ri is larger than Ri, the potential field (M) of homing vector (−∇M) can

be given by

M = ∑
i
[RiCi{ln(||Xi−X ||2)− 1

||Xi−X0||2
X0 ·X}] (A.30)

∇M = ∑
i
(

ηRiCi

||Xi−X0||2
)[ai− x0,bi− y0]− (

ηRiCi

||Xi−X ||2
)[ai− x,bi− y] (A.31)

where, for i-th landmark, Ri for radius, Ci for color intensity, ri = ||Xi−X || for dis-

tance from the current location (X = (x,y)) to the object location (Xi = (ai,bi)) and

ri0 = ||Xi−X0|| for distance from the home location (X0 = (x0,y0)). Then, homing

vector(−∇M) is

−→
H =−∇M =

−−−→
O(X)−

−−−→
O(X0) = (XF ,YF) (A.32)

where (XF ,YF) is directly calculated homing direction using potential. However, in this

part, the output cannot be converged to home position (X0). Because it does not satisfy

the one of the unique convergence conditions (D(X)> 0).

∇M = η∑
i
( RiCi
||Xi−X0||2

)[ai− x0,bi− y0]− ( RiCi
||Xi−X ||2 )[ai− x,bi− y]

Mxx = η∑
i
−RiCi

(x−ai)
2−(y−bi)

2

||Xi−X ||4 = Myy

Mxy = η∑
i

2RiCi
(x−ai)(y−bi)
||Xi−X ||4 = Myx

det(J(∇M)) = MxxMyy−MxyMyx = (Mxx)
2− (Mxy)

2

(A.33)

Figure A.11 shows the failed counter example using XF and YF as they are. The above

potential M does not satisfy one of convergence conditions, det(J(∇M))> 0, and can-

not guide homing. Thus, new gradient of potential fields to support the convergence

are suggested. We propose four homing vectors (∇M1,∇M2,∇M3,∇M4) as given by:

∇M1 =−∇M2 = (XF ,−YF)

∇M2 =−∇M1 = (−XF ,YF)

∇M3 =−∇M4 = (YF ,XF)

∇M4 =−∇M3 = (−YF ,−XF)

(A.34)
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where ∇M1, ∇M2, ∇M3 and ∇M4 are extracted from ∇M which is not successful with-

out distance information. These terms do not use simple XF and YF ; instead, they

change their sign or order. Two different types are perpendicular to each other and

two different direction is opposite (∇M1 ·∇M2 = 0,∇M+ =−∇M−). A sequence of a

homing vector produces a homing route what homing vectors guide homing should be

investigated. Then those four gradient functions are given by

∇M1 = ∑
i
( ηRiCi
||Xi−X0||2

)[ai− x0,−bi + y0]− ( ηRiCi
||Xi−X ||2 )[ai− x,−bi + y]

∇M2 = ∑
i
( ηRiCi
||Xi−X0||2

)[−ai + x0,bi− y0]− ( ηRiCi
||Xi−X ||2 )[−ai + x,bi− y]

∇M3 = ∑
i
( ηRiCi
||Xi−X0||2

)[bi− y0,ai− x0]− ( ηRiCi
||Xi−X ||2 )[bi− y,ai− x]

∇M4 = ∑
i
( ηRiCi
||Xi−X0||2

)[−bi + y0,−ai + x0]− ( ηRiCi
||Xi−X ||2 )[−bi + y,−ai + x]

(A.35)

where Ci is feature value (color) and Ri is radius of i-th landmark at location (Xi =

(ai,bi)) from current location (X = (x,y)) and home location (X0 = (x0,y0)). Two dif-

ferent types of suggested models are perpendicular to each other, and two different

directions are opposite (∇M1 ·∇M3 = 0,∇M1 = −∇M2,∇M3 = −∇M4). We try to

observe the convergence conditions of these four models. To solve the convexity, we

calculate quadratic differentials like

M1,xx =−M4,xy = ∑
i
−ηRiCi

(x0−ai)
2−(y0−bi)

2

||Xi−X0||4
= ∑

i
−ηRiCi cos(2θi)/D2

i

M2,xx =−M1,xx = ∑
i

ηRiCi
(x0−ai)

2−(y0−bi)
2

||Xi−X0||4
= ∑

i
ηRiCi cos(2θi)/D2

i

M3,xx =−M2,xy = ∑
i
−ηRiCi

2(x0−ai)(y0−bi)
||Xi−X0||4

= ∑
i
−ηRiCi sin(2θi)/D2

i

M4,xx =−M3,xx = ∑
i

ηRiCi
2(x0−ai)(y0−bi)
||Xi−X0||4

= ∑
i

ηRiCi sin(2θi)/D2
i

(A.36)

Using those outputs, we observe the convergence conditions of these four models.

First,

∇M1 = η∑
i
( RiCi
||Xi−X0||2

)[ai− x0,−bi + y0]− ( RiCi
||Xi−X ||2 )[ai− x,−bi + y]

Mxx = η∑
i
−RiCi

(x−ai)
2−(y−bi)

2

||Xi−X ||4 = Myy

Mxy = η∑
i

2RiCi
(x−ai)(−y+bi)
||Xi−X ||4 =−Myx

det(J(∇M(X))) = MxxMyy−MxyMyx = (Mxx)
2 +(Mxy)

2 ≥ 0

(A.37)

where Ci is a feature value (color) and Ri is radius of the i-th landmark at location (Xi =

(ai,bi)) with the current location (X = (x,y)) and the home location (X0 = (x0,y0)).
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det(J(∇M1(X))) can be positive (Mxx 6= 0 or Mxy 6= 0) or zero (Mxx = 0 and Mxy = 0).

Similarly, we obtain

∇M2 =−∇M1 = ∑
i
( RiCi
||Xi−X0||2

)[−ai + x0,bi− y0]− ( RiCi
||Xi−X ||2 )[−ai + x,bi− y]

∇M2(X0) = 0,det(J(∇M2(X)))≥ 0
(A.38)

where, det(J(∇M2(X))) can be positive (Mxx 6= 0 or Mxy 6= 0) or zero (Mxx = 0 and

Mxy = 0).

∇M3 = ∑
i
( RiCi
||Xi−X0||2

)[bi− y0,ai− x0]− ( RiCi
||Xi−X ||2 )[bi− y,ai− x]

Mxx = ∑
i
−2RiCi

(x−ai)(−y+bi)
||Xi−X ||4 = Myy

Mxy = ∑
i
−RiCi

(x−ai)
2−(y−bi)

2

||Xi−X ||4 =−Myx

det(J(∇M3(X))) = MxxMyy−MxyMyx = (Mxx)
2 +(Mxy)

2 ≥ 0

(A.39)

where, det(J(∇M3(X))) can be positive (Mxx 6= 0 or Mxy 6= 0) or zero (Mxx = 0 and

Mxy = 0).

∇M4 =−∇M3 = ∑
i
( RiCi
||Xi−X ||2 )[−bi + y0,−ai + x0]− ( RiCi

||Xi−X ||2 )[−bi + y,−ai + x]

∇M4(X0) = 0,det(J(∇M4(X)))≥ 0
(A.40)

where, det(J(∇M4(X))) can be positive (Mxx 6= 0 or Mxy 6= 0) or zero (Mxx = 0 and

Mxy = 0). All the cases can be written as

∇M1(X0) = 0,det(J(∇M1(X)))≥ 0,(M1)xx = ∑
i
−ηRiCi cos(2θi)/D2

i = K1

∇M2(X0) = 0,det(J(∇M2(X)))≥ 0,(M2)xx = ∑
i

ηRiCi cos(2θi)/D2
i =−K1

∇M3(X0) = 0,det(J(∇M3(X)))≥ 0,(M3)xx = ∑
i
−ηRiCi sin(2θi)/D2

i = K2

∇M4(X0) = 0,det(J(∇M4(X)))≥ 0,(M4)xx = ∑
i

ηRiCi sin(2θi)/D2
i =−K2

(A.41)

where we set K1 and K2 for simplicity. These four cases like (Mk)xx are quadratic

differential about x in each case and the outputs can be represented by two constants
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(K1 and K2). First, if these two constants are not zero, all the outputs can be written as
K1 > 0 −K1 < 0 ∇M1 : success

K1 < 0 −K1 > 0 ∇M2 : success

K2 > 0 −K2 < 0 ∇M3 : success

K2 < 0 −K2 > 0 ∇M4 : success

(A.42)

For either K1 6= 0 or K2 6= 0, det(J(∇Mk(X)))> 0 since (Mk)xx > 0. According to our

analysis, there must be at most two or at least one model will have convergence. For

example, the case with K1 = 0 and K2 > 0 has ∇M3 as solution. If all of them are zero,

det(J(∇Mk)) = (Mxx)
2 +(Mxy)

2 can also be zero. Through the above part, we check

this condition and it has also homing property with special pattern. Attached to this

property, we cannot know what type of model is right therefore we change models to

find proper one in time-sequence.
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